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As financial instruments grow in complexity, more and more information is neglected by 
risk optimization practices. This brings down a curtain of opacity on the origination of 
risk, which has been one of the main culprits in the 2007–2008 global financial crisis. 
We discuss how the loss of transparency may be quantified in bits, using information 
theoretic concepts. We find i) that financial transformations imply large information losses, 
ii) that portfolios are more information sensitive than individual stocks only if fundamental 
analysis is sufficiently informative on the co-movement of assets, iii) that securitisation, in 
the relevant range of parameters, yields assets that are less information sensitive than the 
original stocks, and iv) that, when diversification (or securitisation) is at its best (i.e. when 
assets are uncorrelated), information losses are maximal. We also address the issue of 
whether pricing schemes can be introduced to deal with information losses. This is relevant 
for the transmission of incentives to gather information on the risk origination side. Within 
a simple mean variance scheme, we find that market incentives are not generally sufficient 
to make information harvesting sustainable.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

À mesure que la complexité des instruments financiers augmente, de plus en plus 
d’informations sont négligées par les méthodes d’optimisation des risques. Cela obscurcit 
l’origine du risque, ce qui a été l’une des causes principales de la crise financière 
mondiale de 2007–2008. Nous discutons la manière dont la perte de transparence peut 
être quantifiée en bits, à l’aide de concepts de théorie de l’information. Nous constatons i)
que les transformations financières impliquent d’importantes pertes d’information, ii) que 
les portefeuilles sont plus sensibles que les stocks à l’information tant que si l’analyse 
fondamentale est suffisamment informative quant aux mouvements conjoints des actifs, 
iii) que la titrisation, dans la gamme pertinente de paramètres, produit des actifs moins 
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sensibles à l’information que ceux initiaux, iv) que, lorsque la diversification (ou titrisation) 
est à son meilleur (c’est-à-dire lorsque les actifs sont non corrélés), les pertes d’information 
sont maximales. Nous abordons également la question de savoir si des systèmes de 
valorisation peuvent être mis en place pour faire face aux pertes d’information. Ceci 
est pertinent pour inciter les initiateurs à collecter des informations sur l’origine du 
risque. Dans le cadre simple d’une approximation moyenne–variance, nous constatons que 
les incitations de marché ne sont généralement pas suffisantes pour rendre la collecte 
d’information durable.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Financial innovations have been seen as a formidable tool to increase the efficiency of the market, by controlling the risk 
of financial assets, thus easing resource allocation between investors and the real economy. Yet, several authors [1–3] have 
suggested that the increasing complexity of financial products may trigger the emergence of instabilities and systemic risks. 
The most commonly believed determinant of the 2007–2008 global financial crisis is the rise of structured financial products 
[4]. The formidable complexity of these types of products effectively brought down a curtain of opacity between the risk 
originators and the buyers of the financial products, that hid the true risks of the underlying assets (e.g., mortgages, loans, 
credits) [5,6]. While the dangers of these instruments had been highlighted well before the crisis [7], most of the response 
to the crisis did not address the core issue of the transparency loss implicit in financial transformations, but rather focused 
on ring fencing the financial system with various measures [8]. An exception to that is the proposal [9] to build an efficient 
and standardized system, or a common language, through which information on the origin of risks should be easily available 
to all market participants. Such a financial barcode, which might be attached to any financial product, should contain all the 
information that is relevant in order to make realistic estimates about the return and risk of the product, from the risk 
profiles of the building blocks to market fundamentals. Yet, it is not clear how such barcodes should be constructed, which 
information they should contain, and whether they should be statically or dynamically updated, when new information is 
available. In particular, an interesting open question is whether demand for such barcodes may “naturally” arise and how 
barcodes should be priced, since without a barcode price the sellers would have no incentive for sharing the information.

Apparently, within the prevailing market efficiency hypothesis paradigm, according to which prices of any stock exchanged 
in the market reflects faithfully any relevant information [10,11], these barcodes would be worthless. Indeed, for example, 
the price of Asset Backed Securities (ABS) were computed only on the basis of default probabilities of the underlying assets 
(e.g., mortgages). Even though, in principle, all the documentation about the underlying assets was available to buyers, the 
prices of ABS did not depend at all on it, with the consequence that incentives for due diligence in collecting information 
on the underlying by issuers were lacking [7,6]. Yet, market information efficiency resides in the balance between traders 
seeking information (fundamental analysis) and traders exploiting it (technical analysis), as shown by a wealth of results in 
agent-based modelling of financial markets (see, e.g., [12]). The former profit by the fact that the information they gather 
grants them an excess return. Here the profits of collecting information accrue to the individual trader, while in the case 
of a structured financial product these are passed over to the buyer. Accordingly, they should be reflected in the price. This 
simple logic is the basis of the present paper.

As a first step, we quantify the transparency loss by the amount of bits of information lost in diversification. Secondly, 
we address the issue of deriving the optimal barcode, the one that contains the maximal information on the return of 
the financial instrument. Then we compute the price associated with the barcode as the value of the information within a 
simple mean variance framework. The information loss and the barcode price are then quantified within a model system 
based on Gaussian variables (see [13] for an extension to binary variables). Within this framework, we find that financial 
transformation implies large information losses and that market incentives are not generally sufficient to make information 
harvesting sustainable.

The remaining sections are organized as follows: in Section 2 we discuss the general setting, information and financial 
transformation. Then we quantify information losses for a simple model of Gaussian log-returns and address the issue of 
information pricing. We conclude with some general remarks.

2. The general framework

Let us suppose we have a pool of n assets, e.g., stocks, loans or mortgages, and let �X = (X1, . . . , Xn) be the associated 
vector of (log-)returns. The values �X are unknown to the investor, so we shall treat them as a vector of random variables, 
described by a probability distribution p( �X). We consider a situation where some side information related to the stock 
Xi , e.g., the income of the borrower of the loan or information on the fundamentals of asset i, is possibly available. This 
information is captured by a random variable Yi , which, inspired by Ref. [9], we shall call the barcode associated with asset 
i. Barcodes allow the investors who bought the asset to retrieve all information that is relevant to estimate the return of the 



366 M. Bardoscia et al. / C. R. Physique 20 (2019) 364–370
asset, in the sense that, given the barcodes �Y , they can use the conditional distribution p( �X | �Y ) instead of p( �X). We shall 
use the mutual information [14]:

I(U , V ) = E

[
log

[
p(u|v)

p(u)

]]
(1)

to quantify the amount of information that the knowledge of a variable V provides on the random variable U . In Eq. (1), 
p(u|v) is the conditional distribution of U given that V = v and p(u) is the unconditional one.2 Hence, I(Xi, Yi) measures 
in bits the information that Yi provides on Xi and I( �X, �Y ) measures the total amount of information that the barcodes �Y
provide on the returns �X .

2.1. Financial transformations

We consider financial transformations

�X → F (X), X =
n∑

i=1

Xi (2)

that entail pooling the n assets into a single portfolio X and applying a transformation F (X). This generates a new financial 
asset with log-return F (X). The simplest such transformation is the portfolio itself that delivers the average log-return

F X̄ (X) ≡ X = X/n (3)

Here, �X can be the log-returns of individual stocks. In this case, �Y would encode information on fundamentals (e.g., corpo-
rate structure of the firm, analysis of the sector they operate etc) for each stock.

X corresponds to the most basic diversification techniques, which entails investing a fraction 1/n in each of the n assets, 
instead of investing in a single asset Xi . The benefit of diversification is that it reduces the risk. For example, for n i.i.d. 
stocks, the variance V (X) =V (Xi)/n is reduced by a factor of n, w.r.t. that of individual stocks.

Another class of products we consider are Asset Backed Securities (ABS), the typical products of structured finance [4], 
whose return function is based on a prioritized structure of claims. In these products, the claims over the cash flow of the 
returns of the underlying assets Xi are structured in such a way that ABS yields a positive return when the total return is 
larger than a given threshold k. The return of these products is

Fk(X) = θ (X − k) (4)

where θ(x) = 1 when x ≥ 0 and θ(x) = 0 otherwise. Different tranches correspond to different risk profiles that can be 
obtained with different values of k. The transformation �X → Fk(X) is an example of securitisation and the advantage of it is 
that it turns a set of risky assets Xi into assets with a controlled risk profile. Sufficiently small values of k yield assets that 
are very safe, i.e. for which Fk(X) = 1 with high probability. As an example, mortgage backed securities (MBS) [4] are based 
on a portfolio �X of mortgages granted to n households, where Xi = +1 if household i repays the mortgage and Xi = 0 if 
i defaults. In this case, Yi may encode the occupational status of i, the characteristics of the neighbourhood of the house 
bought with the ith mortgage. In this case, i’s default may occur for idiosyncratic reasons, or for systemic ones (e.g., crisis in 
the sector of the economy of the company where Mr. i works or a natural disaster in that region) that may affect different 
households in the same way.

Investors can transmit all the information �Y about the individual assets to the buyers of the engineered asset F . Yet, some 
of this information may not be relevant to estimate the return F (X), i.e. all the information relevant to estimate the return 
of F may be compressed in a single variable G F that we call the barcode of F . Clearly, G F (�Y ) has to be a function of �Y , and, 
ideally, the barcode G F should be the simplest3 among all possible variables V (�Y ) such that I

(
F (X), V (�Y )

)
= I

(
F (X), �Y

)
.

A general result can be obtained by invoking the data processing inequality [14]. This states that in any transformation 
�X → F (X), some information may or may not be lost, but for sure no information can be gained. In terms of the mutual 
information, this reads

I(F (X), G F (�Y )) ≤ I(F (X), �Y ) ≤ I(X, �Y ) ≤ I( �X, �Y ) (5)

The term on the right end of this chain of inequalities quantifies the total amount of information in bits that barcodes �Y
provide on the log-returns �X . In the typical case of weakly dependent assets, this is proportional to the number n of assets. 

2 For continuous variables p(u|v) and p(u) are probability density functions, see, e.g., [14].
3 Here simplest, in information theoretic terms implies the one requiring less bits for its description. For discrete variables, this corresponds to the 

variable V with the smallest entropy H[V ] = − ∑V p(V ) log p(V ). For continuous variables, it is necessary to resort to the relative entropy D K L(p||p0) =∫
dV p(V ) log[p(V )/p0(V )], where p0(V ) is a baseline distribution. In the cases we shall discuss in the following, the notion of simplicity is rather intuitive, 

so we shall not discuss these details further.
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By contrast, the second term from the right is upper bounded by the entropy of the random variable X , which grows at 
most as log n. Hence, generally, financial transformations imply information losses. The choice of the optimal barcode G F (�Y )

can only mitigate further information losses, and at most saturate the leftmost inequality in Eq. (5).
In the next section, we shall turn to the quantitative analysis of a representative case.

3. Barcoding finance in a Gaussian world

Let us assume that

Xi = μ + ξi + aξ0 + J Yi (6)

Yi = ηi + cη0 (7)

where μ > 0 is a positive constant, and ξi ’s and ηi ’s are i.i.d. Gaussian random variables with mean zero and variance one 
for i = 0, 1, . . . , n. This corresponds to a one-factor model, where the covariance E[(Xi − μ)(X j − μ)] = a2 + J 2c2 between 
assets can partly be explained by the barcode variables (c �= 0). Notice also that all assets are equivalent, i.e. the distribution 
of ( �X, �Y ) is invariant under permutations of the assets.

The mutual information on individual assets is given by4

I(Xi, Yi) = 1

2
log

(
1 + J 2 1 + c2

1 + a2

)
(8)

whereas the total information that barcodes provide on �X is

I( �X, �Y ) = n − 1

2
log(1 + J 2) + 1

2
log

(
1 + J 2 1 + nc2

1 + na2

)
(9)

Since

X = nμ +
n∑

i=1

ξi + naξ0 + J Y , Y =
n∑

i=1

Yi (10)

then the optimal barcode for any F (X) is G F (�Y ) = Y . Indeed, I(F (X), �Y ) = I(F (X), Y ), which saturates the leftmost inequal-
ity in Eq. (5). The upper bound on the information content of the barcode is given by

I(X, Y ) = 1

2
log

(
1 + J 2 1 + nc2

1 + na2

)
(11)

We notice that:

1) the barcode’s information on the portfolio log-return X is larger than that on individual assets (i.e. I(X, Y ) > I(Xi, Yi)) 
only if c > a, i.e. if barcodes are sufficiently informative on the co-movement of assets;

2) I(X, Y ) equals the second term in Eq. (9); therefore, the total loss of information is upper bounded by the first term on 
the right hand side of Eq. (9), which increases linearly with n;

3) the total loss of information I( �X, �Y ) − I(X, Y ) is independent of a and c, because all the available information on the 
co-movement of stocks is captured by Y ;

4) when barcodes are not informative about the correlated variation of assets, i.e. for c = 0, the information content of the 
barcode Y vanishes, I(X, Y ) → 0 as n → ∞.

It is instructive to observe that, when c �= 0, the barcode Y j provides also information on the return of asset i.5 The 
case when barcodes are independent (c = 0) may be appropriate for a portfolio of stocks where Yi accounts only for the 
fundamental analysis of stock i. In this case, very large portfolios become insensitive to information on the fundamentals 
of individual stocks (I(X, Y ) → 0 as n → ∞). This is because X is dominated by the common component aξ0 on which 
barcodes Yi provide no information. The behaviour of I(X, Y ) for the portfolio is summarized in the left panel of Fig. 1.

The mutual information can be computed also for the ABS as follows. In a model of Gaussian log-returns and information, 
the threshold parameter k of a tranche Fk can be related to the default probability

4 These results can be derived straightforwardly using textbook formulas (see, e.g., [14]).
5 A trite calculation shows that

I(Xi , Y j) = − 1

2
log

{
1 − J 2c2

(1 + c2)[1 + a2 + J 2(1 + c2)]
}

(12)
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Fig. 1. Mutual information I(X, Y ) and I(Fk, Y ) of barcodes for portfolio (left) and ABS (right) generated from Gaussian underlying assets ( J = 0.5), as a 
function of n.

pk
d = p(X < nμ + k) = H

(
k√
V (X)

)

where H(z) = ∫ z
−∞

dz√
2π

e−z2/2 is the cumulative normal distribution function. When information Y is revealed, this default 
probability changes into

pk
d(Y ) = p(X ≤ nμ + k|Y ) = H

(
k − J Y√
V (X |Y )

)

using this expression for pk
d(Y ) and using Eq. (1),

I(Fk, Y ) =E

[
pk

d(Y ) log
pk

d(Y )

pk
d

+ (1 − pk
d(Y )) log

1 − pk
d(Y )

1 − pk
d

]
(13)

where the expectation is taken on the distribution of Y . In the right panel of Fig. 1, we plot the behaviour of the mutual 
information for the ABS. I(Fk, X) follows the same qualitative behaviour of I(X, Y ), although its value is considerably smaller 
(more than tenfold in the example of Fig. 1). In addition, I(Fk, Y ) decreases for safer and safer assets (i.e. as pd decreases), 
showing that most senior tranches of ABS tend to be remarkably information insensitive.

3.1. The cost of information: pricing barcodes

Let us now address the issue of quantifying the value of the information conveyed by the barcodes. The key question we 
want to address is whether the demand for barcodes can endogenously arise in a market. This is possible if barcodes can 
be priced in such a way that the value of the barcode of a financial instrument provides enough incentives for gathering 
information on the individual assets. We address this question within a mean-variance pricing scheme. Hence the setting 
we consider is that of a portfolio manager that gathers information on n assets, and sells n shares of the resulting portfolio, 
charging an additional amount related to the price of the information contained in the portfolio’s barcode. Investors exploit 
their available information about asset payoffs to price the financial product Z = F Z (X). When they have access to the 
barcode, they use the probability p(Z |Y ) to assess future performances of the assets, otherwise they use p(Z). In a mean 
variance framework, the price of X depends on the first two moments of Z . When no barcode is provided, the mean 
variance price reads:

p Z = E[Z ] − αV [Z ] (14)

where α > 0 is the relative risk aversion coefficient. A micro-foundation of the previous formula is discussed in Appendix A. 
As shown there, conditionally on knowing the barcode’s value y, the price is:

p Z |Y =y = E[Z |Y = y] − αV [Z |Y = y] (15)

Depending on the realized information y, the price difference between having or not the barcode can be positive or negative. 
The price of the barcode should be computed before the realized value of Y is known, therefore it is given by
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δp Z := E[p Z |Y ] − p Z = α {V (Z) −E [V (Z |Y )]} = αV (E[Z |Y ]) (16)

where V (Z |Y ) is the variance of Z on the distribution p(Z |Y ) and E[Z |Y ] is the expected value of Z conditional on the 
value Y . Eq. (16) takes the expected value over Y of V (Z |Y ) and the variance of E[Z |Y ] over the distribution of Y . This 
result reflects the fact that the knowledge of the distribution of Y does not change the unconditional expected log-return 
of the asset, but produces a reduction in variance, which is equal to the variance of the conditional expected return.

To assess the presence of incentives for barcodes, we shall compare expected revenues from the barcode with the cost
of gathering information, which is given by the cost of the barcodes of the original assets.

When log-returns are given by Eq. (6), the cost of gathering information for a single asset is

δp Xi = α J 2(1 + c2) (17)

The additional log-return that the optimal barcode Y = ∑
i ηi + ncη0 yields is

δp X = α J 2(1/n + c2) (18)

Considering this as the price of the barcode that the portfolio manager can charge when selling X , together with the 
barcode, we find that the budget’s balance for the portfolio manager for selling n shares of X is

nδp X −
n∑

i=1

δp Xi = −α(n − 1) J 2 (19)

which is negative. In other words, this pricing mechanism does not provide incentives to gather information on individual 
assets. Interestingly, when barcodes provide information on the co-movement of the assets (c > 0), the value of information 
on the whole portfolio, instead, is larger than the sum of the cost of information on individual assets, i.e.

δp X −
n∑

i=1

δp Xi = αn(n − 1) J 2c2 (20)

This is a consequence of the non-linearity of the pricing mechanism and of the fact that, for c > 0, the barcode Yi of asset 
i provides information also on other asset log-returns X j . Indeed, there is a minimal share size, above which the barcode 
associated with the log-return X/m provides enough incentives to gather information on individual assets in the sense that 
mδp X/m − nδp Xi ≥ 0. A simple calculation shows that

m ≤ 1 + J 2(1 + nc2)

1 + J 2(1 + c2)
(21)

The same calculation can be extended to ABS in a straightforward manner, yet the results depend on the way in which the 
portfolio X is divided into tranches

X =
∑

k

fk Fk(X) (22)

for some positive constants fk . Then, we show in Appendix B that

δp X >
∑

k

δp fk Fk(X) (23)

This, together with the fact that, for c = 0, Eq. (20) implies that δp X = ∑
i δp Xi , shows that if barcodes do not provide 

information on the correlated defaults, securitisation cannot provide incentives to gather information on individual assets 
(within the present mean variance framework). This suggests that, unless information on the correlated defaults of individual 
assets is accounted for, securitisation decreases the value of information contained in barcodes.

4. Conclusion

In this paper, we exploit information theoretic concepts to investigate the lack of transparency associated with financial 
transformations. We discuss a setting where side information about the returns of assets is modelled with an associated 
random variable, and the information content is quantified using the mutual information. In this setting, we show that ev-
ery financial transformation implies information losses. In a model of Gaussian log-returns, we find that when fundamental 
analysis on individual assets is not informative on the co-movement of assets, the information is totally lost in the limit of 
very large portfolios. In addition, we show that, within a mean variance framework, the value of information also decreases, 
which suggests that incentives to gather information on individual assets cannot be transmitted across financial transfor-
mation. This puts serious doubts on whether market incentives alone are enough to make the introduction of a system of 
barcodes, as advocated in Ref. [9], sustainable.
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These result generalise to a model of assets with binary returns, which is more appropriate for credit derivatives (see 
Ref. [13]). The aim of the present paper is that of suggesting ways forward to quantify transparency losses in finance and 
to raise a few key issues. As such, it might be a benchmark for more complex and realistic theoretical models, or for more 
appropriate schemes to value information in order to overcome these issues.

Appendix A. Mean variance pricing

In order to do this, we adopt a standard mean-variance framework.6 Consider a representative agent with an initial 
wealth W , that is facing the decision of buying εW units of wealth of an asset with return Z . If her utility function is given 
by U (·), the certainty equivalent w of this investment is defined as that value for which the investor is indifferent between 
investing in the asset or receiving w units of wealth, i.e.

U (W + w) = E [U (W + εW Z)] (24)

where E[. . .] stands for the expectation on the random variable Z . We take w as a measure of the value of the investment 
that incorporates the risk premium. Assuming that ε � 1 and w � W , we can expand both sides and derive, to leading 
order, the price of Z as the value per unit of investment.

p Z ≡ w

αW
� E[Z ] − αV (Z), α = −ε

U ′′(W )W

2U ′(W )
(25)

If we further assume investors with constant relative risk aversion (CRRA), then α is a constant, that we assume can be 
estimated from market data.

Appendix B. Pricing ABS

From Eq. (22)

E[X |Y ] =
∑

k

fkE[Fk(X)|Y ] (26)

We assume that X ≥ 0 and that fk > 0. Hence

δp X = αV (E[X |Y ])
=

∑
k

f 2
k αV (E[Fk(X)|Y ]) +

∑
k �=k′

α fk fk′E [(E[Fk(X)|Y ] −E[Fk(X)]) (E[Fk′(X)|Y ] −E[Fk′(X)])]

>
∑

k

δp fk Fk(X)

where the last equation results from the fact that the covariance of E[Fk(X)|Y ] is positive.
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