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Abstract. With thousands of exoplanets now identified, the characterization of habitable planets and the po-
tential identification of inhabited ones is a major challenge for the coming decades. We review the current
working definition of habitable planets, the upcoming observational prospects for their characterization and
present an innovative approach to assess habitability and inhabitation. This integrated method couples for
the first time the atmosphere and the interior modeling with the biological activity based on ecosystem mod-
eling. We review here the first applications of the method to asses the likelihood and impact of methanogen-
esis for Enceladus, primitive Earth, and primitive Mars. Informed by these applications for solar system sit-
uations where habitability and inhabitation is questionned, we show how the method can be used to inform
the design of future space observatories by considering habitability and inhabitation of Earth-like exoplanets
around sun-like stars.

Résumé. Avec des milliers d’exoplanètes identifiées, la caractérisation des planètes habitables et l’identifica-
tion potentielle de celles qui seraient habitées est un défi majeur pour les décennies à venir. Nous rappelons
en premier lieu la définition des planètes habitables et les perspectives d’observation à venir pour leur carac-
térisation. Nous présentons ensuite une approche innovante pour évaluer l’habitabilité et l’habitation pour
des systèmes extraterrestres. Cette méthode intégrée couple pour la première fois la modélisation de l’at-
mosphère et de l’intérieur planétaires avec l’activité biologique basée sur la modélisation des écosystèmes.
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Nous passons en revue ici les premières applications de cette approche pour évaluer la probabilité et l’impact
de la méthanogénèse pour Encelade, la Terre primitive et Mars primitive. En se basant sur ces applications
pour les situations du système solaire où l’habitabilité et l’habitation sont remises en question, nous mon-
trons comment la méthode peut être utilisée pour éclairer la conception des futurs observatoires spatiaux en
considérant l’habitabilité et l’habitation des exoplanètes semblables à la Terre autour d’étoiles semblables au
Soleil.

Keywords. planets, exoplanets, habitable zone, habitable planets, habitability.

Mots-clés. planètes, exoplanètes, zone habitable, planètes habitables, habitabilité.

Note. Follows up on a conference-debate of the French Academy of Sciences entitled “Exoplanets: the new
challenges” held on 18 May 2021, visible via
https://www.academie-sciences.fr/fr/Colloques-conferences-et-debats/exoplanetes.html.
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défis” tenue le 18 mai 2021, visible via
https://www.academie-sciences.fr/fr/Colloques-conferences-et-debats/exoplanetes.html.
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A little more than 25 years after the discovery of the first exoplanet [1], we have now identified
more than 5,000 objects ranging in size from mercury-like objects to ones that have several
times the mass of Jupiter with orbital periods spanning from less than a day to several decades.
This broad diversity of planets when considering their size, their composition or their orbital
properties largely encompasses what is found in the solar system. Understanding this diversity
as well as the nature of the objects detected is currently a major challenge in planetary science.
It is generating an intense activity to design new observational strategies for either ground and
space observatories as, at present, the majority of planets are detected indirectly, by quantifying
their influence on their host stars. Using radial velocities or transit methods [2], the parameters of
a given planet are poorly constrained, and are restricted to the mass, the radius and a few orbital
parameters. The strongest constraints are obtained when these methods can be combined.
Atmospheric characterization, that is the basis of our knowledge of the planets of the solar
system, is currently very limited for exoplanets.

Atmospheric characterization of exoplanets has only been obtained in an handful of cases.
This corresponds to either giant planets with shorts periods that can be characterized using
transit spectroscopy [3] or, conversely, far-out planets in the giant-brown-dwarf continuum that
can be accessed using direct imaging [4, 5]. The upcoming generation of instruments from either
ground or space such as, for example, the SPHERE and GRAVITY upgrades [6, 7], the European
Extremely Large Telescope (E-ELT), the James Web Space Telescope (JWST) [8] and the upcoming
ARIEL mission [9] from ESA, aim at improving this situation by characterizing the atmosphere of
smaller objects and at varying distance from their host star. While addressing various questions
along the way, such as the atmospheric composition of giant planets, the nature of ocean worlds,
of sub-neptunes and super-earths, the ultimate and long term goals of the next generation of
instruments is to enable us to quantify the habitability of Earth-like planets and eventually
identify inhabited ones. In this paper, we review the current status regarding the prospects
for the characterization of habitable exoplanets and present an innovative framework to asses
habitability and inhabitation on quantitative grounds so as to inform the design of the next
generation of space observatories.

https://www.academie-sciences.fr/fr/Colloques-conferences-et-debats/exoplanetes.html
https://www.academie-sciences.fr/fr/Colloques-conferences-et-debats/exoplanetes.html
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1. Current status on habitable planets

1.1. Definition of the habitable zone

Brought forward by H. Shapley more than seventy years ago [10], the concept of the habitable
zone rests on the idea that there exists a region around each star where liquid water can be
maintained at the surface of an Earth-like planet. The connection between habitability and liquid
water is obviously related to the fact that life as we know it requires liquid water to thrive and
develop. This definition of habitability relates to life that resembles what we find on Earth and
relates to one of its basic constituent, water. It secondly conveys the idea that life is a surface
event that, in turn, may potentially modify the atmospheric composition of the planet if present.
Planets with liquid water in the subsurface and protected by an ice layer can also be described
as habitable. They may exist outside the habitable zone that is now defined by the possibility
of surface liquid water but will not be considered here as they are poor candidates for remote
sensing based on atmospheric characterization.

The modern estimation of the boundaries of the habitable zone is obtained by using climate
modeling for an atmosphere made of CO2, H2O, and N2 [11]. The inner edge is defined as the
distance at which a planet develops a wet stratosphere and loses its water through photodisso-
ciation and the escape of hydrogen to space [11, 12]. It is the so-called water-loss limit where
the planet enters a wet greenhouse runaway. It occurs before the hard greenhouse runaway limit
where the atmosphere absorbs more energy than it can radiate back to space. In this case, the
surface temperature rapidly increases beyond one thousand degrees and well above what can be
deemed habitable. For todays solar system, these two limits are estimated to be at 0.97 AU and
0.99 AU using a 1-D climate modeling with a fully saturated troposphere and a cloud free atmo-
sphere [12]. Numerous 3D climate modeling studies have refined these values (see below).

The outer edge of the habitable zone is set by the maximum greenhouse effect that can
be obtained by continuously adding CO2 in a H2O-CO2 atmosphere. This can occur when a
planet experiences an active carbonate-silicate cycle that can lead to a continuous build-up of
CO2. Beyond a certain amount of CO2 in the atmosphere, which reaches around 7-8 bars, CO2

condensates and Rayleigh scattering takes over the greenhouse effect. In this case, the planet
experiences cooling instead of warming. 1-D modeling sets the outer limit of the habitable zone
at 1.67 AU for todays sun [12]. Formaly, the habitable zone could be extended outward assuming
additional greenhouse gases, such as NH3 and CH4, in the atmosphere but most gases will not
significantly move the outer limit. The exception is hydrogen that can seriously enhance the
greenhouse effect when considering dense atmospheres [13–16].

Similar 1-D climate calculations are used to estimate the boundaries of the habitable zone for
other type of stars. These calculations take into account the fact that the luminosity of the star
decreases with its mass while its emission spectrum shifts to the red and to larger wavelengths.
As the stellar mass decreases, the habitable zone gets closer to the host star and enters a region
where the planets are tidally locked (i.e., the planetary rotation and orbit are synchronized). This
inner and outer limits obtained using climate calculations set what is called the conservative
habitable zone. This estimate has been refined by considering additional greenhouses gases
as mentionned above and using complex 3-D climate models such as 3D general circulation
models (GCM). The latter take into account various effects such as cloud formation, atmospheric
circulation, rotation rate. These 3-D estimates of the habitable zone are within 5 to 7 % of the
1-D ones for fast rotating planets like the Earth in the habitable zone of (F,G,K) stars. They predict
much larger differences for tidally locked and slowly rotating planets that lay in the habitable
zone of (K,M) stars. In this situation, 3-D modeling predicts the inner edge of the habitable zone
much closer to their host star.
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Figure 1. Distribution of the currently detected planets with the conservative and opti-
mistic habitable zones as a function of stellar temperature of the host star and the flux re-
ceived by the planet. The flux received is normalized to the Earth one. This plot is regularly
updated and produced by the planetary habitability laboratory at the university of Puerto
Rico www.phl.upr.edu.

This estimate of the conservative habitable zone, introduced by Kasting et al. [11], updated by
Kopparapu et al. [12, 17] and augmented by 3-D modeling [18] is directly related to the modeling
of the long term climate evolution of the inner planets of the solar system [10, 11]. As it might
be perceived as too restrictive and prone to modeling shortcomings, it is often associated with
another empirical estimate directly tied to observables associated to Venus and Mars. In this case,
the optimistic inner edge of habitable zone rests on the observation that the age of Venus young
cratering are estimated to be at about 0.7 Gyrs. This provides a lower limit to its water loss by
either wet or greenhouse run away. Taking into account the sun luminosity at that time, this sets
the boundary for the greenhouse runaway at 0.75AU. On the other side of the habitable zone,
the surface of Mars suggests that water may have been present 3.8 Gyrs ago. Considering that
the solar luminosity was 75% of its current value, this sets the outer boundary of the optimistic
habitable zone at 1.75AU, past the estimate obtained using climate modeling, 1.69AU, suggesting
that other greenhouse gases that CO2 and H2O were at play if primitive Mars was habitable [15].

1.2. The nature of the planets identified as potentially habitable

The previous section underlines that the habitable zone is not a planetary property but a region
around a given star where planets are at the right distance from their host star to potentially
sustain liquid water at their surface provided a given atmospheric composition is present. In this
context, potentially habitable planets relates to planets that loosely resemble the Earth, made of
iron and silicates and with a water content that can reach up to 50% in mass, and orbiting in the
habitable zone of their host star.

This situation is illustrated in Figure 1 that shows a diagram elaborated by the planetary
habitability laboratory at the university of Puerto Rico [19]. It displays the distribution of planets

www.phl.upr.edu
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in the habitable zone (see Section 1.1) detected by the end of 2021 with the habitable zone
boundaries discussed in the previous section. The planets are shown as a function of their mass
and are categorized following solar system counterparts. The continuum between subterran
(Mars), terran (Earth-like), and superterran (Super-Earth-mini-Neptune) are arbitrarily divided
in two categories. Terran planets represent objects with radius and mass respectively less than
1.6RE and 3ME . Superterran on the other hand are defined with a radius and a mass greater than
terran but lesser than respectively 2.5RE and 10ME . These two broad categories can be associated
to the dip in the size distribution identified in the population of exoplanets detected by the Kepler
mission [20]. Analysis of the Kepler data shows a higher occurrence rate of planets at 1.3RE and
2.4RE with a valley at 1.8RE suggesting that there is two distinct populations of planets. Further
analysis of the mass-radius relationship of planets currently detected indicates that the first
population matches Earth and Venus mean densities while the second population, with lower
densities, have a higher fraction of volatiles and up to 50% of water [21]. The latter objects do not
exist in the solar system and are sometimes also refereed to as waterworlds [22].

Figure 1 shows that due to observational biases with current detection methods, no Earth-
like planets have been detected so far in the conservative habitable zone around F or G
type stars. Earth-like planets detected in the conservative habitable zone are around K-stars
(3500K<T<5000K) and M-stars (T<3500K). There are 13 objects at present with a highest occur-
rence around M-stars. This number reaches 20 when considering the optimistic habitable zone.
It can be extended to 55 when considering planets with a significant amount of water and catego-
rized as superterran. This estimate of potentially habitable planets shows that so far, about 0.2 %
of the planets detected are labeled potentially habitable if we consider Earth-like planets and a
conservative definition of the habitable zone. This number increases to 1 % if one considers an
optimistic definition of the habitable zone and planets stretching toward mini-neptunes.

The exact number of potentially habitable planets detected can vary depending on the precise
criterium used. This is not an issue as it is commonly understood that this definition relates to
planets that are potentially habitable and among which only a subset may finally turn out to be
trully habitable. It should thus be understood as a way to identify targets for further investigation
such as atmospheric characterization. Futhermore, habitability depends on other criteria than
the mean density and the flux received from the host star. At first, the stellar luminosity increases
during the star lifetime. We saw above that within the habitable zone, a planet will be habitable
only if the atmosphere is suitable. For a planet to be habitable and remaing habitable during a
significant fraction of time for life to develop requires that the atmospheric composition remains
suitable [10, 11].

The build-up and long term evolution of the atmosphere of Earth-like planets is a process
that is not fully constrained. It rests on an initial budget of volatiles, primary degassing during
the magmatic state and the long term geophysical activity, i.e. the evolution of the interior
structure, that involves degassing of various species and possibly various tectonic regimes. The
situation is even more uncertain for the planets characterized as habitable at present as they
are around M-dwarfs, tidally locked with a formation history and stellar conditions that largely
depart from what we know on Earth. Furthermore, when considering habitability from an Earth
perspective, it appears relevant to also consider its formation in the context of the history of the
solar system [23], the low eccentricity of its orbit, its dynamical stability due to the moon, its
rotation rate, interior processes allowing plate tectonics to occur and subsequently its long term
carbonate-silicate cycle to name a few particular features. Whether all these particularities are
necessary to make a planet habitable is an open question that the atmospheric characterization
of exoplanets might help address in the coming decades [24].
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1.3. Upcoming prospects for observational characterization

The atmospheric characterization of potentially habitable planets has been so far obtained
for the TRAPPIST-1 system and for a very narrow IR band(1.1-1.7µm) using the Hubble Space
Telescope [25, 26]. The TRAPPIST-1 system consists of seven planets orbiting a M-dwarf star
in a very compact configuration. The densities of these planets are rather comparable and are
slightly lower than Earth’s mean density [27]. These planets are clearly terrestrial in nature and
three of them are in the habitable zone (d, e, f) [28]. The featureless spectra obtained using the
Hubble space telescope could only rule out that the atmosphere of these planets were not made of
primordial hydrogen. The limited spectral window available and the sensitivity of the instrument
did not allow to identify other volatiles such as H2O or CO2. The detection of these elements in
the atmosphere of terrestrial planets, which can help validate the concept of habitability, and
others, such as O2 or CH4 related to biological activity, is just starting.

The challenge ahead can be illustrated by considering the TRAPPIST-1 system in the era of the
JWST. The distance of the TRAPPIST-1 system, 12pc, combined with the luminosity of the late M-
dwarf star provides a first opportunity to probe the atmosphere of Earth-size terrestrial planets
with three of them in the habitable zone. The characteristics of the planetary system suggest that
transit spectroscopy could be performed for the seven planets detected so far if the instrument is
performing as expected.

A consensus is now emerging that the atmospheric properties could be obtained by us-
ing between 10 to 100 transits if these planets have a significant atmosphere [29]. CO2 can
be potentially detected using about 10 transits in a cloud-free atmosphere. This goes up to
20-30 transits if the atmosphere is cloudy. The detection of H2O is much more challenging if
the planets resemble the Earth where the water is concentrated in the troposphere and is in small
abundance at the altitude probed by transit spectroscopy. If the atmosphere is different, detection
of water vapor is estimated to require at least 60 transits but without giving indication whether
liquid water is present at the surface [30–32]. The JWST measurements can potentially give bet-
ter constrains if the TRAPPIST-1 planets are entering a wet greenhouse runaway by detecting a
strong massive oxygen atmosphere resulting from ocean lost. Hence, the prospects of assessing
the habitability of TRAPPIST-1 planets using JWST might principally concern the inference of the
lack of greenhouse runaway.

If we now turn to biosignatures, O2, that could constitute a biosignature as it is associated
to oxygenic photosynthesis, would require more than 100 transits. Detection of CH4 could be
obtained with 10 transits for TRAPPIST-1e but its connection with biotic activities requires
better contraints on the planetary context and to quantify the impact of biogical activity on the
planetary conditions to be conclusive [29, 33, 34]. With the TRAPPIST-1 system accessible 1/3
of the year and the number of possible transits representing a fraction of that time, 65 transits
possible for planet b and 5 for planet e, this suggests that the atmospheric characterization
of the TRAPPIST-1 system may require a significant fraction of the JWST lifetime. A few other
systems presenting a comparable optimum configuration may be identified in the coming years
but the identification of exoplanet habitability and potential biosignatures is unlikely with this
observatory.

The situation will improve with extremely large telescopes (ELTs) that will start operating to-
ward the end of the decade. ELTs will increase the number of targets accessible around M-dwarfs
and maybe K type stars. It may provide a more precise characterization based not only on spec-
troscopy for transiting and reflected light measurements but also by using direct imaging. It re-
mains unlikely, however, that observations performed on a single or a few planets will provide
compelling evidence of habitability or inhabitation of Earth-like planets [35]. This is due to the
difficulties at interpreting a single or even a few observations that necessarily rest on refined mod-
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eling. Following [36] and others, we argue here that definite proof regarding habitability and in-
habitation requires a statistical approach to identify trends in population of planets that will en-
able us to gain compelling evidence for the existence of worlds that are habitable and inhabited.
This task might be achieved using the next generation of space observatories based on direct
imaging. This corresponds to mission concepts such as the Large UV/Optical/IR Surveyor (LU-
VOIR) [37] or HABEX [38] that aimed at providing a statistically meaningful sample of objects to
probe. The design of the next generation space observatories is underway and there is currently
a need to define the requirements these instruments should achieve to test unambiguously hab-
itability and inhabitation of extrasolar planets [39]. To contribute to this question, we consider in
next section an innovative approach that adresses the question of habitability, the validation of
the habitable zone concept and the question of biosignatures by considering on the same footing
the planetary context and the hypothetical biological activity.

2. An integrated approach to assess habitability and inhabitation

Following [35, 36, 39, 40], we support here the idea that the identification of habitability and
inhabitation should be achieved by identifying trends in exoplanet populations rather than
aiming at a precise characterization of a given planet. Considering the question of biosignatures,
we propose that it should be approached by directly coupling the planetary environment with
the potential biological activity to account for the viability of potential metabolisms and to
include their impact on the atmospheric composition. This contrasts with more conventional
approaches that aim at looking at the precise identification of a constituent related to biological
activities for a single planet. The case of oxygen that relates to oxygenic photosynthesis illustrates
best such an approach [41]. Secondly, we argue that it should be approached statistically as a
trend in a population of habitable exoplanets. This formally reduces the possibilities of false
positives as it addresses the question of inhabitation of habitable planets as one of their global
properties rather than the particularity of a single object.

To bring this approach on a quantitative basis, we developed a model that couples a 1-D
photochemical-climate model, an interior model based on a time-dependent parameterization
of the carbonate-silicate cycle [42], and an Earth-based ecosystem model to account for the bio-
logical activity [34]. This approach expands on the work of Karecha et al. [43] who developed an
atmosphere-ecosystem model of the Archean Earth [43]. It also follows on the work of Lehmer et
al. [35] who couples a 1-D climate model with a parameterization of the carbonate-silicate cycle
to assess trend in population of exoplanets to validate the habitable zone concept. It expands on
this work by providing a quantitative modeling of the biological activity that is consistent with
the planetary environment. Furthermore, it provides an atmospheric composition that is in turn
impacted by the biological activity. To illustrate the features of the approach and demonstrate
its usefulness for informing mission designs aiming at identifying habitability and biosignatures
for exoplanet populations, we applied it to the case of Enceladus [44], primitive Earth [34] and
primitive Mars [45] and to the properties of Earth-like exoplanets around G-type stars [46].

2.1. Enceladus and the Cassini observations

Multiple fly-bys of Enceladus by the Cassini mission confirmed that a global ocean is present
[47, 48]. The mass spectrometer onboard the spacecraft also revealed the presence of H2 and
CH4 among other gases in plumes of gas and ice grains ejected into space at Enceladus’s south
pole. The detection of H2 was interpreted as a signature of hydrothermal activity [49]. On Earth,
alkaline hydrothermal activity produces H2 and CH4 among other gases. In Affholder et al. [44],
we assume that hydrothermal circulation on Enceladus has its origin in a global ocean harboring
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Figure 2. (a) schematic representation of the interior of Enceladus. (b) Density distribution
of pseudo-data generated by model simulations for the inferred CH4 flux (adapted
from [44]).

hydrothermal vents and, in turn, that the composition of the plume provides information on the
deep-sea vents. Figure 2(a) shows the interior structure hypothesized for Enceladus with a core
heated by tidal dissipation and ocean plumes produced by buoyancy and Coriolis forces [50, 51].
In this configuration, H2 can be produced in Enceladus core by serpentinization [50] while
CH4 might originate from the abiotic conversion of H2 and CO2, a primordial stock, or organic
molecules present in the core that are pyrolysed.

The biotic origin of CH4 in Enceladus plume has also been largely discussed due to the pos-
sible similarities with the Earth’s hydrothermal vents [52]. On Earth, these vents host chemoau-
totrophic single-celled organisms -called chemotrophs- that use thermodynamical disequilib-
rium generated by chemical gradients rather than sunlight as energy sources. Chemotrophic
organisms use redox potential as energy source for biomass production. They convert H2 and
CO2 into CH4 and could significantly contribute to the production of CH4 detected in Enceladus
plume. To test whether these organisms can sustain Enceladus’s environment, grow and produce
amounts of CH4 compatible with the abundance in the plumes, an ecological model of methano-
genesis constrained by the interior environment was developed. The ecological model describes
the biomass dynamics of a generic H2-based methanogenic metabolisms that represent archaea
that have been found in Earth’s hydrothermal vents. The model is first based on a dependence of
the cell metabolism on environmental conditions through the thermodynamics and kinetics of
the catabolic (energy-providing) reaction. Catabolic reaction represents the set of reactions a cell
uses to maintain itself and grow. The cell population dynamics is described as

d N

d t
= N (qana −d) (1)

dCi

d t
= F (Ci )+N B∗qcatY

cat
i (2)

where N is the surface density of the number of individuals in the population (kg−1m−2), d(s−1)
is the baseline death rate, B∗(molcx ) is the steady-state internal cell biomass and Y cat

i the
stoichiometry of the reactants and the products involved. qana is the temperature dependent rate
of net biomass build-up which sets in turn the division rate. This term depends on the Gibbs free
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energy required to produce 1 mol of biomass, the Gibbs free energy dissipated to maintain the
cell alive, and qcat the temperature-dependent rate at which the cell runs the catabolic reaction.
F (Ci ) is the forcing term setting the concentration of species i , Ci , given by the modelisation of
the planetary environment. In the case of Enceladus, the H2-based methanogenic population
is assumed to be located at the core-ocean interface and F (Ci ) represents the concentration
calculated in a mixing layer between the hydrothermal fluid and the oceanic water.

This model describes the dynamics of a population of H2-based methanogens that convert H2

coming from serpentinization with CO2 present in the ocean to produce CH4. The population can
reach different steady states depending on temperature and species concentration. This, in turn,
sets the efficiency of H2 consumption and conversion rate into CH4. It also provides a definition
of habitability that corresponds, in this case, to the physical and chemical conditions allowing
for a H2-based methanogen population to grow and reach a steady state. This is defined as the
abiotic-habitable conditions. When the population reaches a steady state, it formally modifies the
chemical and physical planetary conditions. This is the biotic case that considers the planetary
environment inhabited and modified by the population of H2-based methanogens.

This geochemical and ecological modeling then feeds a statistical hypothesis testing frame-
work by assuming that temperature and the composition of the hydrothermal fluid and
ocean(estimated close to 275K) are drawn from prior distributions that encompass uncertain-
ties on their estimates. This includes uncertainties for the serpentinization rate, composition of
the ocean for the species of interest and the temperature at the core-boundary. From these prior
distributions, input parameters can be drawn for the dynamical model that defines a pseudo-
data distribution in the space of observables that corresponds, in the current case, to the flux of
H2 and CH4 in the plume. Figure 2 shows the distribution of model outputs for the flux of CH4

obtained by running 50,000 simulations. The model outputs are arranged in the three categories
described above, unhabitable, abiotic habitable and biotic depending on whether a methanogen
population can grow and reach a steady state. When compared with the Cassini measurements,
Figure 2 shows that the observed flux of CH4 is not reproduced by our abiotic model, but is well
within predictions under the assumption of biotic methane production at the seafloor.

This result does not imply that there is an identification of an H2-based methanogen popula-
tion at the core-ocean boundary. It indicates that given the abiotic sources of H2 and CH4 con-
sidered within the planetary model, the fluxes of CH4 and H2 observed are compatible with those
expected when an H2-based methanogen population is present given the abiotic situation de-
scribed. This assumes, first, that the probability of life to emerge for theses conditions is signif-
icant and, secondly, that no other abiotic process can change significantly the production of H2

and CH4 modeled. While these two hypothesis can be challenged, and other can be added, this
application illustrates that the framework proposed allows us to do so within the bounds of a
quantitative approach where the abiotic and biotic processes are treated on an equal footing and
within an integrated approach resting on a direct coupling between the two. We argue that this
is a necessary step to identify habitable conditions and design experiments to identify biological
activity beyond Earth.

2.2. Primitive Earth and primitive Mars

In Sauterey et al. [34], we apply the approach to quantify the effect of methanogenesis on
the atmosphere of primitive Earth. Figure 3 shows that this extends the work for Enceladus
described above in several ways. First, the ecosystem consists of not one but several populations
of chemotrophic organisms that can develop in the primitive ocean that covers part of the surface
of the primitive Earth. Chemotrophs are expected to be the first organisms to develop on Earth,
maybe several hundreds millions of years before the apparition of anoxygenic photosynthesis.
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Figure 3. (a) Schematic representation of the Earth populated by a basic ecosystem in-
volved in methanogenesis. The parameters that vary during the planet lifetime, τ, are in-
dicated in red. φvol c (τ) stand for the volcanic outgassing, Wea(τ) represents weathering,
PCO2 (τ) the CO2 surface pressure, pH(τ) the ocean pH, and FXUV (τ) the stellar flux.
(b) Distributions of the CO:CH4 ratio for each plausible evolutionary scenario involving the
basic metabolisms considered in the basic ecosystem.

While this hypothesis is still debated, phylogenetic analysis combined with isotopic evidence
suggests that this primitive ecosystem may have consisted of H2-based methanogens (MG), CO-
based autotrophic acetogens (AG), and methanogenic acetotrophs (AT). To quantify the effect of
methanogenesis on anoxic Earth conditions, we considered these three metabolisms as well as
anaerobic oxidation of methane (MT) as a basic ecosystem.

The mean composition and temperature of the ocean and the atmosphere are obtained
by using a climate and a photochemical models coupled to a simple temperature dependent
carbonate-silicate cycle [42]. The latter computes the evolution of atmospheric CO2, dissolved
inorganic carbon (CO2, HCO−

3 and CO2−
3 ) and pH in the ocean by taking into account outgassing

from volcanos and mid-oceanic ridges, continental silicate weathering, dissolution of basalt
in the seafloor, and oceanic chemistry, as sources and sinks of CO2. This coupled ecosystem-
planetary model is solved by considering that the atmospheric temperature and composition
and vertical structure reach equilibrium instantly compared to the biological and geological time
scales. Secondly, it considers that the dynamics of the ecosystem that occurs in days to years is
much faster than the geological time scale (103-106 yrs). As previously, the ecosystem dynamics is
obtained by considering fixed environmental conditions but given, in this case, by a forcing term,
F (C j ), that results from ocean circulation and atmosphere-ocean exchanges and calculated using
a stagnant boundary layer model [43]. The steady-state is obtained by considering the biogenic
fluxes between the surface ocean, the atmosphere, and the deep ocean iteratively within the
planetary model. Once the global steady-state is obtained it represents the coupling between the
biotic activity that modifies the planetary conditions that, in turn, feeds back into the efficiency
of the biotic activity.

Applied to the case of primitive Earth, we first found that chemotrophic activity had a signifi-
cant impact on the surface conditions of the anoxic Earth well before nonoxygenic photosynthe-
sis appeared and despite a rather small biomass production. The impact is the strongest on short
time scale, 100Myrs, when a new metabolism is introduced or removed from the atmosphere.
This can lead to transient warming or ice ball events. On longer time scales, the carbonate-
silicate cycle that includes the effect of the biological activity through its dependence on temper-
ature keeps the surface conditions habitable with temperature close to what is expected without
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biological activity but with a different state for the atmospheric composition. The imprint of the
individual metabolism on the atmospheric composition and surface temperature is clear
but converges to a common state when the ecosystem becomes more complex and several
metabolisms are included. Figure 3(b) illustrates this situation when considering the CO/CH4

ratio of these two species in the atmosphere. We see that the atmospheric composition changes
as soon as a metabolism is included but the footprint of the individual metabolism washes out
when the ecosystem becomes more complex to leave a clear signature between abiotic and biotic
biospheres.

This study shows that the atmosphere of the anoxic Earth was modified as soon as life
emerged. The direct coupling between the ecosystem dynamics and the planetary conditions
further allowed us to quantify how methanogenesis impacted planetary conditions, showing that
Earth remained habitable on geological time scale. A similar model applied to the case of prim-
itive Mars showed that methanogenesis likely drove Mars out of habitability if these primitive
metabolisms appeared [45]. This quantitative modeling suggests a very different outcome be-
tween the Earth and Mars upon the potential apparition of methanogenesis, stressing the need
for an integrated approach to address habitability and inhabitation on the same footing. This
also shows that habitability is, to some extent, determined by inhabitation. The common steady
state obtained for primitive Earth in the biotic case, distinct from the abiotic one, and reached as
the ecosystem becomes more complex, suggests that a biosignature can be defined. As shown in
Figure 3(b), this biosignature is rather independent of the particular characteristic of the
metabolisms involved suggesting that this could be used as a biosignature of methane cycling
biospheres for future surveys of habitable planets.

2.3. Earth-like population around G-type stars

We now consider the case of Earth-like planets around G-type stars to illustrate how an integrated
ecosystem-planetary model can be used to inform the design of future space telescopes aiming
at characterizing habitability and inhabitation of extrasolar planets. We saw in the the first
section that the definition of the conservative habitable zone rests on climate modeling that
embodies the greenhouse effects of H2O and CO2 present in the atmosphere. While not explicitly
included, it assumes that a carbonate-silicate cycle that regulates the amount of atmospheric
CO2 needed to keep the planet habitable exists as the stellar luminosity increases during the
host star lifetime [10, 11]. By demonstrating that a population of Earth-like planets follows the
general concentration of CO2 anticipated would first validate the concept of habitable zone.
It would secondly indicate that these planets may have liquid water on their surface as the
carbonate-silicate cycle as we experience it on Earth depends on having liquid water at the
surface. Incidentally, it would also confirm how the Earth stayed habitable for 4 billions years
(4Gyrs). This approach was suggested by Lehmer [35] and implemented in a very simplified way
to validate the habitable zone concept.

The integrated ecosystem-planetary model we developed for the case of primitive Earth allows
us to go a step further by not only considering the evolution of the CO2 concentration as a
function of time but by also following the complete evolution of the biosphere coupled to the
carbonate-silicate cycle. The results shown in the previous section indicate that this may be
necessary as habitability and inhabitation are strongly coupled with inhabitation modifying
habitability. This approach also provides an appealing way to identify inhabited planets as
biosignatures, such as the CO/CH4 ratio mentioned above, can be used and interpreted by fully
accounting for the planetary context.

Figure 4 shows preliminary results considering a primitive ecosystem consisting of a single
and the same generic methanogen as the one used for the case of Enceladus. Each point shown
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Figure 4. Results of simulated steady state atmospheres displayed as a function of the CO2

surface pressure, PCO2 , CH4 surface pressure PC H4, surface temperature, T, and time, t.
The red and bleu lines indicate Earth-like planets with densities respectively close to the
Earth (0.9<ρ<1.1) and defined as terran (see Section 1.1) anticipated as detectable using an
instrument configuration corresponding to LUVOIR-A.

in Figure 4 corresponds to a complete simulation involving a similar calculation as performed for
the case of primitive Earth, coupling photochemistry, climate, the carbonate-silicate cycle and
ecosystem modelings and taking into account the variation of volcanic outgassing, weathering
and solar luminosity over 4.5 Gyrs as indicated in Figure 3. We note that several technical
adjustments are needed to achieve this generalization of the primitive Earth model discussed
above over 4.5 Gyrs [46]. Most of them remove simplifying assumptions for the atmosphere-
ocean-ecosystem model that are no longer valid when considering the large parameter space
explored over such a long time scale, τ.

In Figure 4, the simulations are displayed in three categories. The simulations leading to a
surface temperature above 273K are tagged as habitable-temperate as surface temperature is
the only criteria used. Following what was done for Enceladus, simulations where a methanogen
population can reach a steady state are tagged as habitable for the methanogen population. This
represents a fraction of the habitable-temperate set as in addition to temperature, the ocean
composition enters in defining the viable conditions for methanogens. Finally, the third set of
simulations, habitable-biotic, represents the conditions where the ecosystem activity feeds back
into the atmospheric composition. It represents the steady state reached by the ecosystem-
planetary system at a given time, τ, given by the stellar luminosity, volcanic outgassing and
weathering. The latter two are obtained by the parameterization of the Earth carbonate-silicate
cycle [42] while the variation of stellar luminosity and spectrum follow the parameterization of
Claire et al. [53]. We note that each simulation point is calculated independently.

Figure 4 shows the variation of the surface temperature and of the CO2 and CH4 surface
pressures as a function of time and corresponding to the three sets defined above. We see in



Stephane Mazevet, Antonin Affholder, Boris Sauterey, Alex Bixel, Daniel Apai and Regis Ferriere 13

Figure 4(c) that the amount of CO2 decreases as time evolves and the stellar luminosity increases
to maintain habitable conditions. We note that the Sun luminosity increases by 25% over 4 Gyrs
in these simulation sets. This trend in the atmospheric concentration of CO2 as a function of
time represents the effect of the carbonate-silicate cycle. This variation also translates into a
varying concentration of CO2 across the habitable zone. Figure 4(e) shows that the methanogenic
population brings an almost constant increase of CH4 in the atmosphere. This biogenic activity
is associated to an increase in surface temperature that can be seen in Figures 4(d)-(f) due to
the greenhouse effect of CH4. Inspection of Figure 4 indicates that clear trends exist for the
evolution of the atmospheric concentration of CO2 and CH4 over time that may allow us to
identify habitability and inhabitation in population of exoplanets. We note that habitability and
inhabitation can be accessed independently by considering respectively the habitable temperate
and habitable-biotic sets.

If we take the history of life on Earth and its impact on the atmospheric composition of the
planet as a template, biogenic CH4 due to chemotrophic activity and non-oxygenic photosyn-
thesis was dominant for more than 1 Gyrs. It was followed by a rise in oxygen related to the
apparition of oxygenic photosynthesis in two steps, with detectable amount in the atmosphere
only 800Myrs ago. The trends identified in this preliminary calculation correspond to planets that
exhibit a carbonate-silicate cycle similar to the one experienced by the Earth and a methanogenic
population pertaining over 4 Gyrs without the emergence of non-oxygenic and oxygenic photo-
synthesis. These preliminary simulations can be expanded to explore more throughly the param-
eter space when chemotrophic metabolisms are at play. Photosynthetic metabolisms could be
formally included in the approach but require substantial modifications of the ecosystem for-
malism. The simulations show nevertheless that priors can be built to be used in a Bayesian anal-
ysis scheme using a population of potentially habitable planets.

Figures 4(c)-(e)-(f) illustrate this approach by displaying the exoplanet yield for Earth-like
planets around G-type stars expected from the next generation of space telescopes. The sets
of exoplanets shown are obtained by using the Bioverse scheme [39, 40] and considering a
configuration similar to the LUVOIR-A mission concept [37]. The Bioverse scheme simulates
planetary systems for host stars in the solar neighborhood based on the Kepler statistics [54, 55].
The first set displayed in Figure 4 corresponds to planets anticipated in the habitable zone, with
densities between 0.9 and 1.1 the Earth one, and potentially detectable using direct imaging.
This set corresponds to planets very close to the Earth and could be associated to Earth twins. At
first glance, these planets would have a higher probability of displaying a carbonate-silicate cycle
similar to the Earth. The second set considers a less restrictive definition and corresponding to
the one given in Section 1.2 to define terran planets. We see in Figure 4 that considering planets
with densities very close to the Earth, the detection of only eight planets are anticipated with
this particular telescope configuration. This number significantly increases when considering
planets with a less restrictive density criteria. These precise numbers may be refined in the near
future as more surveys come along but it gives a good estimate of the number of candidates
that can be expected. Considering that the space observatory has the ability to detect these
levels of atmospheric CO2 and CH4, Figure 4 shows that the number of planets anticipated
with a configuration corresponding to LUVOIR-A will likely be too low to identify a trend in the
variation of CO2 as a function of time for planets with densities very close to the Earth one.
The configuration of the LUVOIR-A mission concept may, in contrast, be sufficient to identify
methanogenesis if all the candidates display a constant and similar level of CH4 or by considering
planets defined as terran with physical properties departing from Earth twins.

This example illustrates how these studies can be used to design instruments and devise ob-
servational strategies aiming at identifying trends in populations of exoplanets. For example, the
carbonate-silicate cycle as parameterized for the Earth depends on the ability of a planet to main-
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tain liquid water at its surface. Detecting trend in CO2 as diplayed in figure 4 instead of water in
the atmosphere are two different approaches that could formally be used to identify habitable
planets. This leads to two different designs for the space observatory. Furthermore, when consid-
ering the atmospheric concentration of CO2 of a population of planets in the habitable zone of
G-type star and with densities close to the Earth, we see that the statistical set expected is too lim-
ited when considering the configuration of the LUVOIR-A mission concept. This can be overcome
by considering a radically different approach for the design of the space observatory [56]. Con-
versely, the planet sample can be expanded by considering a less restrictive definition of Earth-
like planets to include a larger variation in mass, radius and density as displayed in Figure 4. This,
however, requires that the current modelisation folds in the dependance of the carbonate-silicate
cycle on these parameters to identify trends. Alternatively, it can also be approached by using a
larger set of stars involving different types and considering luminosity instead of time. Consider-
ing planets with a carbonate-silicate cycle driven by different geophysical regimes such as plaque
tectonics like on Earth or a stagnant lid regime like on Venus may also devise a better observa-
tional strategy than considering a log-linear relationship between luminosity and CO2 concen-
tration as suggested in [35]. Overall, we see that the ecosystem-planetary model developed used
in combination with the Bioverse simulations provides a powerful tool to address these questions
quantitatively and progress toward the identification of habitable and inhabited planets.

3. Summary

The characterization of habitable planets and the possible detection of biotic activity is a major
challenge for the coming decades. It will likely require the development of a new generation of
space telescope optimized to identify trends in population of exoplanets rather than focused on
the precise characterization of a few objects. The design as well as the future analysis of these ex-
periments require a new generation of models that integrate the coupling between the potential
biotic activity, the atmospheric and interior evolution of terrestrial planets that expand beyond
the Earth size and density. We develop such an approach that couples an Earth-based ecosys-
tem and planetary modeling. We demonstrated that is is applicable to identify biotic activity and
quantify its effect on habitability for Enceladus, primitive Earth and primitive Mars, as well as for
a population of Earth-like planets around G-type stars. The latter represents a preliminary anal-
ysis that can be expanded in several directions to asses trends in population of exoplanets that
can potentially bring the concept of habitable planets to observational confirmation.
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