
C. R. Physique 20 (2019) 218–227
Contents lists available at ScienceDirect

Comptes Rendus Physique

www.sciencedirect.com

URSI-France 2018 Workshop: Geolocation and navigation / Journées URSI-France 2018 : Géolocalisation et navigation

Bayesian fusion of GNSS, ITS-G5 and IR–UWB data for robust 

cooperative vehicular localization

Fusion bayésienne de données GNSS, ITS-G5 et IR-UWB pour des 

applications robustes de localisation véhiculaire coopérative

Gia Minh Hoang a, Benoît Denis b,∗, Jérôme Härri c, Dirk Slock c

a Orolia Spectracom, Parc Technopolis, 3, avenue du Canada, 91974 Les Ulis cedex, France
b CEA-Leti, Minatec Campus, 17, rue des Martyrs, 38054 Grenoble cedex 9, France
c EURECOM, SophiaTech Campus, 450, route des Chappes, 06904 Sophia Antipolis, France

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 8 April 2019

Keywords:
Bayesian data fusion
Cooperative localization
Impulse Radio–Ultra WideBand (IR–UWB)
ITS-G5
Vehicle-to-Vehicle (V2V) data 
communications
Vehicular Ad hoc NETwork (VANET)

Mots-clés :
Fusion de données hybrides
Localisation coopérative
Radio impulsionnelle ultra-large bande 
(IR-UWB)
ITS-G5
Communications inter-véhicules (V2V)
Réseau véhiculaire ad hoc (VANET)

In the automotive domain, Cooperative Localization (CLoc) is a new promising paradigm 
that aims at outperforming conventional Global Navigation Satellite Systems (GNSS) in 
terms of positioning accuracy, robustness, and service continuity, by relying on Vehicle-
to-Vehicle (V2V) communications and hybrid data fusion. However, the growing number 
and the variety of the sensors aboard vehicles raise unprecedented challenges, especially 
in the context of distributed fusion approaches. This paper thus compares parametric 
and nonparametric Bayesian data fusion engines (e.g., based on cooperative variants of 
the Extended Kalman Filter (EKF) and Particle Filter (PF), respectively), while validating a 
CLoc scheme suitable to Vehicular Ad Hoc Networks (VANETs). More particularly, absolute
position information from both onboard GNSS receiver and ITS-G5 V2V messages, as 
well as relative distance measurements based on the Impulse Radio–Ultra-Wideband (IR–
UWB) technology, are combined into a single location solution that is hopefully more 
robust and more accurate than that of standalone GNSS. First, we investigate V2V ranging 
accuracy on a highway under real mobility conditions. In the same environment, we 
then provide offline validations of CLoc positioning, confirming significant performance 
gains through cooperation over conventional GNSS, even in case of poor initialization. 
In this specific context, the PF solution is thus shown to yield even better accuracy in 
comparison with EKF, thanks to its fine robustness against faced non-linear dynamics and 
non-Gaussian noise processes. Finally, we illustrate the resilience of the proposed solution 
under temporary GNSS denial.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Dans le domaine automobile, la localisation coopérative (CLoc) apparaît aujourd’hui 
comme un paradigme particulièrement prometteur, qui doit permettre d’améliorer les 
performances des systèmes conventionnels de navigation par satellite (GNSS) en termes 
de précision de positionnement et de continuité de service, en mettant à profit les 
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communications sans fil entre véhicules (V2V) ainsi que des techniques avancées de fusion 
de données. Toutefois, le nombre grandissant et la variété des capteurs disponibles à 
bord des véhicules donnent lieu à des questions de recherche sans précédent, a fortiori 
dans un contexte de traitements distribués. Dans cet article, on se propose de comparer 
des techniques paramétriques et non paramétriques de fusion bayésienne (typiquement, 
des variantes coopératives du filtre de Kalman étendu (EKF) et du filtre particulaire 
(PF)), permettant de résoudre ce problème de localisation coopérative dans un contexte 
de réseaux véhiculaires ad hoc (VANET). Plus spécifiquement, on cherche à fusionner 
une information locale de position absolue, telle que celle délivrée par le récepteur 
GNSS embarqué, avec les positions présumées de véhicules voisins (comprises dans des 
messages V2V reposant sur le standard de communication ITS-G5), d’une part, et avec 
des mesures de distances relatives vis-à-vis de ces mêmes voisins (en s’appuyant sur la 
technologie radio impulsionnelle ultra-large bande (IR-UWB)), d’autre part. Par le biais de 
cette fusion coopérative, on s’attend à atteindre des niveaux de précision et de robustesse 
de localisation supérieurs à ceux d’un système GNSS indépendant. Dans un premier 
temps, on évalue ici la qualité des mesures de distances point à point entre véhicules, 
pour des conditions de mobilité réelles sur autoroute. Dans ce même environnement, on 
fournit ensuite une validation expérimentale complète (à temps différé) du concept de 
positionnement CLoc, confirmant l’intérêt de la coopération entre véhicules, y compris en 
cas d’initialisation grossière de la position du véhicule. À cette occasion, on met également 
en évidence l’apport du filtre particulaire, qui semble être mieux adapté (que le filtre EKF) 
aux dynamiques non linéaires et non gaussiennes rencontrées. Pour finir, on illustre la 
résilience de la solution proposée vis-à-vis de pertes temporaires du signal GNSS.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Accurate and reliable location awareness in fleets of road vehicles will play a vital role for future Cooperative Intelligent 
Transport System (C-ITS) applications and services, such as traffic management, autonomous driving and maneuvers nego-
tiation, advanced safety mechanisms for road users or the vehicular Internet of Things (IoT) through geo-referenced crowd 
sensing. Although the Global Navigation Satellite System (GNSS) is still today the most common and accessible choice in 
this vehicular context, it fails in fulfilling most C-ITS application requirements in terms of accuracy (say, sub-metric), robust-
ness, and availability. However, in a reasonably short term, all vehicles should enjoy global wireless connectivity through 
Vehicle-to-Infrastructure (V2I) and/or Vehicle-to-Vehicle (V2V) communication links (e.g., forming Vehicular Ad hoc NET-
works (VANETs) in the latter case). Accordingly, they could exchange intentional information, maximize their field of view, 
improve their mutual awareness of the driving environment and assist each other. By leveraging on the supplementary 
information available with such Vehicle-to-Everything (V2X) connectivity (and notably, from V2V data), Cooperative Local-
ization (CLoc) is thus expected to outperform conventional standalone (i.e. single-vehicle) localization techniques [1,2]. The 
general principle of vehicular CLoc can be summarized in two main phases.

In the first phase, each vehicle piggybacks position-dependent data (e.g., at least its absolute GNSS position) in a “Bea-
con” broadcast over V2X communication links.1 In the second phase, through the reception of these “Beacons”, a given 
“Ego” vehicle becomes aware of the absolute position estimates of its neighbors. One optional task consists in using the 
signal statistics of these received “Beacons” to opportunistically infer relative range- and/or position-dependent informa-
tion. Another alternative is to use a side radio technology devoted to accurate ranging. Finally, so as to refine initial GNSS 
readings, data fusion algorithms are in charge of combining these multiple sources of information, as shown in Fig. 1:

• data from other entities representing their local observations through V2X communications (e.g., GNSS data, sensor 
data, etc.);

• data from communication signals (e.g., Received Signal Strength Indicator (RSSI), Time of Arrival (ToA), Time of 
Flight (ToF), Time Difference of Arrival (TDoA), Phase Difference of Arrival (PDoA), Angle of Arrival (AOA), etc.);

• data from onboard sensors (e.g., GNSS data, sensor data, digital map, etc.).

Extensive research efforts have been committed to make use of explicit V2V location-dependent radio measurements 
based on mature and low-cost standards, as well as further information issued by on-board kinematic sensors (e.g., speed, 
acceleration, heading, etc.). In [3], a simplified CLoc fusion architecture based on an Extended Kalman Filter (EKF) combines 
GNSS data with V2V range measurements in a star topology (thus, avoiding the exchange of vectors of range measure-

1 A so-called “Beacon” herein depicts a message periodically broadcast by each node, while V2X refers to any technology capable of Device-to-Device 
communication in a vehicular context.
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Fig. 1. Simplified CLoc dataflow at an “Ego” vehicle, where PHY stands for the PHYsical layer of the radio used to infer range-/location-dependent measure-
ments (i.e. out of legacy V2V data communications (e.g., ITS-G5) or relying on a side ranging-devoted radio technology (e.g., IR–UWB)).

Fig. 2. CLoc principle illustration: the “Ego” vehicle performs data fusion after receiving ITS-G5 V2X CAM messages and performing IR–UWB V2V ranging 
measurements with respect to single-hop “Virtual Anchors”, thus improving positioning accuracy (in comparison with standalone GNSS localization).

ments). Another integrated fusion architecture based on a modified cubature KF in [4] fuses GNSS data with both V2V 
ITS-G5 Doppler shifts and RSSI-based ranges. In [5], the GNSS data is also fused with the RSSI of V2V messages such as 
ITS-G5 Cooperative Awareness Messages (CAMs), along with inertial sensor data from driver’s smartphone and a priori map 
information. A two-step Bayesian framework has been proposed, including an Unscented Kalman Filter (UKF) in charge of 
pre-processing the inertial-based heading, whereas a core Particle Filter (PF) is used to fuse all the remaining sources of 
information. Real-world experiments have even been conducted in the city of Porto. In another similar solution referred to 
as Virtual Anchors assisted CLoc (VA-CLoc) [6–9], each vehicle considers its neighbors as potential “Virtual Anchors” (i.e. 
mobile anchors with approximate knowledge of their own positions). Again, all vehicles first encapsulate their latest abso-
lute positions (typically their last fusion results) in V2V ITS-G5 CAM messages. Various cooperative formulations of both EKF 
and PF have thus been considered at the “Ego”2 vehicle to fuse on-board GNSS data with V2V range-dependent radio infor-
mation (see Fig. 2). Finally, each vehicle contributes to improve the localization of its neighbors by broadcasting in return its 
own fusion results within subsequent beacons. In terms of incorporated V2V radio measurements, the RSSI associated with 
received CAMs has also been considered as a starting point in [6,7], for simplicity. Preliminary experimental validations in a 
highway scenario [10] have already shown significant gains in comparison with standard GNSS performance (e.g., reducing 
the 2-D location error by 50% in average), even though an in-site prior calibration of the path loss model parameters is 
required. All in all, none of the solutions accounted above could really meet the sub-metric accuracy requirement.

More recently, accurate V2V range measurements based on Impulse Radio - Ultra Wideband (IR–UWB) Round Trip - Time 
of Flight (RT–ToF) estimation have been incorporated in the problem, instead of using ITS-G5 RSSI metrics, while keeping 
ITS-G5 uniquely for V2V communications. The IR–UWB technology, which inherently benefits from fine time resolution due 
to a large instantaneous bandwidth, can indeed theoretically provide sub-metric peer-to-peer ranging accuracy (typically, 
from a few cm to a few tens of cm) through precise ToA estimation and multi-way protocol transactions. But in addition 
to the ranging capability, the impulse nature (with typical pulse durations of approximately 1 ns) and the very low power 
spectral density of the transmitted signals (i.e. at most −41.3 dBm/MHz, expressed in terms of effective isotropically ra-
diated power) on the one hand, as well as the application of spread-spectrum techniques (typically, coding the temporal 
position and/or the amplitude of sequences of transmitted pulses) on the other hand, make IR–UWB particularly immune to 

2 The so-called “Ego” vehicle herein performs fusion at a given point in time. Given the decentralized nature of VA-CLoc, the roles of “Ego” and “Virtual 
Anchors” are interchangeable among cooperating vehicles over time.
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narrow-band unintentional interference, intentional jamming and/or interceptions. This is typically the case within coherent 
transceivers operating at central frequencies between 3 and 5 GHz and occupying bandwidths between 500 MHz and 1 GHz, 
such as that used in our experiments [11]. Using IR–UWB in CLoc, even more promising gains have thus been shown by 
means of simulations in pathological cases such as narrow streets or GNSS-altered environments [8,9]. However, to the best 
of our knowledge, only rare field trials have been conducted so far with V2V IR–UWB range measurements in real driving 
conditions. In [12], aiming at improving mostly the horizontal positioning accuracy in a group of three vehicles, Differential 
GNSS (DGNSS) pseudoranges have been fused with V2V IR–UWB range measurements and bearing measurements using 
an EKF in different scenarios. However, these preliminary tests have shown that the combination of DGNSS with IR–UWB 
could be occasionally counterproductive, or even worse than standalone DGNSS. Timing errors corrupting the IR–UWB data 
or erratic ranging behaviors under high-speed mobility (e.g., caused by synchronization issues) could be incriminated as 
plausible reasons. The discrepancy between large prior positioning errors and very accurate ranging observations could also 
lead to violate the usual operating conditions of EKF (or PF) in some specific cases, as illustrated in [9]. Besides, the fusion 
between IR–UWB and standard mass-market GNSS has not been really investigated yet (but mostly with DGNSS).

In this paper, we first generalize the previous VA-CLoc problem into a generic Bayesian fusion framework supporting 
cooperative variants of both PF and EKF. We also account for new offline proof-of-concept validations, relying on a demon-
stration platform integrating ITS-G5, GNSS and IR–UWB technologies. We first evaluate the 1-D precision of IR–UWB V2V 
range measurements under typical vehicular mobility. We then illustrate the nominal performance gains achieved in terms 
of positioning beyond standard GNSS in the steady-state fusion regime (i.e. with reliable initialization and reliable infor-
mation from neighboring vehicles), as well as under erroneous initialization and GNSS denial at the “Ego” vehicle. On this 
occasion, we show the superiority of PF to overcome the highly erratic (non-Gaussian) observation noise affecting IR–UWB 
range measurements, as well as observations non-linearity.

The remainder of the paper is organized as follows. In Section 2, we recall the CLoc problem formulation, as well as the 
proposed fusion solutions based on EKF and PF. In Section 3, we describe the experimental setting and the tested scenario. 
Then in Section 4, we present the corresponding offline validation results. Finally, Section 5 concludes the paper.

2. Problem formulation and proposed fusion framework

2.1. Overall system model

The state vector of vehicle i includes its 2-D coordinates xi,k = (xi,k, yi,k)
† and velocities vi,k = (vx

i,k, v
y
i,k)

†, all expressed 
at discrete time step k according to a local timeline.3

2.1.1. Mobility model
We first consider a generic discrete-time 2-D mobility model, as follows:

xi,k+1 = Axi,k + B(�T )vi,k + C(�T )wi,k (1)

where A = I2, B(�T ) = �T I2, C(�T ) = �T 2

2 I2, I2 the identity matrix of size 2 × 2, �T the time step, wi,k = (wx
i,k, w

y
i,k)

† ∼
N ((0, 0)†, Qi,k) the 2-D process noise vector and Qi,k the related covariance. This model is used to predict and resynchronize 
“Ego’s” and neighbors’ locations.

2.1.2. Observation model
GNSS absolute position. The 2-D estimated GNSS position, xGNSS

i,k = (zx
i,k, z

y
i,k)

†, is assumed to be affected by an additive 
noise term nGNSS

i,k = (nx
i,k, n

y
i,k)

†, which is independent and identically distributed (i.i.d.) centered Gaussian [13] with standard 
deviation σGNSS, as follows:

zx
i,k = xi,k + nx

i,k, zy
i,k = yi,k + ny

i,k (2)

IR–UWB V2V ranges. Through a cooperative ranging protocol (e.g., based on ToA estimation and multi-way handshake trans-
actions), node i can estimate the V2V distance z j→i,k with respect to node j:

z j→i,k = ‖xi,k − x j,ki ‖ + n j→i,k (3)

where n j→i,k is an i.i.d. centered Gaussian noise term with standard deviation σUWB.
We depict the stacked states of “Virtual Anchors” as xS→i,k = {x j,ki |∀ j ∈ S→i,k}, the augmented state as xi∪S,k =

(x†
i,k, x

†
S→i,k)

†, the vector of V2V ranges as zS→i,k = {z j→i,k|∀ j ∈ S→i,k}, and the full observation vector as:

3 Due to asynchronously sampled time instants, the index k is different from one vehicle to others. The subscript of the “Ego” is herein dropped for 
brevity.
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Algorithm 1 EKF-based fusion (iteration k, “ego” vehicle i).
1: CAM Collection: Receive CAMs from the set S→i,k of perceived neighbors, extract the Gaussian beliefs {̂x j,k, P j,k}, the velocity v j,k , the timestamps t j,k

and (optionally) mobility parameters like Q j,k , j ∈S→i,k .
2: Prediction and data synchronization: Perform prediction of both “ego” and neighboring beliefs based on mobility prediction models at the “ego” 

estimation instant ti,k

x̂i,k|k−1 = Âxi,k−1 + B(�T )vi,k−1,

Pi,k|k−1 = APi,k−1A† + C(�T )Qi,kC(�T )†,

x̂ j,ki |k = Âx j,k + B(�T i, j
k )v j,k,

P j,ki |k = AP j,kA† + C(�T i, j
k )Q j,kC(�T i, j

k )†,

�T i, j
k = ti,k − t j,k, j ∈N→i,k.

3: Correction: Aggregate the predicted states ̂x j,ki |k and covariance matrices P j,ki |k , j ∈ S→i,k (by constructing block diagonal matrix) to obtain ̂xS→i,k|k−
and PS→i,k|k− respectively then

x̂i∪S,k|k− = (̂x†
i,k|k−1, x̂†

S→i,k|k− )†,

Pi∪S,k|k− =
(

Pi,k|k−1 0
0 PS→i,k|k−

)
,

Hi,k = ∂hi,k

∂xi∪S,k

∣∣∣∣
xi∪S,k=̂xi∪S,k|k−

,

Ki,k = Pi∪S,k|k− H†
i,k(Hi,kPi∪S,k|k−1H†

i,k + Ri,k)
−1,

x̂i∪S,k = x̂i∪S,k|k− + Ki,k(zi,k − hi,k (̂xi∪S,k|k− )),

Pi∪S,k = (I − Ki,kHi,k)Pi∪S,k|k− ,

x̂i,k = [̂xi∪S,k]1:2, Pi,k = [Pi∪S,k]1:2,1:2.

4: Belief encapsulation and broadcast: Encapsulate the fused belief {̂xi,k, Pi,k}, the velocity measurement vi,k , and its timestamp ti,k in a CAM and broad-
cast.

zi,k = (xGNSS†
i,k , zS→i,k)

† = hi,k(xi∪S,k) + ni,k (4)

where hi,k(·) and ni,k represent the mixed linear/nonlinear function of the augmented state and the measurement noise, 
respectively. Assume the distinct measurement noises are independent, the noise covariance matrix is given by:

Ri,k =
(

σ 2
GNSSI2 0

0 σ 2
UWBI|S→i,k |

)
(5)

2.2. Proposed data fusion scheme

Probabilistic methods are widely considered for data fusion or state estimation [2,14]. In practice, they can be imple-
mented in numerous ways, for instance through the Kalman Filter (KF) or its variants (e.g., EKF), or through sequential 
Monte Carlo methods (e.g., PF).

2.2.1. EKF-based fusion
In our data fusion context, since observations are partly nonlinear with respect to the state variables, we first consider 

a simple EKF-based Bayesian data fusion approach (see Algorithm 1). Vehicle i’s state belief at time t (i.e. ti,k), which is 
assumed to be multivariable Gaussian, is thus represented by the mean x̂i,k and its associated covariance Pi,k (encapsulated 
and broadcast into CAM messages).

2.2.2. PF-based fusion
As the goodness of the linearization depends on the degree of nonlinearity of the statespace model and the degree 

of uncertainty of the state estimate, special care has to be taken when initializing and running the EKF in order to keep 
the uncertainty small [14]. PF is thus more attractive for nonlinear sequential state estimation when KF-based methods 
may diverge. Moreover, PF is intrinsically nonparametric with respect to the posterior density, which may be arbitrar-
ily complex and multimodal in our case. In PF, the posterior density p(xi,k|zi,1:k) is approximated by a particle cloud of 
P random samples {x(p)

i,k }P
p=1 and associated weights {w(p)

i,k }P
p=1 [14–16] i.e. p(xi,k|zi,1:k) ≈ ∑P

p=1 w(p)

i,k δ(xi,k − x(p)

i,k ), where 
δ(·) is the Dirac delta function. However, it is challenging and expensive from the computation point of view to draw 
samples directly from p(xi,k|zi,1:k) due to its complex functional form [14–16]. Thus, an approximate distribution called 
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Algorithm 2 PF-based fusion (iteration k, “ego” vehicle i).
1: CAM Collection: Receive CAMs from the set S→i,k of perceived neighbors, extract the parametric beliefs, and draw samples to reconstruct the particle 

approximate beliefs {̃x(p)

j,k<ki
, 1/P }P

p=1, j ∈S→i,k .
2: Prediction and data synchronization: Perform prediction of both “ego” and neighboring particle beliefs based on mobility models at the “ego” estima-

tion instant k (i.e., ti,k):

x(p)

i,k ∼ p(xi,k|x(p)

i,k−1), w(p)

i,k|k−1 = 1/P , p = 1, . . . , P ,

x(p)

j,ki
∼ p(x j,ki |̃x(p)

j,k<ki
), w(p)

j,ki |k<ki
= 1/P , p = 1, . . . , P , j ∈N→i,k .

3: Observation query and aggregation: Check whether the TDMA MAC SF or the ranging handshakes with the subset S→i,k ⊂ N→i,k of IR-UWB paired 
“virtual anchors” are completed to perform fusion-based CLoc:

zi,k =
{

(zx
i,k, zy

i,k)
†, if non-fusion instant k,

(zx
i,k, zy

i,k, . . . , ẑ j→i,k, . . .)
†, j ∈ S→i,k, if fusion instant k.

4: Observation update: Calculate the new weights according to the likelihood:

w(p)

i,k ∝
{

p(zi,k|x(p)

i,k ), if non-fusion instant k,

p(zi,k|x(p)

i,k ,x(p)

S→i,k), if fusion instant k

=

⎧⎪⎨⎪⎩
p(zx

i,k|x(p)

i,k )p(zy
i,k|y(p)

i,k ), if non-fusion instant k,

p(zx
i,k|x(p)

i,k )p(zy
i,k|y(p)

i,k )
∏

j∈S→i,k

p(̂z j→i,k|x(p)

j,ki
,x(p)

i,k ), if fusion instant k,

normalize them to sum to unity, and compute the approximate MMSE estimator and its empirical covariance as the second filter outputs:

x̂i,k ≈
P∑

p=1

w(p)

i,k x(p)

i,k , �i,k ≈
P∑

p=1

w(p)

i,k (x(p)

i,k − x̂i,k)(x(p)

i,k − x̂i,k)
†.

5: Resampling: Generate a new set {x(p∗)

i,k }P
p=1 by resampling with replacement P times.

6: Message approximation and broadcast: Use parametric unimodal Gaussian to approximate the particle “ego” belief and thus broadcast {̂xi,k, �i,k} in a 
CAM.

the sequential proposal density π (xi,k, xS→i,k|x(p)

i,k−1, x
(p)

S→i,k<ki
, zi,k) is used instead, from which one can easily draw sam-

ples. One popular embodiment thus consists in using the mobility model as the sequential proposal density [15,16,6], i.e. 
π(·) = p(xi,k|x(p)

i,k−1) 
∏

j∈S→i,k
p(x j,ki |x(p)

j,k ).
This PF is called bootstrap PF. Our second GNSS/ITS-G5/IR–UWB data fusion scheme is thus based on such a bootstrap 

PF, as described in Algorithm 2.

3. Experimental setting and tested scenario

Field trials took place in Helmond, The Netherlands, in December 2017. These tests were relying on a physical proof-
of-concept platform integrated in the frame of the HIGHTS project [17], consisting of three equipped vehicles (Objective’s, 
Tass’ and Ibeo’s in the following) forming a platoon (see Fig. 3). These vehicles made several rounds along the A270/N270 
highway section. The followed route deliberately included a combination of straight and curvy portions of road.

Objective’s car was considered as the “Ego” vehicle under test, endowed with a standard GNSS (embedded in its on-board 
Cohda MK5 box). On the other hand, Tass’ and Ibeo’s vehicles were playing the roles of assisting vehicles (i.e. virtual anchors 
according to CLoc), broadcasting their own Real Time Kinematics (RTK) or/and standard GNSS information (issued by the 
Lidar sub-system in the latter case) over the ITS-G5 V2V channel.

The ground truth position of the “Ego” vehicle (i.e. the reference position used for performance evaluation) has been 
computed through a complex graph-based Simultaneous Localization and Mapping (SLAM) fusion algorithm, combining 
on-board RTK GNSS data, LiDAR scans and odometry data.

During these experiments, standard GNSS data were available at the “Ego” vehicle at the rate of 30 Hz. So as to limit 
the impact of over-oscillations (and frequent outliers/spikes) affecting these measurements, a pre-smoothing step using a 
sliding window of 0.2 s was applied before feeding the observation vector of the fusion filter. The ITS-G5 CAMs issued at 
the Cohda MK5 box (i.e. encapsulating GNSS or RTK information from the two neighboring vehicles) were received at the 
“Ego” vehicle at the average rate of 10 Hz. For higher fusion rates (i.e. between consecutive reception events), we could rely 
on mobility-based predictions to update these neighbors’ positions.

Besides, peer-to-peer ranging transactions were performed between the three cars, relying on BeSpoon’s IR–UWB de-
vices [11]. In particular, two range measurements with respect to Tass’ and Ibeo’s vehicles were made available at Objective’s 
car at the rate of 10 Hz and injected into the observation vector of the fusion filter (i.e. besides standard GNSS readings). 
However, due to the relative instability of these ranging measurements under typical vehicular mobility (see 4.1), one simple 
threshold-based outliers rejection mechanism had to be implemented in the filter before performing fusion.
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Fig. 3. Equipped vehicles involved in the proof-of-concept field tests.

Fig. 4. Physical deployment scenario considered for both V2V ranging and V2V-aided cooperative localization testing on the field.

All in all, given the available refreshment rates and the constraints of the various input data, the best fusion rate was 
set to 10 Hz. For the sake of performance evaluation, representative portions of the overall test drive trajectory have been 
selected, lasting for approximately 30 s each, where all the desired modalities cited above were simultaneously available 
and sufficiently consistent.

4. Offline validation results

4.1. IR–UWB V2V ranging

Relying on the IR–UWB devices integrated platform, we first evaluate the performance of V2V ranging based on RT–ToF 
estimation independently. For this evaluation, we consider the same deployment scenario as that used for cooperation, 
illustrated on Fig. 4. In the following, note that the collected range measurements are reused as observations to feed the 
VA-CLoc fusion algorithm running at the “Ego” vehicle.

Fig. 5 shows the ranging estimation error as a function of time at Objective’s “Ego” vehicle over one of the selected 
portions of trajectory, with respect to the two neighboring vehicles. It is thus shown that submetric V2V ranging accuracy 
can be met under practical mobility conditions, typically with a mean error equal to 0.33 m and an error standard deviation 
of 0.17 m with respect to Ibeo’s vehicle (resp. 0.77 m and 0.33 m, with respect to Tass’ vehicle).

4.2. Cooperative localization under erroneous initialization and GNSS denial

The goal is now to evaluate the effects of imperfect initialization (i.e. what we also call “cold start” herein), the relative 
reliability of assisting neighbors (i.e. assuming a less reliable neighbor), as well as the temporary GNSS denial at the “Ego” 
vehicle.

Comparing cooperative EKF and PF fusion approaches, Fig. 6 shows the bi-modal empirical Cumulative Density Function 
(CDF) of 2-D location errors over the selected trajectory, including both initial convergence time (as represented by approx-
imately 20% of time with the poorest accuracy) and steady-state regime (i.e. after initial filter convergence, as represented 
by 80% of time with the best accuracy). Performance is assessed for “Ego” vehicle’s standard GNSS alone and VA-CLoc after 
fusing the latter GNSS data with IR–UWB ranges and Ibeo car’s RTK data and/or Tass car’s standard GNSS data received 
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Fig. 5. RT–ToF based ranging errors as a function of time over two distinct V2V IR–UWB links (btw. “Ego” vehicle and cooperating neighbors); Empirical 
statistics are drawn over samples below the arbitrary outliers detection threshold (i.e. 1.5 m in the shown example).

Fig. 6. Example of empirical CDF of 2-D location error at Objective’s car along a selected portion of trajectory, for Cohda box’s standard GNSS (blue) or 
VA-CLoc fusion with V2V IR–UWB range measurements and Ibeo’s car’s RTK only (red), Tass’ Cohda box’s GNSS only (black) or both neighboring cars 
(green) (i.e. up to 2 virtual anchors) through PF (solid) and EKF (dashed), while assuming a “cold start” at Objective’s “Ego” car (i.e. initial guess only based 
on Cohda box’s GNSS).

over ITS-G5 CAMs, while assuming initialization through standard GNSS at the “Ego” vehicle. Relying on one single GNSS-
enabled neighbor (i.e. Tass), even with relatively poor ranging accuracy over the corresponding V2V link, can already boost 
performance in comparison with standalone GNSS once the steady-state fusion regime is reached, with a maximum error 
of about 0.5 m at the “Ego” after convergence, whereas considering one single RTK-enabled neighbor (Ibeo) (i.e. account-
ing in our case for a more reliable neighbor who would have already achieved its own fusion regime) and/or better V2V 
ranging performance provides an even lower error level around 0.4 m at worst (after convergence). Finally, relying on both 
assisting neighbors provides not only much faster convergence in the initial phase (i.e. when starting from scratch before 
convergence), but also additional gains in the steady-state fusion regime in terms of both error floor level and error sta-
bility, reaching typically an error around 0.3 m in the worst case (vs. 1.3 m with standard GNSS in the same conditions). 
Another remark is that, for all the tested cooperative configurations (i.e. CLoc with 1 or 2 assisting vehicles), PF seems to 
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Fig. 7. Example of 2-D location error at Objective’s car as a function of time along a selected portion of trajectory, for Cohda box’s standard GNSS (blue) 
or VA-CLoc fusion with V2V IR–UWB range measurements, Ibeo’s car’s RTK and Tass’ Cohda box’s GNSS (i.e. 2 virtual anchors) through PF (green) and EKF 
(red) in the steady-state fusion regime, while emulating temporary GNSS denial at Objective’s “Ego” car (black area).

offer better results than EKF after initial convergence, unlike in the initial convergence phase, where the two algorithms 
exhibit approximately the same performance level in terms of convergence speed and location error.

As a complementary result, we also show on Fig. 7 an extract of the 2-D location error as a function of time after 
achieving initial convergence (i.e. in the steady-state regime) for a VA-CLoc scheme involving the two assisting neighbors, 
while emulating a temporary GNSS loss for 10 sec at the “Ego” vehicle. One can thus note almost no performance degra-
dation of the PF-based CLoc scheme in comparison with the initial GNSS-enabled cooperative situation, with a stable error 
around 0.3 m, despite still large GNSS errors beyond 1 m at the “Ego” vehicle after the end of GNSS outage, thus illustrating 
the resilience of the proposed solution. For comparison, the error of the EKF-based CLoc reaches 0.5 m at worst before 
re-converging down to the PF performance level over the same period of time.

Overall, the previous CLoc validation results tend to confirm the capability of V2V-aided cooperative localization to 
provide not only high accuracy, typically 30 cm in 100% of time (vs. errors beyond 1 m with standard GNSS in similar 
operating conditions), but also a constant quality of service, robust against occasional impairments of the standard GNSS.

5. Conclusion

In the context of vehicular ad hoc networks, we have herein introduced a Bayesian framework based on cooperative 
variants of the PF and EKF filters, which can perform the local fusion of on-board GNSS readings, IR–UWB ranging measure-
ments and asynchronous ITS-G5 data with respect to neighboring vehicles. We have also provided offline proof-of-concept 
validations of this cooperative localization approach, based on a real system demonstrator involving three equipped vehicles. 
As an example, the PF-based approach has been shown to achieve quasi-constant localization accuracy around 0.3 m (at 
worst) in the steady-state regime after initial convergence, despite poor on-board GNSS data (with errors up to 1.3 m) or 
even a temporary loss of the GNSS service. These results thus confirm the relevance of V2V-aided cooperative approaches 
to improve both localization accuracy and small-scale service resilience for future critical C-ITS services and applications.

Beyond localization performance considerations, the current V2X transmission schemes considered to support CLoc (e.g., 
in ITS-G5) are mainly based on local information broadcast, so as to reach the highest number of neighboring vehicles 
around. As such, they are also vulnerable against both critical information leakage and/or intentional attacks, leading for 
instance to the denial of road safety services (ex. through jamming/spoofing, messages injection/interception, impersonation 
attacks. . . ) [18,19]. So far, most of the security schemes put forward in this context rely on conventional cryptographic 
techniques and tools (i.e. using non-specific keys, pseudonyms or signatures), which are typically managed at the application 
level (e.g., foreseen for LTE-V sidelink). On the one hand, the main security features (i.e. primitives, seeds and algorithms. . . ), 
which are determined in a static way, can be unsuitable into some particular vehicular use cases. On the other hand, the 
resulting cryptographic overhead (in terms of computational complexity and access to the core network) contributes to 
increase the latency of protected systems, what may be not fully compliant with local V2X interactions (possibly ad hoc) 
and/or even with the time-critical safety applications they are supposed to enable. Thus, lightweight and reactive cross-layer 
security mechanisms (e.g., adaptive authentication overlay) still need to be explored, complying with the specificity and 
constraints of vehicular application contexts, while reinforcing existing security schemes.
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