
SACAD: John Heinrichs Scholarly and Creative Activity Days SACAD: John Heinrichs Scholarly and Creative Activity Days

Volume 2022 Article 49

4-20-2022

Postfix Form to Infix Form Postfix Form to Infix Form

Joe Liu
Fort Hays State University, y_liu32@mail.fhsu.edu

Follow this and additional works at: https://scholars.fhsu.edu/sacad

Recommended Citation Recommended Citation
Liu, Joe (2022) "Postfix Form to Infix Form," SACAD: John Heinrichs Scholarly and Creative Activity Days:
Vol. 2022, Article 49.
DOI: 10.58809/HNQT3829
Available at: https://scholars.fhsu.edu/sacad/vol2022/iss2022/49

This Submission is brought to you for free and open access by FHSU Scholars Repository. It has been accepted for
inclusion in SACAD: John Heinrichs Scholarly and Creative Activity Days by an authorized editor of FHSU Scholars
Repository. For more information, please contact ScholarsRepository@fhsu.edu.

https://scholars.fhsu.edu/sacad
https://scholars.fhsu.edu/sacad/vol2022
https://scholars.fhsu.edu/sacad/vol2022/iss2022/49
https://scholars.fhsu.edu/sacad?utm_source=scholars.fhsu.edu%2Fsacad%2Fvol2022%2Fiss2022%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.fhsu.edu/sacad/vol2022/iss2022/49?utm_source=scholars.fhsu.edu%2Fsacad%2Fvol2022%2Fiss2022%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ScholarsRepository@fhsu.edu

Introduction

Postfix Form to Infix Form

Conclusions

Joe Liu
1Department of Computer Science, For Hays State University
Research Mentors: Dr. Hongbiao Zeng)

Even though infix expression is easy for humans to
understand, it is hard for the computers to comprehend.
According to Sayan Mahapatra from GeekforGeeks, “Prefix
and Postfix expressions can be evaluated faster than an
infix expression. This is because we don’t need to process
any brackets or follow operator precedence rule.” Using
postfix expression eliminates the problem of confusion due
to precedence. For example, an infix expression such as
2$3&4. One does not know if 2$3 should be applied first or
3&4 without knowing the precedence. In addition, Postfix
expression can be easily calculated with the Stack-base
algorithm.

double evaluatePostfix(string postfix);
// Precondition: Enter a string in postfix form
// Postcondition: the value if of the postfix expression will be evaluated
double calculate(double x, double y, string op);
// Precondition: enter 2 number and a operator
// Postcondition: a value will be returned based on the input
bool isOperator(string s);
// Precondition: Enter any string
// Postcondition: true is returned if the string is an operator, fasle other
wise

int main()
{

cout << "This program evaluate postfix expressions" << endl;
cout << "'35 7 + 8 6 5 - * -' evalates to : " << evaluatePostfix("35 7 + 8

6 5 - * -") << endl;

string x;
cout << "Enter a postfix expression: ";
getline(cin, x);
cout << evaluatePostfix(x);

}

double evaluatePostfix(string postfix) {
//go over each token in postfix, do accordingly
stack<string>s;
int begin = 0;
int next = 0;
//go over postfix to find all tokens
while (next != -1 && begin < postfix.length()) { //keep going if there is

still something in the string

//seperate the string by space (get several substring)
next = postfix.find(" ", begin);
string str = postfix.substr(begin, next - begin); //second element is

how long of this substring

//if it is integer, push into the stack
if (isdigit(str[0]))

s.push(str);

//if it is operator, take the top 2 value in the stack, apply the
operator and push back into the stack

else if (isOperator(str)) {
string op2 = s.top();
s.pop();
string op1 = s.top();
s.pop();
double val = calculate(stof(op1), stof(op2), str);
s.push(to_string(val));

}

//start from the next index
begin = next + 1;

}
//There will only be one value left in the stack
return stof(s.top());

}

double calculate(double x, double y, string op) {
if (op == "+")

return x + y;
else if (op == "-")

return x - y;
else if (op == "*")

return x * y;
else if (op == "/")

return x / y;
}

bool isOperator(string s) {
//if greater than one than it has to be numbers
if (s.length() > 1)

return false;

//if the opertor is found, it will return the index
within the the string (not equal to -1)

//which will make the follwing excpression true
(return true)

string ops = "+-*/";
return ops.find(s) != -1;

}

The mathematical expression that people are most familiar
with is known as Infix form. There are also other ways to
express math equations such as postfix form and prefix
form. Infix expression consists of two operands and one
operator such as 2+2. Postfix expression consists of two
operand but with the operator at the end (2 2 +). Prefix
expression is similar to postfix expression with one major
difference that the operator is written before the operand
(+ 2 2).

Mahapatra, S. (2021, September 6). Evaluation of Prefix Expressions.

GeeksforGeeks. Retrieved March 30, 2022, from

https://www.geeksforgeeks.org/evaluation-prefix-

expressions/#:~:text=Prefix%20and%20Postfix%20expressions%20can,first%2

C%20irrespective%20of%20its%20priority.

Reference

Iterate through the postfix expression:
When encountered an operand: push it into the stack
When encountered an operator:
1. pop out the last two operand in the stack
2. apply the operator
3 .push the value back

into the stack
When there is only one value left in the stack, return the
value

Algorithm

abstract

Through this project, I have learned an efficient way to
calculate math expression. Using various sources such as
YouTube and different websites on Google, I have created
an algorithm to evaluate expressions using postfix form
rather than infix. To further my project, I am working on
converting infix expression to postfix expression and
making a calculator to evaluate Boolean expression base
on my current algorithm.

	Postfix Form to Infix Form
	Recommended Citation

	tmp.1690558923.pdf.7CC_e

