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ABSTRACT Three-phase converters based on insulated-gate bipolar transistors (IGBTs) are widely used in 

various industrial applications. Faults in IGBTs can significantly affect the operation and safety of the power 

electronic equipment and loads. It is critical to accurately detect power inverter faults as soon as they occur 

to ensure system availability and high-power quality. This study provides a novel integration of signal and 

data-driven fault-diagnosis approaches for detecting open-circuit switch faults in three-phase inverters. The 

proposed technique uses the average root-mean-square (RMS) ratio of the phase current as the key extraction 

feature. This feature can be used to estimate the fault types and faulty switches (es) irrespective of changes 

in the running load. Ensemble-bagged machine learning classification was used to accurately predict the 

faulty switch of the inverter. The results demonstrate the ability of the proposed fault diagnosis technique to 

identify single-, double-, and triple-switch fault (s). The experimental results also attested to the simulation 

of multiple fault diagnosis. A unique feature of this technique is its ability to estimate faulty switches under 

various inverter-operating conditions. 

INDEX TERMS Ensemble bagged, Fault diagnosis, Open-circuit fault, Voltage source inverter, IGBT 

I. INTRODUCTION 

 

Voltage Source Inverters (VSIs) play a vital role in the 

contemporary industry and energy sectors, with applications 

extending from induction motor drives to renewable energy 

integration and power-efficient systems [1]. The failure of 

these devices can lead to operational disruption and 

consequential economic loss. Research on motor drives and 

renewable energy conversion systems reveals that VSIs are 

particularly susceptible to faults and exhibit a high failure 

rate, as depicted in Fig.1 [2]. 

Insulated Gate Bipolar Transistors (IGBTs) are one of the 

common VSI components that are especially prone to faults, 

accounting for 38% of VSI failures [3], [4]. These can be 

categorized into short-circuit (SC), gate-drive malfunction, 

and open-circuit (OC) faults, often resulting from 

environmental conditions, thermal stress, or ageing [1], [5]. 

Short-circuit faults can inflict immediate and severe damage, 

necessitating protective mechanisms such as fuses and 

circuit breakers [4]. On the other hand, open-circuit faults 

may not cause instant damage but can degrade the power 

quality of the inverter output, potentially harming other 

system components. Over time, open-circuit faults can 

prompt a total system shutdown [6]. Hence, it is essential to  

 

detect open- and short-circuit faults promptly to prevent 

extensive damage to the converter system. 

 

 

 
FIGURE 1 Failure rate of wind energy conversion system components[7]  

 

Fault diagnosis (FD) is a vital reliability-cantered tool 

used to identify, classify, and locate faults, which in turn 

reduces the downtime of the inverter system. Over the years, 

considerable research has been conducted to investigate the 

performance of power switches under open circuit  
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conditions. This has resulted in the development of fault 

diagnosis and fault-tolerant techniques.  

Fig.2 shows the common open-circuit faults in a VSI. 

These faults include gate driver malfunctions, open-switch 

faults, and diode open faults [5], [8]. A gate driver 

malfunction occurs when the gate drive signal to the switch 

is interrupted. Thus, there is no signal to switch, creating an 

open-circuit fault in the IGBT switch A gate driver 

malfunction leads to an interruption in the gate drive signal 

to the switch, resulting in an open-circuit fault in the IGBT 

switch. This fault can arise from a faulty gate driver or bond 

wire lift-off within the IGBT switch. In cases where the anti-

parallel diode is not integrated directly with the IGBT switch, 

it remains connected and operational [5], [9], [10]. An open-

diode fault occurs when the diode is damaged and becomes 

disconnected from the circuit. In contrast, an open-switch 

fault occurs when both the IGBT and the diode within the 

circuit are faulty [5], [10], [11]. Such faults can manifest 

during bond wire lift-off caused by thermal stress, 

specifically in a Reverse Conducting Insulated Gate Bipolar 

Transistor (RC-IGBT) where the IGBT and diode are 

integrated on a single chip. 

Most studies on open-circuit faults have focused on gate 

drive malfunctions rather than on open-switch faults. 

 
Diode open 
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Open switch 

fault
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Gate driver 
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FIGURE 2. Possible open circuit faults in VSI 

 

II. OPEN CIRCUIT FAULT DIAGNOSIS METHODS 

Open circuit (OC) fault diagnosis can be categorized into 

model-based, data-driven, and signal-based approaches [1]. 

A model-based approach compares the information from the 

analytical and theoretical inverter models with that of a real 

system after a fault occurs. This includes the development of 

mathematical models and open- and closed-loop observers 

and using residuals as fault indicators. The authors of [12] 

used a switching-state function model for fault diagnosis in 

inverters. A gate-drive malfunction was created, the 

switching states were analyzed, and an estimated phase 

voltage was established. A normal scenario occurred when 

the measured and estimated phase voltages were similar. A 

threshold was set to consider measurement error, switching 

delay, and dead time. When a fault occurs, the phase voltage 

exceeds a set threshold. Thus, fault identification was 

achieved. However, only single-switch faults were identified 

in the present study. In [13], a Luenberger observer model 

was introduced using a dq stator current. The fault was 

identified by monitoring the current residuals and comparing 

them with a threshold value. [4]presents an approach that 

uses an observer and an adaptive threshold to analyze system 

signals without extra hardware. It takes into account current 

dynamics, state changes, and real-world application factors. 

Its detection time is about 6ms. [14] proposes a hybrid 

approach for diagnosing faults in sensorless induction motor 

drives. The method uses a diagnostic algorithm, based on a 

first-order sliding mode observer, to identify single and 

multiple open-switch faults and open-phase faults by 

analyzing unique features of the motor's abc frame in about 

20% of the fundamental frequency. One of its drawbacks is 

the threshold setting. The main drawbacks of model-based 

approaches include a lack of robustness in multiple-switch 

fault identification and their dependence on the type of 

model used. Some voltage-based methods involve the use of 

extra equipment such as voltage sensors, thus reducing the 

total reliability and increasing the implementation cost. 

A data-driven fault-diagnosis approach involves the use 

of machine learning for fault identification and localization. 

In this approach, significant emphasis is placed on the feature 

extraction of fault indicator signals, because they play a 

critical role in the performance of the technique. The raw 

three-phase current itself was combined with a random 

vector functional network in [15] for the fault identification 

and classification of gate-drive malfunction open-circuit 

faults. High accuracy can be achieved only when the 

sample’s current time window length is greater than 60 ms 

(approximately 3-4 cycles). Wavelet analysis using a fuzzy 

algorithm was proposed in [15] [16]. In this method, an open-

circuit fault was created by opening the gate signal to the 

switches under investigation. The fault is detected by 

changes that occur in three-phase current wavelet 

coefficients. These coefficients were fed into the fuzzy 

algorithm for the fault identification and classification 

stages. Single- and double-switch faults were identified 

using this technique [16]. Several combinations of wavelet 

parameters, such as wavelet energy and entropy, have been 

used with more sophisticated machine learning algorithms 

for fault identification [18]–[20]. The major concerns of the 

data-driven approach are its complexity and the requirement 

of large-scale data for training and validating machine-

learning algorithms. Signal-based methods use the signal 

characteristics of current, voltage, or a combination of both 

for fault identification and classification. The following 

include different signal-based fault diagnosis techniques 

[16], [20], [21], which developed an open-circuit fault 

diagnosis (OC-FD) method based on the principle of the park 

vector technique by analyzing the average current trajectory. 

In a healthy condition, the average current trajectory is a 

complete circle; however, it is subject to change when a fault 

occurs. The shape of the current trajectory depends on the  
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type of OC fault. The major drawback of this technique is its 

load dependence. To address this issue, the authors of  [23] 

introduced a DC-normalized current that compares the 

normalized DC for each phase to a universal threshold. A 

pattern-recognition method was used in [23], that deploys 

three-phase current harmonics for FD was used in [23]. It has 

been established that whenever a fault occurs, the zero-order 

harmonics of the faulty phase are the sum of the other two 

zero-order harmonics of healthy phases. The faulty arm and 

single-switch faults can be identified; however, double-

switch faults cannot be identified from the two different 

phases. [25] introduces a novel fuzzy-based fault diagnosis 

technique for three-phase voltage-source inverters. It uses 

the average current Park's vector for detecting and locating 

single, multiple, and intermittent faults in power switches.  

These faults were detected in 9ms and the fuzzy system had 

an accuracy of 96%. 

 

The mean current was proposed in [26] for fault 

identification and localization. Under normal conditions, the 

mean value of each phase is zero. However, this value 

changes when an OC fault exists. The polarity of the mean 

value was used for switch identification. Single- and double-

switch faults can be identified; however, the technique is 

load dependent as well. To eliminate load dependency, an 

additional variable called the normalized mean current was 

employed [27]. This was derived by dividing the mean 

current of each phase by the Park modulus [26]. Under 

healthy conditions, the normalized average mean was 

0.5198. Thus, a fault will cause deviation from the 

normalized healthy value. This technique can be used to 

identify single- and double-switch faults. A criticism of this 

method was published in [11], which indicated that this 

technique would not be effective at low currents, that is when 

the current approached zero. However, this technique cannot 

be used to identify triple-switch faults. Root-mean-square 

(RMS) and mean combination were proposed in [6] and [22]. 

It uses the RMS to identify the faulty arm and the mean to 

identify the faulty switch. It also introduces a normalized 

mean current to remove the load dependency. This technique 

cannot detect multiple switch faults and is prone to 

challenges that affect the normalization techniques discussed 

in other approaches.  

The authors of [10] developed an FD method to identify 

open-switch faults in voltage-source inverters. This method 

is based on measuring the RMS and average voltage output 

of the inverter. It can identify single- and multiple-switch 

faults within a single cycle. The major drawback of this 

technique is the first step in the diagnosis, and it is necessary 

to compare the measured RMS voltage to the rated RMS 

voltage. Therefore, this technique requires the input of the 

rated RMS voltage at the start of FD.  

Overall, the signal-based approach is simple and easy to 

implement in control units because minimum calculation is 

required [1]. Recent research has focused on a signal - and 

data-driven methods, owing to their simplicity and potential. 

The literature has shown that adding extra hardware, 

complexity, high cost of implementation, false alarms, and 

lack of robustness are major shortcomings of existing FD 

methods for OC faults.  

Several authors such as [5], [10], [11] have highlighted 

the potential for open switch faults to occur in inverter 

systems. Upon reviewing the literature, it's evident that much 

of the existing research predominantly concentrates on gate-

drive malfunctions, with relatively fewer studies dedicated 

to open-switch faults in the inverter. Thus, distinguishing 

and accurately pinpointing the root causes of open-circuit 

faults in the inverter switches becomes an essential 

endeavour. 

This paper's contributions are summarized as follows. 

• A fault diagnosis technique for open-switch faults was 

developed using a combination of three-phase current 

average and rms for fault identification and 

classification.  

• The FD technique can identify single and multiple 

switch faults without the need for additional sensors. 

• It also introduces a novel but simple normalization 

technique to eliminate the load dependency associated 

with the mean current indicator compared with 

published methods.  

• Developed a machine-learning-based technique that 

successfully identified single- and multiple-switch 

open-circuit faults. This was achieved by using 

supervised and ensemble-bagged tree models to 

predict the classification of faults that were completely 

independent of load changes.  

The proposed model is verified experimentally to confirm 

the simulations.  

In this paper, we present a comprehensive study of open-

circuit fault diagnosis methods in Section II. In Section III, 

we discuss the specific characteristics of faults in the three-

phase inverter output current. In Sections IV and V, we 

propose a novel fault-diagnosis method that utilizes average 

and RMS ratios. We then provide the simulation and 

experimental results in Sections VI and VII, respectively, 

before concluding our findings in Section VIII. 

 

 
III. OPEN CIRCUIT CHARACTERISTICS OF THREE-

PHASE INVERTER  

A. INVERTER MODEL 

This study concentrates on a three-phase, two-level inverter 

system, as depicted in Fig. 3. The system utilizes IGBT 

switches and operates using pulse-width modulation (PWM) 

for control within an open-loop control framework. The 

output of this system is connected to an RL load, which is 

typically found in applications such as Uninterruptible 

Power Supplies (UPS), certain types of motor drives, 

renewable energy systems like solar photovoltaic and wind 

energy systems, and power supplies for electronic 

equipment. The specific parameters of the RL load, crucial 

for determining the performance of the system, are detailed 

in Table A1.
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FIGURE 3. Three-phase inverter schematics 

A. FAULT ANALYSIS 

The three-phase balanced output-current waveforms of the 

inverter are sinusoidal under normal operating conditions, as 

shown in Fig.4. This changes when an OC fault occurs in a 

single switch or multiple switches. 

 

FIGURE 4. Three-phase current during healthy conditions 

 
Single switch fault: When a switch from the upper arms is 

subjected to an OC fault (e.g., S3), the current will not flow 

through S3 but will flow through S6. Thus, the current in 

Phase B was negative. This, in turn, adds positive DC 

components to the currents in Phases A and C. The three-

phase current became distorted, as shown in Fig. 5. The Case 

is reversed when S6 is OC and the current in phase B 

becomes positive. 

 
FIGURE 5. Open circuit fault on a single switch (S3) 

 

Double Switch fault: During a double-switch OC fault on 

the upper arms (e.g., S1 and S3), the current does not flow 

through either Switch. Thus, the currents in phases A and B 

are negative, as shown in Fig. 6. The case is reversed if both 

the faulty switches are in the lower arms. The current 

waveform in the fault phase was positive. However, if one 

fault is in the upper arm and the other in the lower arm (e.g., 

S1 and S6), the current will not flow through them, thus 

creating positive and negative currents for phases A and B, 

respectively, as shown in Fig. 7. 

 

 

FIGURE 6. Open circuit faults on upper double switches (S1&S3) 

 

FIGURE 7. Open circuit faults on lower and upper switches (S1&S6) 

 
Triple switch fault: When this type of fault occurs, all three-

phase current waveforms have a positive or negative half 

cycle. This depends on the arm in which the fault occurred. 

If S4, S5, and S6 are affected by an OC fault, it can be 

observed in Fig.8 that phases A and B will be positive, 

whereas phase C will have a negative value. 

From this analysis, information from the current waveform 

can be extracted and used for fault identification during the 

OC faults. 

 

FIGURE 8. Open circuit faults on triple switches 

 
IV. FAULT INDICATING MEASUREMENTS 

In the previous section, it was established that the three-

phase waveforms of the current are affected under faulty 

conditions. Thus, the waveform characteristics can be used 

as key indicators for identifying fault signatures. This study 

suggests using RMS and average values of the current for 

fault identification and classification. For example, Fig.9 

shows the effect of the S1 OC fault on the average current. 

As can be observed, the average current is 0 during a healthy 
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condition, and this changes during the fault when introduced 

at 0.04s. Fig.10 shows the effect of the S1 OC fault on the 

rms measured current. It is observed that during a healthy 

condition, the rms of all phases are the same but change when 

a fault is introduced at 0.04s. From all graphs, it is noticeable 

that the magnitude and sign of the average and rms currents 

are rich indicators of the type and location of faults.  

 
FIGURE 9. Three-phase average current during S1 OC fault 

 

FIGURE 10. Three-phase rms current during S1 OC fault 

 

V. NOVEL APPROACH OF FAULT DETECTION AND 
CLASSIFICATION 

To extract information regarding the inverter condition, the 

RMS and average current values were calculated for each 

phase over one cycle using Eqs. (1) and (2), respectively: The 

RMS and average current values were generated from the 

simulated inverter for both healthy and faulty conditions to 

extract fault signatures. There are limitations to using each 

parameter individually for fault detection. The RMS alone 

can identify the faulty phase in the inverter, but cannot 

identify the faulty switch. This is also load dependent. 

 

𝐼𝑎𝑣𝑔 =  
1

𝑇
∫ 𝑖(𝑡)

𝑇

0

𝑑𝑡 
                

(1) 

  

𝐼𝑟𝑚𝑠 =  √
1

𝑇
∫ 𝑖2(𝑡)

𝑇

0

𝑑𝑡 

 
(2) 

Using only the average current, identification of the faulty 

switch and/or phase (only if one or two phases are faulty) can 

be achieved; however, the FD method is load dependent and 

cannot differentiate between short- and open-circuit faults. 

To address the load dependency issue, researchers have 

adopted an additional variable called the normalized mean 

current [27]. This was derived by dividing the mean current 

of each phase by the Park modulus [26]. However, this 

normalization technique has limitations, including lower 

effectiveness at low current values and the inability to 

identify triple-switch faults [1]. 

This study presents a new normalization technique that uses 

the ratio of the average to the RMS current for each phase. 

The average and RMS values changed at different loads, but 

the average-to-RMS ratio remained the same. Table 1 shows 

a sample of the average-rms ratio for the S3 fault for different 

loads, as indicated in Fig.11. 

Thus, the mean to rms ratio can be employed for fault 

detection without being load dependent. This technique has 

been shown to identify faults at low currents and triple-

switch faults in the inverters. The sample data given in Table 

A2 represent the generated data to be presented to a machine-

learning algorithm to classify the faulty switch of the faulty 

phase (A/B/C) under load variation. Table 2 lists all the 

possible open-switch faults and their respective fault labels. 

These fault labels are used to train the classifiers. 

 
TABLE 1. AVERAGE / RMS RATIO OC SINGLE SWITCH S3 

FAULT 

Phase Loads  rms-B average-B average/rms ratio 

A Load 1 1 0.016 0.016 

Load 2 0.51 0.0081 0.016 

Load 3 1.03 0.0165 0.016 

B Load 1 0.049 -0.0323 -0.66 

Load 2 0.046 -0.030 -0.66 

Load 3 0.049 -0.0323 -0.66 

C Load 1 1 0.016 0.016 

Load 2 0.52 0.0083 0.016 

Load 3 1.06 0.0169 0.016 

 

 

 

FIGURE 11. Average / rms ratio OC single switchS1 fault 
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TABLE 2. FAULT TYPE LABELS 

Fault type Fault label Fault type Fault label 

Healthy 0 S1S6 OC 13 

S1 OC 1 S3S4 OC 14 

S3 OC 2 S1S2 OC 15 

S5 OC 3 S4S5 OC 16 

S4 OC 4 S2S3 OC 17 

S6 OC 5 S5S6 OC 18 

S2 OC 6 S1S2S3 OC 19 

S3S5 OC 7 S4S5S6 OC 20 

S1S5 OC 8 S1S5S6 OC 21 

S1S3 OC 9 S2S3S4 OC 22 

S2S6 OC 10 S1S2S6 OC 23 

S2S4 OC 11 S3S4S5 OC 24 

S4S6 OC 12   

A. CLASSIFICATION TECHNIQUES  

Several classifiers are used in the decision-making process 

for fault identification in the inverters. Accuracy and 

efficiency are critical factors when considering the best 

classifiers. Support vector machine (SVM), Naïve Bayes 

(NB) (KNN) decision tree (DT), and linear discriminant are 

some of the classifiers used in fault classification. The 

accuracy of these classifiers significantly depends on the 

dataset parameters; thus, the accuracy varies from one 

dataset to another. To achieve a high classifier model 

efficiency, cross-validation was applied to the training 

process to protect against overfitting. This was achieved by 

segmenting the dataset into smaller sets and estimating their 

accuracy. 

1) Support vector machine 

This supervised machine-learning technique was developed 

in [30] and used for both classification and regression 

analyses. This technique is based on determining the optimal 

separating hyperplane between two classes of data, as 

illustrated in Fig.12 [31]. A hyperplane with the maximum 

distance between the two data classes was chosen. Its major 

advantage is its ability to produce a globally optimized 

separating boundary using a small dataset compared with a 

neural network that uses a large dataset and has a high risk 

of local minima [20]. 

 

Maximize 

 𝑊(𝛼) = ∑  

𝑁

𝑗=1

𝛼𝑖 −
1

2
∑  

𝑁

𝑖=1

∑  

𝑁

𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝐱𝑖, 𝐱𝑗) 

 

(3) 

Subjected to 

  ∑  𝑁
𝑖=1 𝛼𝑖𝑦𝑖

= 0,0 ≤ 𝛼𝑖 ≤ 𝐶, ∀𝑖 = (1,2, … , 𝑁) 

 

(4) 

𝐾(𝐱, 𝐱′) = (< 𝐱, 𝐱′ > +1)𝑑 (5) 

 

where αi is a Lagrange multiplier, and (xi , yi ) is a training 

dataset in which xi is the input data and yi is the output data. 

C is a constant for a trade-off between the performance and 

the generalization, K(x, x ‘) is a polynomial kernel function 

that performs the non-linear mapping into the feature space.   

 

 

FIGURE12. SVM classifier [31] 

 

2) K- Nearest Neighbours 

It is one of the simplest forms of supervised machine learning 

that can be used for classification and regression. 

Classification is conducted by mapping how close data 

classes are and grouping them based on their minimum 

distances as nearest neighbours [20], [32]. Fig.13 shows the 

general KNN classifier. In this scenario, the Euclidean KNN 

model was adopted using Equation (6) [33], which measures 

the straight-line distance between classes of 𝑥1 and 𝑥2. 

 

𝑑( 𝑥1, 𝑥2) = √∑(𝑥1 − 𝑥2)2

𝑝

𝑗=1

 

 

 

(6) 

 

 

FIGURE 13. KNN classifier [20] 

3) Decision Tree 

This method graphically represents the steps that must be 

performed to achieve optimal classification. It is a supervised 

machine learning method that solves problems using a top-

bottom approach to find solutions [20], [34]. All possibilities 

were considered before making the final decision.  

4) Ensemble Decision Tree 

Ensemble learning is a supervised machine learning method 

with a high ability to accurately predict classification labels 

[35]. This is a series/parallel combination of classifiers to 
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improve the classification accuracy, generalizability, and 

robustness over a single classifier.  

Several ensemble methods have been proposed to achieve 

this purpose. This paper uses the bagging tree method. A 

bagging tree is a combination of decision tree classifiers, 

which results in a reduction in the variance and bias of the 

classifiers, thus improving accuracy. Fig. 14 shows the basic 

structure of the bagging decision tree. This study used 30 

learners in the bagged tree method to enhance the classifier 

output. 

 

 
 

FIGURE 14.  Bagging structure 

 

B. PROPOSED CLASSIFICATION ASSESSMENT  

Single- and multiple-switch OC faults were simulated using 

MATLAB and Simulink. Table A2 shows a sample of the 

average, RMS, and their ratio values for different loads 

during the OC single and multiple switch faults. These values 

are then used to train the classifier models. To achieve high 

accuracy in identifying fault conditions, several techniques 

were compared for the same set of supervised training data. 

Classifiers based on trees, KNN, SVC, and ensembles were 

trained and their responses were studied. An indicator called 

the Confusion Matrix was used to evaluate the performance 

of each classifier in retrieving the original trained state. 

The confusion matrix plots show the performance of the 

classifier for each class of the dataset. The true class was 

plotted against the predicted class. Thus, the diagonal class 

indicates classifier performance. The confusion matrix is 

analyzed based on two factors namely the false discovery 

rates (FDR), and predictive Positive values (PPV). FDR is 

defined as the proportion of erroneously categorized 

observations per expected class, whereas PPV is defined as 

the proportion of correctly categorized observations per 

projected class. In the confusion matrix, the highest FDR is 

denoted in red and the highest PPV is denoted in green. As 

the FDR and PPV values decreased, the intensity of the 

colour decreased. It is important to note that when the PPV 

is not at its highest, there is a presence of FDR 

>50%

<50%
FDR

100%

<100%
PPV

 

FIGURE 15. Decision tree confusion matrix 

 
Fig. 15 shows the confusion matrix for the decision tree 

classifier when trained with the average and rms ratios. From 

the figure, we can observe that there are many FDR and most 

PPVs do not reach 100%. This indicates that the classifier 

cannot accurately distinguish the fault classes. An example 

with the S5 open switch fault is denoted as fault label ‘3’ on 

the confusion matrix. The PPV was 53% and the 

accumulated FDR was approximately 46.7%. This means 

that the classifier tends to classify S5 faults as other faults. 

In this case, S2S3, S4S6, and S4S5S6 faults are denoted by 

their corresponding fault labels 12, 17, and 20, respectively.  

100%

>50%

<50%

<100%

FDR

PPV

FDR

PPV

 
FIGURE 16. KNN confusion matrix 

 
Fig.16 and 17 show the confusion matrices of KNN and 

SVM, respectively. Both can be observed to have an FDR; 

therefore, they can incorrectly classify trained open-switch 

faults. However, in the SVM confusion matrix, it can be 

observed that FDR has a lower colour intensity than KNN 

and the decision tree. This indicates that SVM performs 

better than KNN and the decision tree. 
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FIGURE 17. SVM confusion matrix 

Fig.18 shows the confusion matrix for the ensemble-bagged 

tree. It can be observed that the classifier did not misclassify 

the different faults; hence, the PPV for each fault was 100%. 

From the confusion matrices for the different classifiers, it is 

clear that the bagged ensemble has the highest accuracy in 

estimating classes that are as close as possible to the true 

values.   

 

100%

>50%

<50%

<100%

FDR

PPV

 
FIGURE 18. Ensemble bagged tree confusion matrix 

 

VI. SIMULATION RESULTS 

A three-phase DC-AC inverter was simulated under different 

fault scenarios for IGBT open-circuit faults. The test model 

included the inverter under investigation, with an ensemble 

classifier block fed from the current RMS and average 

measurements. The machine learning block (classification 

model) has three main functions: first, to check and identify 

the healthy case from the faulty phase; second function) to 

apply ensemble classifications for the average/rms data 

samples, and (third) to convert the fault label values to string 

output showing the faulty switch on the display. The 

numeric-to-string conversion is implemented using a 

mathematical function in MATLAB. A schematic of the 

process is shown in Fig. 19. The fault label values were split 

into single digits and converted into strings. This signal was 

then fed into the display to show the condition of the inverter. 

This creates a user-friendly environment for the proposed 

method. 

 

 

FIGURE 19 Fault label to display conversion 
 

A flowchart of the classification system is shown in Fig. 20. 

The output of the classifier is indicated as a “figure” that 

represents the fault case, and the full details of all cases are 

given in Table 2 for all possible fault open circuits, that is, 

for single, double, and triple faulty switches (es).  The 

simulation analysis and the results of the investigated 

technique are presented in this section. Table 3 shows that 

the ensemble bagged classifier has the best performance and 

accuracy (100%) compared to the other classifiers.  

 
TABLE 3  

CLASSIFIER PERFORMANCE 

Classifier Average 

training time 

Average testing 

accuracy 

Support vector machine 7.05s 98.7% 

K- Nearest Neighbours 1.50s 89.3% 

Decision Tree 1.02s 77.0% 

Ensemble decision tree 1.05s 100% 

 

Start

End

Is rms of
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Measure average 
and rms current

Is rms of  Ia or Ib 
or Ic  = 0?

Calculate the 
average to rms 

ratio

Ensemble 
bagged 
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Display faulty 
phase

Display faulty 
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Yes (Faulty 
phase)

No (faulty switch)

 
 

FIGURE 20. Fault diagnosis flow chart
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Fig. 21 – 24 shows the simulation fault diagnosis model 

results for OC single-, double-, and triple-switch faults, 

respectively, using the ensemble-bagged supervised 

classification technique. The display faulty switch block is 

designed to convert the classifier fault indicator into a 

display of fault type and indicates the faulty switch(es).  

As shown in Fig. 21, S3 was an open-circuit circuit. The 

corresponding average to-RMS ratios are shown in Fig. 10.  

The output fault label code of that fault according to Table 2 

is 2, this is also indicated in the display unit as ‘S3’ which is 

clearly shown. 

 
FIGURE 21. Simulation fault diagnosis result for S3 OC 

Fig. 22 shows the classifier outputting ‘S1 S3’ for the double 

open-circuit switches in the top arms, in this case, for S1 and 

S3. The resulting output shows the fault label as ‘9’ as 

indicated in Table 2. 

 
FIGURE 22. Simulation fault diagnosis result for S1S3 OC 

Fig. 23 shows the classifier result when two switches from 

two different phases are open-circuited, this is S2&S3, it 

produces the code of ‘17’ as indicated in Table2 

 
FIGURE 23. Simulation fault diagnosis result for S2S3 OC 

Fig.24 shows the classifier estimation for triple switches 

open circuit fault for S1&S2&S3, it produces the correct 

fault code of ‘19.’ 

 
FIGURE 24. Simulation fault diagnosis result for S1S2S3 OC 

 

Fig. 25 shows the different fault scenarios and fault diagnosis 

technique responses to these faults. From Fig. 25A a healthy 

scenario is simulated from 0 – 0.11 s and it can be seen that 

the current waveform is sinusoidal thus the fault technique 

reads ‘0’ indicating a normal condition. An open switch fault 

S1 is introduced between 0.11 s – 0.2 s. Phase A will have 

negative values and the fault diagnosis technique result 

changes from ‘0’ to ‘1’ according to the fault label in Table 

2. Fig. 25B shows a double-switch open circuit S1, and S3 is 

introduced from 0 to 0.1s. The fault diagnosis technique 

immediately identifies faulty switches by indicating fault 

label ‘9 ’ at a diagnosis time of  12.5% of the fundamental 

frequency approximately 2.5ms. A triple switch open circuit 

fault S1, S2 and S3 is introduced at 0.1s -0.2s, and we can 

observe the decrease in the magnitude of the current 

waveform thus the fault diagnosis technique indicates ‘19. ’ 

These results demonstrate that the proposed technique can 

identify the fault switch for half the period of the 

fundamental frequency. 
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FIGURE 25. Fault diagnosis response to different open switch faults (a) 
Diagnosis response to S1 fault (b) Diagnosis response to S1S3 and 
S1S2S3 Open switch fault. 

 
VII. EXPERIMENT RESULT 

The experimental setup was performed at the Smart Energy 

Lab at the Glasgow Caledonian University, as shown in Fig. 

26. The setup included a three-phase inverter with six 

removable GW39NCB0VD IGBT switches driven by a 

GDA-3A2S1 Taraz Technologies gate driver. MATLAB 

Simulink was used to generate the gate control signals for the 

six switches. The LAUNCHXL-F28379D Launchpad 

Development Kit was used as an input–output interface 

between the Simulink and gate drivers. An open-circuit fault 

was created by removing each switch, and the three-phase 

output current was measured using a current and voltage 

measurement device USM-31V (Taraz Technologies). The 

data from the phase current measurements were logged from 

the oscilloscope and fed offline to the fault diagnosis model 

block in MATLAB Simulink and were used for fault 

identification and classification. 

Fig. 27-28 shows the output currents for the healthy and 

faulty case obtained from the experiment.  

Distribution panel 

Load

USM-3IV Taraz 
technology

GW39NCB0VD 
IGBT switches 

LAUNCHXL-F28379D 
Launchpad development 

kit 

Gate 
driver. 

 
FIGURE 26. Experiment setup 

 

 
FIGURE 27. Experimental three-phase current for a healthy condition 

 

 

FIGURE 28. Experimental three-phase current for S3 OC fault 

Fig. 29 shows the Simulink fault diagnosis model fed with 

the experimental three-phase current. In this case, a single 

(S3) open switch fault is fed to the model and the output of 

the model indicates S3 while the fault label shows ‘2’. In 

Fig. 30, a more detailed diagram can be observed when the 

S3 open-switch fault was applied, and the fault diagnosis 

model increased to 2. This indicates that the faulty switch is 

S3. 
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FIGURE 29. Simulink experiment result  for S3 OC fault 

 

 

 
FIGURE 30. Fault diagnosis experimental result for S3 OC fault 

 
The experimental results verified the proposed technique in 

all scenarios, and all single- and multiple-switch OC faults 

could be detected and classified accurately. 

Table 4 presents a comparative analysis of the proposed fault 

diagnosis technique, specifically for IGBT/Diode faults, 

against techniques previously used for IGBT faults, with a 

particular emphasis on detection time and accuracy. The 

detection time is evaluated in relation to the period of the 

fundamental current, which is 20ms. The data in Table 4 

clearly shows that most of the techniques require less than 

half the period of the fundamental time for diagnosis. 

Moreover, the table illustrates that the proposed method for 

IGBT/Diode faults demonstrates strong performance across 

the evaluated parameters, indicating its effectiveness in a 

comparative context, rather than a direct comparison of the 

fault diagnosis methods themselves. 

 

 

 

 

 

 

 

Table 4 Comparative result 

Fault diagnosis technique Diagnosis 

parameter 

Diagnosi

s time 

(ms) 

Accurac

y 

(%) 

An Average Model-Based 

Transistor Open-Circuit Fault 

Diagnosis Method for Grid-Tied 

Single-Phase Inverter [36] 

Voltage signals 5.8 - 

fault diagnosis of inverters based on 

current trajectory [37] 

Three phase Phase  10 - 

Current covariance analysis‑based 

open‑circuit fault diagnosis [3] 

covariance of 

three-phase 

current 

8 - 

Observer‑based adaptive threshold 

diagnosis method for open‑switch 

[4] 

faults of voltage source inverters 

System model 6 - 

wavelet transform and support 

vector machine [38] 

Wavelet 

coefficient of the 

three-phase 

current 

7 84.54 

Using CEEMDAN algorithm and 

SVM Fault Diagnosis [39] 

Clarke transform 

of the three-phase 

current 

3.8 95.45 

Fuzzy Control Based Double 

Switching Fault Tolerant Control on 

Four Switch Voltage Source 

Inverters [40] 

System model 10 98 

PWM-VSI Fault Diagnosis for a 

PMSM Drive Based on the Fuzzy 

Logic Approach [25] 

Phase current 9 96 

Open-Switch Fault Diagnosis 

Method in Voltage-Source Inverters 

Based on Phase Currents [26] 

Three phase 

current 

4 - 

Improved diagnosis method for 

VSI-fed IM drives under open 

IGBT faults [6] 

System model 6 - 

Proposed method Current RMS and 

Average ratio 

2.5 100 

 
VIII. CONCLUSION  

This study focused on the open-switch fault of a three-phase 

inverter. This study presents a new fault diagnosis method 

for identifying and classifying single and multiple open-

switch faults. This was achieved by. 

• The three-phase current waveform of the inverter was 

analyzed, and the average and RMS values were 

extracted. The combination of both parameters yields a 

robust fault diagnosis method compared with using 

them individually.   

• A new normalization method based on the mean-to-

RMS ratio is introduced and verified. The ratio values 

were fed into the ensemble-bagged classification 

method to classify different faults.  

• The proposed technique can identify multiple switch 

faults including triple-switch faults. It is also effective 

under low current conditions.  

• In addition to the simplicity of the fault diagnosis 

technique, additional sensors are not required, thus 

facilitating implementation and minimizing the cost to 

the manufacturer. 

• The proposed fault diagnosis technique was validated 

through experiments and simulations. The results 

presented in this paper confirm the robustness of the 

proposed technique for estimating all possible fault 

scenarios. 
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IX. APPENDIX 

TABLE A1 

Parameters Values 

DC supply 100 V 

Fundamental frequency 50 Hz 

Carrier frequency 10 kHz 

Load 1 4.7Ω, 5e-3 H 

Load 2  10Ω, 10e-3 H 

Load 3 3Ω, 10e-3 H 

Modulation index 0.8 

LC Filter  C= 25e-6, L =4.05e-3 

 
TABLE A2 

 SAMPLE OF AVERAGE TO RMS RATIO VALUE FOR DIFFERENT LOADS 

DURING O.C SINGLE AND MULTIPLE SWITCH FAULTS 

Faulty 

switch 
A B C A B C 

Load Load 1 Load 2 

Healthy 0 0 0 0 0 0 

S1 OC -0.66 0.016 0.016 -0.66 0.016 0.016 

S3 OC 0.01 -0.66 0.016 0.01 -0.66 0.016 

S3S5 OC 0.76 -0.62 -0.62 0.76 -0.62 -0.62 

S1S5 OC -0.62 0.76 -0.62 -0.62 0.76 -0.62 

S1S2S3 OC -0.43 -0.44 0.7 -0.43 -0.44 0.7 

S4S5S6 OC 0.43 0.44 -0.7 0.43 0.44 -0.7 
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