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Introduction: Immunogenic cell death (ICD) is a form of regulated cell death that

activates an adaptive immune response in an immunocompetent host and is

particularly sensitive to antigens from tumor cells. Kidney clear cell carcinoma

(KIRC) is an immunogenic tumor with extensive tumor heterogeneity. However,

no reliable predictive biomarkers have been identified to reflect the immune

microenvironment and therapeutic response of KIRC.

Methods: Therefore, we used the CIBERSORT and ESTIMATE algorithms to define

three ICD clusters based on the expression of ICD-related genes in 661 KIRC

patients. Subsequently, we identified three different ICD gene clusters based on the

overlap of differentially expressed genes (DEGs) within the ICD clusters. In addition,

principal component analysis (PCA) was performed to calculate the ICD scores.

Results: The results showed that patients with reduced ICD scores had a poorer

prognosis and reduced transcript levels of immune checkpoint genes regulatedwith

T cell differentiation. Furthermore, the ICD score was negatively correlated with the

tumor mutation burden (TMB) value of KICD. patients with higher ICD scores

showed clinical benefits and advantages of immunotherapy, indicating that the

ICD score is an accurate and valid predictor to assess the effect of immunotherapy.

Discussion: Overall, our study presents a comprehensive KICD immune-related

ICD landscape that can provide guidance for current immunotherapy and predict

patient prognosis to help physicians make judgments about the patient’s disease

and treatment modalities, and can guide current research on immunotherapy

strategies for KICD.

KEYWORDS

immunogenic cell death, kidney clear cell carcinoma, immune, prognostic assessment,
tumor mutation burden
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1 Introduction

ICD is a form of regulated cell death that activates an adaptive

immune response in immunocompetent hosts (1, 2). ICD can

be caused by a variety of stimuli, including viral infections,

chemotherapeutic agents, and radiation therapy, and is particularly

sensitive to antigens derived from tumor cells (3). The concept of

cancer immunotherapy is to use the immune system to trigger an

anti-tumor immune response (4). As a result, ICD is now being used

in several preclinical models for anticancer chemotherapy, and

clinical evidence suggests that tumor-specific immune responses

can help improve the efficacy of conventional chemotherapeutic

agents (5, 6).

The incidence of kidney cancer is on the rise globally, especially

in the younger population (7, 8). In 2020, there were more than

431,000 new cases of kidney cancer and 179,000 deaths worldwide

(9). Kidney clear cell carcinoma (KIRC) is the most common

histologic cluster, with extensive tumor heterogeneity (10). KIRC

is frequently genetically altered, such as somatic mutations in VHL,

PBRM1, SETD2, BAP1, KDM5C, and PI3K-AKT-mTOR pathway

genes (11). Although nephrectomy has shown good efficacy in the

treatment of localized KIRC, more than 30% of patients experience

advanced disease progression and 25% eventually experience

disease recurrence (12). As KIRC is considered an immunogenic

tumor, many different immunotherapeutic approaches have been

tried in the past (13). Despite being strongly infiltrated, immune

dysfunction promotes renal tumor growth and evasion. The tumor-

induced changes in Dendritic Cells (DC) cell differentiation and the

induction of anergy-associated genes in T cells can partially explain

the impaired antitumor response (14). In recent years, treatment

options for advanced KIRC have changed dramatically with the

advent of targeted agents and immune checkpoint inhibitors (PD-

1). However, the fact remains that real-life clinical practice still

faces the enormous challenge of optimizing individualized

treatment strategies. It is well known that biomarkers and

predictive models can be used to predict risk stratification and

case selection for targeted therapies, immunotherapies and

combination therapies (10). However, to date, no reliable

predictive biomarkers have been identified to reflect the immune

microenvironment and treatment response in KIRC (15).

Therefore, a more detailed grouping of KIRCs has important

implications for guiding treatment (16).

Therefore, in this study, we first explored the correlation

between KIRC and ICD using relevant tools. Then, two

computational algorithms, CIBERSORT and ESTIMATE, were

used to analyze the expression of ICD-related genes in tumor

samples. In addition, we classified KIRC into three clusters based

on the differences in the expression of ICD-related genes. Finally,

in this study, we identify ICD-related biomarkers in KIRC and

develop an ICD scoring mechanism that allows for an overall

evaluation of the immune microenvironment and prognosis of

KIRC patients, as well as for assessing their response to

immunotherapy. In the future, this technology could help

physicians make important judgments about patient condition

and treatment modalities.
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2 Materials and methods

2.1 Data collection and pre-processing

A total of 621 transcriptome data samples of KIRC samples

were collected from The Cancer Genome Atlas (TCGA) database

and International Cancer Genome Consortium (ICGC) database.

Transcripts Per Kilobase per Million mapped reads (TPM) of

TCGA-KIRC and ICGC-KIRC was derived from the University of

California Santa Cruz (UCSC) Xena browser (https://

xenabrowser.net/datapages/). The dataset used R “Combat”

algorithm to eliminate the batch effect from the non-biological

technical biases of each dataset (16). In addition, samples of clinical

information such as age, gender, tumor stage, and survival time

were collected, too. Further, the immune cell infiltration and

somatic mutation data were also collected.
2.2 Unsupervised clustering
analysis of KIRC

We were used to quantifying the infiltration levels for distinct

immune cells in KIRC with the R CIBERSORT package (17). The

ESTIMATE algorithm was utilized to calculate the expression of

CRG for each KIRC sample to classify the CRG pattern and the

immune score was also analyzed (18). We executed hierarchical

agglomerative clustering of KIRC based on each CRD pattern.

“Consensu Cluster Plus” R package was used to determine the

number of clusters and stability, which is based on the unsupervised

clustering “Pam” method according to Euclidean and Ward’s

linkage and 500 times repeats to confirm the clustering stability.
2.3 Identification of DEGs related to the
ICD phenotype

KIRC samples were classified into different ICD clusters based on

the expression of ICD -related genes. R “limma” package was used to

identify the differentially expressed genes (DEGs) among ICD clusters

and the cutoff criteria were determined as P< 0.05 (adjusted) and |Log

fold-change| > 1 (19). Further, the pathways of the DEGs enriched

were constructed by DAVID and reflected by R “clusterProfiler”

package. The Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways were analyzed.
2.4 ICD score construction

On the basis of unsupervised clustering of DEGs, the ICD score

was computed to quantify the ICD model for each KIRC individual.

The KIRC patients were classified into distinct ICD gene clusters

based on overlapped DEGs. R Boruta algorithm was further utilized

for reducing the dimensionality of the different ICD gene signatures

(20) and principal component 1 was extracted as the signature score

by employing the principal component analysis (PCA). Finally, we
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defined the ICD score for each patient by employing the gene

expression grade index (21).

ICD score =oKIRC1A −oKIRC1B

2.5 Somatic gene mutation in KIRC

The corresponding somatic mutation data of TCGA-KIRC and

ICGC-KIRC was derived from the UCSC Xena browser, too. The

tumor mutational burden (TMB) of each patient was counted by the

total number of non-synonymous mutations in KIRC. To identify

the correlation between somatic gene mutation and the ICD score,

we grouped KIRC samples into low and high ICD score subgroups

by “maftool” package of R software (22). Further, the top 20 driven

mutation genes exploded.
2.6 Construction and validation of a
predictive nomogram

For expanding the predictive ability of the ICD score, we built a

nomogram according to the clinical information of TCGA-KIRC

and ICGC-KIRC including, age, gender, and tumor stage. Further, a

calibration method was used to verify the nomogram.
2.7 Statistical analysis

R version 4.0.5 was conducted for all statistical analyses. The two

groups’ comparisons were carried out using the Wilcoxon test, and

the Kruskal-Wallis test was employed for more than 3 groups.

Kaplan-Meier (K-M) plot was conducted to generate survival

differences with the log-rank test in patients with KIRC. Pearson

correlation analysis was used to analyze the correlation coefficient. A

P-value less than 0.05 indicates statistical significance. The analysis

between ICD score subgroups and somatic mutation frequency was

used a chi-square test analyzed the correlation, and the Pearson

correlation analysis calculated the correlation coefficient. Two-tailed

P< 0.05 was considered statistically significant.
2.8 Cell culture

KIRC cell line SW839 and renal epithelial cell line HEK-293T(RRID

: CVCL_0063) were all obtained fromAmerican TypeCulture Collection

(ATCC, Rockville, MD, USA). Cells were cultured in RPMI-1640

containing 10% fetal bovine serum (FBS, Gibco, Carlsbad, CA, USA),

1% penicillin-streptomycin (HyClone, Logan, UT, USA), and then

preserved in the atmosphere with 5% carbon dioxide (CO2) at 37°C.
2.9 Cell transfection

Plasmids were commercially purchased from Youze Biological

Corporation. As per the manufacturer, cell transfection was

performed using Lipofectamine 2000 (Invitrogen, Inc., CA, USA).
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2.10 Quantitative real-time PCR analysis

The total RNA was extracted using TRIzol reagent. An

equivalent of 1 μg of total RNA was subjected to reversed

transcription into cDNA using PrimeScript™ RT reagent Kit

(Takara, Kyoto, Japan) and Mir-X™ miRNA qRT-PCR SYBR®
Kit (Takara, Kyoto, Japan). The mRNA expression of the target

gene was determined by qRT-PCR conducted on the ABI-7900

system with SYBR Green (Takara, Kyoto, Japan). The expression of

a target gene was normalized to that of GAPDH.
2.11 Transwell assay

A Transwell chamber (24-well) with Matrigel was applied to

determine cell invasion following the manufacturer’s instructions.

200 μl transfected SW839 cells (1×105) were added in the upper

chamber with RPMI1640 medium without FBS. 500 μl RPMI-1640

medium containing 10% FBS was added to the lower chamber. Cells

were cultured for 24 h at 37 °C with 5% CO2. The cells were fixed

with formaldehyde for 15 min and then stained with 0.1% crystal

violet for 15 min. The invasive cell number was counted using a

Zeiss Microscope (Nikon Corporation, Japan).
2.12 Cell counting kit

Cells were selected in the logarithmic growth phase and seeded

in 96-well plates at 2 × 103 cells/well for 0h, 24h, 48h, and 72h. 10mL
CCK8 solution (Dojindo, Japan) was added and the plate was

incubated at 37°C for 2h in the dark. The absorbance was

detected at 450 nm using a microplate reader (Thermo

Fisher Scientific).
2.13 Wound healing assay

Cells were plated in 6-well plates and scratched vertical wounds

with 10 ml tips after completely adherent. Cells were cultured in

serum-free RPMI-1640 and photographed at 0h and 48h.
3 Results

3.1 ICD-related gene mutations associated
with kidney cancer

First, the expression of ICD-related genes was compared in renal

clear cell carcinoma tissues and normal tissues, and it was found that

the expression ofmost ICD-related genes in renal clear cell carcinoma

was significantly different from normal tissues (Figure 1A). Since the

direct cause of the difference in expression is copy number variation

and associated gene mutations, the copy number and mutations of

ICD-related genes in the overall population were further investigated.

ICD-related genes were localized in the chromosomes of the overall

population (Figure 1B) and the associated copy mutation patterns
frontiersin.org

https://doi.org/10.3389/fonc.2023.1147805
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1147805
were clarified (Figure 1C), where deletions of genes including

MYD88, IFNGR1, and ATG5 were observed to be possibly

associated with KIRC. Meanwhile, the specific mutation patterns

and base substitution patterns of ICD-related genes in the population

were specifically analyzed (Figure 1D), indicating that the high

mutation rates of genes such as SP90AA1 and PIK3CA may be

associated with KIRC. To further clarify the relationship between
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mutations in ICD-related genes and KIRC, one-way cox analysis and

co-expression analysis of ICD-related genes showed that both the

deletion and mutated genes just mentioned are oncogenes and have

strong interactions with most other ICD-related genes associated

with cancer (Figure 1E). Therefore, it is believed that there is a

correlation between the degree of ICD-related gene expression

and KIRC.
B C

D E

A

FIGURE 1

ICD-related gene mutations associated with kidney cancer (A) Expression of ICD relative genes in normal and KICD tumor tissues in patients
*P< 0.05, **P< 0.01 *** P< 0.001. (B) Chromosomal localization of ICD-related genes in the overall population. (C) Gain and Loss of ICD-associated
genes in the overall population. (D) Specific mutation patterns and base substitution patterns of ICD-related genes in human populations. (E) Single-
factor cox analysis and co-expression analysis of ICD-related genes. ns, no significance.
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3.2 Differential ICD gene
expression in KIRC

First, we used the ESTIMATE algorithm to quantify the

expression levels of ICD-related genes in KIRC tumor tissues.

Based on 621 tumor samples with ICD features (array expression

database: TCGA & ICGC; The Cancer Genome Atlas TCGA-

KIRC and ICGC-KIRC), unsupervised clustering using

ConsesusClusterPlus with R software was used to classify KIDC

patients into different clusters. We identified three independent ICD

clusters with significant survival differences (log-rank test, p = 0.018;

Figures S1, 2A). To verify the validity of the grouping, the three

clusters were tested separately for survival, and the survival of clusters

A and B was significantly better than that of cluster C (Figure 2B).

Then, the three clusters were subjected to 3D compositional

clustering analysis, and it was observed that although the

correlation of ICD-related genes was higher, the clustering analysis

of different clusters indicated that the genes within the group were

more closely related and correlated (Figure 2C), which also indicated

the existence of some scientific validity and reasonableness of the

grouping. Next, different clusters of tumors were counted for

immune cell infiltration, and although the overall trends were

similar across subgroups, there were significant within-group

differences in the majority of types of immune infiltrating cells,

including myeloid-derived suppressor cells (MDSCs), CD8+ T cells,

and monocytes (Figure 2D), suggesting that the grouping by this D,

suggesting that the classification of KIDC into 3 clusters by this

grouping has its own biological significance. To further understand

the biological significance corresponding to these three clusters and

their differences, the three clusters were grouped in two and their

related pathways were analyzed and compared (Figures 2E–G). The

comparison revealed that the differences were more obvious in the

comparison of clusters A and C; clusters A and B showed differences

in pathway enrichment despite similar survival curve trends; while

clusters B and C, in contrast to A and B, had large differences in

survival analysis while similar or identical possibilities existed in the

pathways. Therefore, although these three clusters may have their

corresponding biological significance, there are still problems such as

similar pathways and insignificant differences in survival curves.

Therefore, we believe that these three clusters can be further analyzed

for further treatment.
3.3 Reconstruction of tumor clusters

To further optimize the typing of tumor clusters and reduce

noise and redundancy, we re-screened all ICD-related genes and

selected 661 genes that were significantly different in all three

clusters A, B and C for more accurate analysis. We extracted 661

ICD-related genes and then performed GO and KEGG analysis

(Figure 3A). GO analysis showed that the red module was highly

enriched in the biosynthesis of multiple viral infections and proteins

(Figure 3B). Additionally, signaling pathway analysis suggested that

the ICD-related genes were enriched in exogenous antigen, peptide

antigen, and other antigen processing and presentation, RNA
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shearing and splicing, cell-matrix attachment, and other

physiological aspects related to tumor antigen immunity

(Figure 3C). After confirming that these 661 ICDs were

associated with tumor immunity and other physiological

activities, we subjected these 661 genes to further analysis. The

661 ICD-related gene expressions were downscaled using the

Boruta algorithm, and the samples were reclassified into two

groups according to these 661 gene expressions, and the heat map

was drawn in this way (Figure 3D). Then, the two gene clusters were

clustered using 3D cluster analysis, and it was found that the two

gene clusters differed in clustering (Figure 3E). In addition, to

explore the prognostic significance of the clusters, we integrated

the ICD gene clusters with survival information, and the survival of

group A was significantly better than that of group B (Figure 3F).
3.4 Construction of the ICD score

To obtain quantitative indicators of ICD status in KIRC patients,

we used the principal-component analysis (PCA) to calculate specific

scores for two groups: (1) ICD score A from ICD trait gene A, and (2)

ICD score B from ICD trait gene B.We obtained the ICD score for

each group by summing the score A and score B for each sample, and

considered this score as the sum of individual scores. Finally, we

defined the obtained score as the prognostic characteristics score of

the ICD score. All patients were divided into two groups with high

or low ICD scores by using the best cut-off values obtained with the

“maftool” package of R software. The distribution of patients in

the three gene clusters is shown in Figure 4A. To further ensure the

reliability of the ICD scores, the two groups with high and low ICD

scores were analyzed for survival (Figure 4B) and regression

(Figure 4C), and it was clear that there was a significant survival

difference(p<0.001). The gene set enrichment analysis (GSEA) test

(Figure 4D) revealed that active pathways in the low ICD score group

were associated with pro-tumor growth and positive regulation of

mitosis, which positively explains the poor prognosis and regression

of patients with low ICD scores. Also, in the high ICD score group,

active reactive oxygen species metabolism and DNA repair pathways

also represent better cellular activity and repair function, which

implies a relatively high anti-tumor capacity of the organism. In

addition, we generated correlation coefficient heat maps to visualize

the prevailing landscape of immune cell interactions in ICD

(Figure 4E). To further demonstrate the physiological significance

of the scores, we performed expression analysis of 13 immune

checkpoint-associated genes widely reported in the literature and

found that although the expression trends of immune checkpoint-

associated genes were the same across scores, there were still

expression differences in eight genes, the vast majority of which

were associated with regulation of T-cell differentiation (Figure 4F).

Next, we substituted the scores into the three and two gene clusters in

the previous section and observed statistically significant differences

when the scores were substituted into the above gene clusters

(Figure 4G), suggesting that the use of scores to represent patient

conditions allows for a more detailed and specific evaluation of

patient conditions than the use of genotyping alone.
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3.5 Tumor mutational load correlates
with ICD scores

There is substantial evidence that CD8+ T cells infiltrating

tumor tissue can recognize and eliminate tumor cells with high

mutational load (nonsynonymous variants). This means that

tumor-loading mutations (TMBs) may determine an individual’s
Frontiers in Oncology 06
response to cancer immunotherapy. Studies have shown that

increased TMB is associated with improved response to PD-1

blockade and prolonged progression-free survival. Considering

the clinical importance of TMB, to further understand it, we

performed survival analysis and regression statistics for patients

with different TMB (Figures 5A, B), and the results showed that

TMB may be associated with patient prognosis. We sought to
B

C D

E F

G

A

FIGURE 2

Differential ICD gene expression in KIRC (A) Unsupervised clustering of ICD-related genes in two independent KIRC cohorts. Rows represent ICD-
related genes, and KIRC columns represent samples. (B) Kaplan-Meier curves for overall survival (OS) of all KIRC patients with ICD cluster classes.
Log rank test showed an overall p< 0.001. (C) Three- dimensional diagram of principal component analysis (PCA) of ICD clusters. (D) The difference
in the infiltration of 23 immune cells, immune score, and stromal score in three distinct ICD clusters. *P< 0.05, **P< 0.01 ***P< 0.001. (E-G) The
pathways enriched by three ICD clusters using KEGG pathway enrichment analysis and identified by the “GSVA” R package. ns, no significance.
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explore the intrinsic correlation between TMB and ICD scores by

fitting the two and demonstrating a negative correlation

(Spearman’s coefficient: R = -0.16, p = 0.0028; Figure 5C)

Considering the prognostic value of the TMB and ICD scores, we

next evaluated the synergistic effect of these scores in the prognostic

stratification of KIRC. Stratified survival analysis showed that TMB

status did not interfere with predictions based on ICD scores and

that ICD score clusters showed significant survival differences in the

high and low TMB subgroups (log-rank test, high TMB and high

ICD scores (HH) versus high TMB and low ICD scores (HL), p<

0.001; Figure 5D) Through the analysis, we learned that the higher

the tumor mutational load, the lower the ICD score, and the worse

the prognosis of tumor patients, which is consistent with the

previous description. Overall, these findings suggest that ICD

scores may serve as a potential predictor independent of TMB
Frontiers in Oncology 07
and a valid measure of response to immunotherapy, and also

suggest the value of ICD for further analysis.

In addition, we evaluated the distribution of somatic variants in

KIRC driver genes between low and high ICD subgroups. The top 20

driver genes with the highest frequency of alteration were further

analyzed, while their mutation patterns were shown (Figure 5D).

Analysis of mutation annotation files from both databases revealed

significant differences in the frequency of alterations between low and

high ICD score groups for PBRM1, TTN, SETD2, BAP1, MTOR,

KDM5C, MUC16, HMCN1, ATM, LRP2, SPEN, ARID1A, ANK3,

PTEN, FLG and KMT2C (Figure 5E). Overall, patients with higher

ICD scores had fewer overall tumor mutations, while the opposite was

true for patients with lower ICD scores. These results may provide

new ideas for studying the mechanisms of tumor ICD composition

and gene mutations in immune checkpoint blockade therapy.
B

C

D E F

A

FIGURE 3

Reconstruction of tumor clusters (A) Venn diagram illustrating the number of DEGs among the three ICD clusters. (B, C) Gene Ontology (GO)
and KEGG enrichment analysis of the ICD-relevant signature genes. The size of the dot represents gene count, and the color of the dot
represents (p. adjust-value); (D) Unsupervised clustering of common DEGs among three ICD cluster groups to classify patients into three groups:
gene clusters (A–C, E) Two- dimensional diagram of principal component analysis (PCA) of gene clusters. (F) Kaplan-Meier curves for overall
survival (OS) of all KIRC patients with gene clusters. Log rank test showed an overall p =0.002.
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3.6 Significance of ICD score for patient
prognosis and immunotherapy

The analysis above has clarified the existence of ICD scores for

both their prognostic as well as immunotherapeutic implications.

Therefore, to further relate to clinical practice, we used ICD score

analysis including patients’ gender, age and their tumor staging,

stage, metastasis and other clinical judgment indicators to

understand the accuracy of ICD score in determining patients’

prognosis. By analysis we obtained that ICD scores were associated

with age, gender, N fraction, and M fraction in patients with KIRC
Frontiers in Oncology 08
tumors (p<0.05; Figures 6A–F). In a subsequent analysis, we

examined the utility of ICD scores in inferring patient treatment.

For this purpose, the analysis was performed in the TCGA-ICGC

cohort for patients receiving PD-L1 and CLTA4 immunotherapy in

high versus low ICD scores. Notably, the objective remission rate

(objective response) of anti-PD-L1 therapy was higher in the high

ICD score group than in the low ICD group (p = 0.01; Figure 6H).

And, the objective remission rate of anti-CLTA4 treatment was

higher in the high ICD score group than in the low ICD group

(p<0.005; Figure 6I). In addition, the same was observed in patients

receiving both PD-L1 and CLTA4 immunotherapy (p<0.005;
B C

D

E

F

G

A

FIGURE 4

Construction of the ICD score (A) Sankey diagram shows the correlation between ICD cluster,gene cluster, ICD score, and status of KIRC
patients. (B) Kaplan-Meier curve was used to predict the prognosis of the ICD score (log-rank test P< 0.001). (C) The regression of KICD patients
with high ICD scores compared with KICD patients with low ICD scores (log-rank test (B) P=2.5*10-13). (D) KICD patients in the low and high ICD
score subgroups. (E) Correlation of the ICD score with immune cellular. (F) The expression of immune-checkpoint genes and immune-activity
genes in patients in the high and low ICD score subgroups. *P< 0.05, **P<0.01, ***P< 0.001. (G) ICD score distribution in gene cluster (G). ns, no
significance.
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Figure 6J). Therefore, the ICD score can be used to determine the

prognosis of immunotherapy in either patients receiving PD-L1 or

CLTA4 immunotherapy alone or in patients receiving both PD-L1

and CLTA4 immunotherapy. Overall, these data suggest that ICD

scores may correlate with response to immunotherapy. In addition,

the ICD score remains a guide to prognosis for patients who do not

receive both immunotherapies (p<0.005; Figure 6G).

A nomogram based on clinical features was constructed using

the “rms” R package to determine the prognostic value of the ICD

score. Each parameter (ICD score, age, stage, and M stage) was

assigned a point, and the total points were computed. Based on the

total score, 1-, 3- and 5-year BCR- free survival rates were predicted
Frontiers in Oncology 09
(Figure 7A). The calibration plot validated that the nomograms

couldpredict the prognosis of patients based on IC scores

(Figures 7B–D).
3.7 RNF38 has an oncogenic effect in KIRC

We selected RNF38, a gene with significant differences among

the three groups, to validate the rationality of the scoring system.

The expression level of RNF38 in tumor samples was significantly

lower than that in normal tissue (Figure 8A). In addition, the

expression of RNF38 decreased with the progression of the tumor
B

C D

E F

A

FIGURE 5

Tumor mutational load correlates with ICD scores. (A) Kaplan-Meier curve for low and high TMB subgroups in the ICD score cohort (log-rank test
P<0.001). (B) Patients with high ICD score had high TMB value (P = 0.00011). (C) positive correlation was observed between ICD score and TMB
(R = -0.16; P = 0.0028). (D) Kaplan-Meier curve for different subgroups (log-rank test P<0.001). (E, F) Oncoprint visualization of the top ten most
frequently mutated genes in ICD-low cluster (E), and ICD-high cluster (F).
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stage (Figures 8B–D). By qPCR technique, we found lower

expression of RNF38 in SW839 cells compared to HEK-293T

cells (Figure 8E). We overexpressed RNF38 in SW839 cells and

found that the proliferation (Figure 8F), invasion abilities
Frontiers in Oncology 10
(Figures 8G, I), and migration (Figures 8H, J) of the transfected

cells were reduced. At the same time, knocking down RNF38 results

in an increase in the above capabilities (Figures 8F–J). The above

results corroborate the rationality of the grouping.
B C

D E F

G H I

A

J

FIGURE 6

Significance of ICD score for patient prognosis and immunotherapy (A) The correlation between the T stage and ICD scores (Wilcoxon test, P = 3.7*10-10).
(B) The association between the N stage and ICD scores (Wilcoxon test, P = 0.00061). (C) The association between the M stage and ICD scores (Wilcoxon
test, P = 9.3*10-8). (D) The association between the grade and ICD scores (Wilcoxon test, P = 3.4*10-14). (E) The association between the M stage and ICD
scores (Wilcoxon test, P = 0.033). (F) laterality parameters have no significant correlation with the ICI score. (G) Patients with a low ICI score have a better
immune response to the IPS-CTLA4-neg-PD1-neg immunotherapy (log-rank test P = 0.0068). (H) Patients with a low ICI score have a better immune
response to the IPS-CTLA4-neg-PD1-pos immunotherapy (log-rank test P = 0.001). (I) Patients with a low ICI score have a better immune response to
the IPS-CTLA4-pos-PD1-neg immunotherapy (log-rank test P = 9.1*10-7). (J) Patients with a low ICI score have a better immune response to the IPS-
CTLA4-pos-PD1-pos immunotherapy (log-rank test P = 0.00013).
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4 Discussion

Early clinical trials of immunotherapy have demonstrated its

efficacy in treating low-risk and intermediate-risk KIRC and in

extending progression-free survival in patients. However, an

important limitation of immunotherapy is that only a small

number of patients benefit from it. The KIRC guidelines for

immunotherapy published by the Society for Immunotherapy of

Cancer also emphasize that patients suitable for immunotherapy

and their appropriate drug classes should be identified as early as

possible (23). In this study, we established a method to quantify ICD

associated gene mutations within tumors in KIRC. Our findings

suggest that the ICD score is a valid prognostic biomarker and

predictive indicator for assessing response to immunotherapy.

There is growing evidence that immune prototype cell death

within the KIRC affects immune cells and promotes tumor

immunosuppression, leading to associated tumor survival and

progression. In this study, we analyzed 621 KIRC samples for

ICD-related genes, classified KIRC into three different clusters,

and analyzed the scores found to correlate with patient prognosis.

This emphasizes that preexisting immune responses have antitumor

effects and positively influence the response to immunotherapy.
Frontiers in Oncology 11
Several seminal clinical and genomic studies have reported that

KIRC is one of the tumor types that are highly infiltrated with

immune cells. However, only some patients with KIRC respond to

immunotherapy compared to patients with other tumor types with

lower immune infiltration. This suggests that even the immune

phenotype in the tumor does not absolutely predict response to

immunotherapy. Thus, genetic analysis of KIRC has identified a

series of mutations in ICD-related genes whose mutational status

directly affects the expression of these genes, and changes in the

expression of the genes involved may disrupt intercellular

communication between infiltrating immune cells, thus shifting

the balance between immune tolerance and sensitivity.

In the current study, we hypothesized that the combined

characterization of ICD profiles and immune-related gene

expression patterns would be a novel approach to develop

patient-specific therapeutic strategies. We focused on ICD

immune prototype-related genes of practical significance that can

modulate the immune system, so we screened all ICD immune

prototype-related genes into new ICD gene clusters to obtain

immune-related genes. anti-tumor immune responses in ICD

gene cluster A are associated with a good prognosis, and we

hypothesized that patients in ICD gene cluster A might benefit
B C D

A

FIGURE 7

Construction of nomogram for ICD sroce. (A) The nomogram was based on ICD score, age, M stage, and T stage to predict the prognosis of 1, 3,
and 5 years. (B–D) The 1-year (B), 3-year (C), and 5-year (D) calibration curves of the nomogram.
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from immunotherapy from immunotherapy. The results of our

analysis are consistent with previous studies and suggest that the

gene clusters in the current study may lead to the development of

more precise immunotherapies.

Considering the individual heterogeneity of the immune

environment, there is an urgent need to quantify the ICD

patterns of individual tumors. Individual models based on tumor
Frontiers in Oncology 12
cluster-specific biomarkers have been well used in breast and

colorectal cancers to improve prognosis (24–26). In the current

study, with the help of Boruta algorithm, we built an individual-

based model to improve outcome prediction. In the current study,

with the help of the Boruta algorithm, we obtained potential “cluster

biomarkers” and established an ICD score to quantify the ICD

pattern. Through GSEA, we identified relevant physiological
B C

D E F

G

H

I J

A

FIGURE 8

RNF38 has an oncogenic effect in KIRC (A) Expression of RNF38 in KIRC based on Sample types. **P<0.01. (B) Expression of RNF38 in KIRC based on
individual cancer stages. **P< 0.01. (C) Expression of RNF38 in KIRC based on nodal metastasis status. **P< 0.01. (D) Expression of RNF38 in KIRC
based on tumor grade. **P< 0.01. (E) Difference of RNF38 expression between 293T and SW839. **P< 0.01. (F) Comparison of the proliferation
ability of normal SW839 cells, SW839 cells knocking down RNF38 and SW839 cells overexpressing RNF38. (G, I) Comparison of the invasive ability of
normal SW839 cells, SW839 cells knocking down RNF38 and SW839 cells overexpressing RNF38.**P< 0.01. (H, J) Comparison of the migration
ability of normal SW839 cells, SW839 cells knocking down RNF38 and SW839 cells overexpressing RNF38. **P< 0.01, ***p<0.001.
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phenomena involved in immunosuppression, such as regulation of

exogenous antigen, peptide antigen, and other antigen processing

and presentation, RNA shearing and splicing, and cell-matrix

attachment, and these genes were clearly enriched in the low ICD

score group. Recently, preclinical reports have identified the

relationship between gene mutations and response or tolerance

the relationship between gene mutations and response or tolerance

to immunotherapy (27, 28). The combined ICD scores at the

genomic level showed significant differences in variant frequency

between multiple genes with high and low ICD scores, and few of

these genes were clearly associated with sensitivity or resistance.

By evaluating patients receiving immunotherapy, we found that

ICD scores were significantly higher in patients who responded to

immunotherapy, which validates its predictive value. Overall, this

suggests that immunotherapy may be beneficial for patients with

high ICD scores. Considering the activity of the TGF-b signaling

pathway in the low ICD score cluster, TGF-b inhibition coupled

with immune checkpoint blockade may be beneficial in patients

with low ICD scores (29, 30). In addition, previous clinical studies

have confirmed that synergistic treatment with TGF-b inhibitors

and immune checkpoint inhibitors is more effective than single

agent immunotherapy for solid tumors. In addition, there is an

ongoing phase 1b/2 clinical trial (ClinicalTrials.gov: NCT02423343)

testing the therapeutic efficacy of the combination of TGF-b and

nivolumab in advanced solid tumors. Therefore, we consider the

ICD score as a way to determine the prognosis of KIRC patients for

immunotherapy. However, the results of the current study need to

be validated in a larger cohort of KIRC receiving immunotherapy

based on clinical trials.

In summary, we have comprehensively analyzed the ICD profile

of KIRC to provide a clear picture of the regulation of anti/pro-tumor

immune responses in KIRC. In response regulation in KIRC,

differences in ICD patterns were found to correlate with tumor

heterogeneity and therapeutic complexity. Therefore, this study is

of clinical importance for the systematic assessment of tumor ICD

patterns. At the same time, it allows the identification of ideal

candidates with which to tailor the optimal immunotherapy strategy.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Author contributions

All authors contributed to the conceptualization and design of

the study. LW, YRZ and ZR made substantial contributions to the

acquisition of data, analysis, and interpretation of data and drafted

the manuscript. WS, ZW, TZ, HL and YZ revised the manuscript

critically for important intellectual content. DG, LZ and ZH have

given important help to this article. All authors contributed to the
Frontiers in Oncology 13
article and approved the submitted version. WL, QW and GW are

responsible for statistic and quality review.
Funding

This work was supported by National Natural Science

Foundation of China (81672526, 81802560), Special Program for

Clinical Research of Shanghai Municipal Health Commission

(20184Y0263, 20184Y0105).
Acknowledgments

The data used for the study were retrieved from data publicly

available databases like the ICGC and TCGA. We thank all patients

and all investigators of these datasets for providing the data.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1147805/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

ICD cluster clustering analysis grouping (A–F) The consensus matrix of all
KICD samples for each k (k=2-5), showing the cluster stability for 1000

iterations of hierarchical clustering, for the ICD cluster (A–D). The cluster
stability of 1000 iterations of hierarchical clustering, and its Delta area (E), the
consensus CDF (F).

SUPPLEMENTARY FIGURE 2

Gene cluster clustering analysis grouping (A–F) The consensus matrix of all
KICD samples for each k (k=2-5), showing the cluster stability for 1000

iterations of hierarchical clustering, for the gene cluster (A–D). The cluster
stability of 1000 iterations of hierarchical clustering, and its Delta area (E), the
consensus CDF (F).

SUPPLEMENTARY FIGURE 3

Mutations in ICD-related genes (A)Mutation status of the TOP 30 ICD-related
genes. (B) Statistics of specific mutation patterns of ICD-related genes. (C)
Co-expression of high mutation-expressing ICD-related genes.
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W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun (2013) 4:2612. doi: 10.1038/ncomms3612

19. Smyth GK. Linear models and empirical bayes methods for assessing differential
expression in microarray experiments. Stat Appl Genet Mol Biol (2004) 3:Article3. doi:
10.2202/1544-6115.1027

20. Speiser JL, Miller ME, Tooze J, Ip E. A comparison of random forest variable
selection methods for classification prediction modeling. Expert Syst Appl (2019)
134:93–101. doi: 10.1016/j.eswa.2019.05.028

21. Sotiriou C,Wirapati P, Loi S, Harris A, Fox S, Smeds J. Gene expression profiling
in breast cancer: understanding the molecular basis of histologic grade to improve
prognosis. J Natl Cancer Inst (2006) 98(4):262–72. doi: 10.1093/jnci/djj052

22. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res (2018) 28(11):1747–
56. doi: 10.1101/gr.239244.118

23. Rini BI, Battle D, Figlin RA, George DJ, Hammers H, Hutson T, et al. The society
for immunotherapy of cancer consensus statement on immunotherapy for the
treatment of advanced renal cell carcinoma (RCC). J Immunother Cancer (2019) 7
(1):354. doi: 10.1186/s40425-019-0813-8

24. Callari M, Cappelletti V, D'Aiuto F, Musella V, Lembo A, Petel F, et al. Subtype-
specific metagene-based prediction of outcome after neoadjuvant and adjuvant
treatment in breast cancer. Clin Cancer Res (2016) 22(2):337–45. doi: 10.1158/1078-
0432.CCR-15-0757

25. Bramsen JB, Rasmussen MH, Ongen H, Mattesen TB, Ørntoft MW, Árnadóttir
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