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What happens in an isolated quantum system when both disorder and interactions are 
present? Over the recent years, the picture of a non-thermalizing phase of matter, the 
many-localized phase, has emerged as a stable solution. We present a basic introduction 
to the topic of many-body localization, using the simple example of a quantum spin chain 
that allows us to illustrate several of the properties of this phase. We then briefly review 
the current experimental research efforts probing this physics. The largest part of this 
review is a selection of more specialized questions, some of which are currently under 
active investigation. We conclude by summarizing the connections between many-body 
localization and quantum simulations.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Que se passe-t-il dans un système quantique isolé lorsque celui-ci présente du désordre 
et des interactions entre particules ? Au cours des dernières années a émergé l’image 
comme solution stable d’une phase qui ne thermalise pas, la phase localisée à N corps 
(notre traduction de many-body localization). Nous présentons une introduction simple à 
la localisation à N corps, à travers l’exemple d’une chaîne de spins quantiques, ce qui 
permet d’illustrer plusieurs propriétés de cette phase. Nous effectuons ensuite une brève 
revue des efforts expérimentaux actuels cherchant à sonder cette physique. La plus grande 
partie de cette revue est consacrée à une sélection de questions plus spécialisées, la plupart 
actuellement en cours d’études. Nous concluons en résumant les liens entre localisation à 
N corps et simulations quantiques.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

In this review article, we aim at presenting an introduction to the rich and strongly active field of many-body localiza-
tion (MBL) in isolated, interacting quantum systems in the presence of disorder. This topic has been tremendously explored 
over the past few years, covering different areas of physics: quantum chaos, condensed matter, quantum information, out-
of-equilibrium statistical mechanics, ultracold atoms, etc. The global aim is to provide answers to the fundamental question 
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regarding the fate of isolated quantum systems when both disorder and interactions are present. Understanding the inter-
play between these two key ingredients addresses several fundamental questions on how a quantum system thermalizes (or 
fails to), hence touching the very foundations of statistical mechanics.

Providing an exhaustive overview of the flourishing literature on MBL would be an exacting task. There are excellent 
reviews which give a general introduction to the topic [1,2] as well as a more recent one [3], which furthermore introduces 
novel developments. Here we shall rather first give a bird’s eye view introduction to MBL, through a specific example, 
providing references to more specialized reviews and articles when necessary. We then present focuses on several specific 
points of interest that are currently active research areas, trying to give a general perspective. We also try to keep the 
discussion simple, meaning that sometimes we do not achieve the level of rigor or completeness that the topic deserves, 
preferring to refer to the relevant literature. We clearly do not pretend to give an exhaustive overview, and some aspects of 
the MBL problem will not be covered.

The more precise plan of this paper is the following. In Section 1, we introduce the topic of MBL through the lens of a 
spin chain example. In particular, we present several hallmarks observables that allow us to distinguish the two different 
behaviors of many-body localization and thermalization. We then discuss two important aspects of MBL physics, namely 
the existence of local integrals of motion in the MBL phase (Section 1.4), as well as the possibility of a many-body mobility 
edge (Section 1.3). Most of the work on MBL has focused on theoretical studies of one-dimensional lattice models, where 
a stable MBL phase can be shown to exist. We finish this introduction by providing a non-exhaustive list of lattice models 
where MBL has been sought for/found (Sec 1.5).

Section 2 is dedicated to an overview of the experiments that probe MBL physics, mostly in cold-atomic/trapped ions 
systems.

The long Section 3 focuses in more details on several current research directions on the topic: we first discuss the role of 
symmetries (which symmetries are compatible with and/or can be broken in MBL states?) in Section 3.1 and the key issues 
of the nature transition to the MBL phase (Section 3.2) and of entanglement (Section 3.3) in MBL physics. We then address 
the actual role of disorder (which type? Is disorder needed?) in MBL physics (Section 3.4), and the partly related issue 
of anomalous slow transport in one-dimensional systems before the MBL transition (Section 3.5). We also briefly discuss 
expectations related to the presence of MBL in dimension larger than one in Section 3.6. Section 3.7 and Section 3.8 try to 
provide connections with Anderson localization. In Section 3.9, we put emphasis on solutions that have been proposed to 
solve the computational challenges brought by the MBL problem. In this long list of focuses, we also try to include the open 
questions in the field. Finally, as this is the main subject of this volume, we present the connections between many-body 
localization and quantum simulations in Section 4, before concluding in Section 5.

1. Introduction to MBL physics

1.1. A spin chain example

As there are already several excellent general introductions to the physics of MBL [1–3], we rather start directly by 
an example, from which we will illustrate several properties of the two main paradigms for the long-time behavior of 
disordered quantum systems. Consider the following one-dimensional lattice model, the spin 1/2 Heisenberg chain in a 
random magnetic field

HrfH =
∑

i

(Sx
i Sx

i+1 + S y
i S y

i+1 + Sz
i Sz

i+1) −
∑

i

hi Sz
i (1)

with Sα = σα/2 where σα=x,y,z are Pauli matrices, and the fields hi are drawn from a random distribution, with the 
strength of the disorder denoted by h (as an illustration, take the box distribution hi ∈ [−h, h]). This model has a U (1)

symmetry as it conserves the total magnetization Sz = ∑
i S z

i , even in the presence of disorder.
This model, first introduced in the MBL context in Ref. [41,5], is now by far the most studied one, making it a 

paradigmatic example. Its phase diagram, as obtained numerically in Ref. [4], is presented in Fig. 1 along with a cartoon 
representation of the energy levels in the two phases of this phase diagram. This example emphasizes that we will mostly 
consider in this review (i) isolated quantum systems (no coupling with a bath), (ii) (eigen-)states at finite energy density (far 
from the ground state, typically in the middle of the spectrum), (iii) lattice systems for which often the energy spectrum is 
bounded and which are amenable to numerical simulations, albeit not always straightforwardly (see Section 3.9), (iv) mostly 
one-dimensional systems (see however Section 3.6) with short-range interactions.

Leaving aside for the moment the details of how this phase diagram was obtained or what the color coding or symbols 
mean (see Ref. [4] for this), we start by discussing the two families of eigenstates present in this phase diagram, and the 
corresponding scenarios: thermal states denoted as ETH (for eigenstate thermalization hypothesis), and MBL (many-body 
localized) states. We note that other scenarios have been proposed (such as non-ergodic delocalized states [6]), but they are 
likely not relevant for the model Eq. (1).

1.1.1. Thermalization
The eigenstates at sufficiently low disorder (left side of Fig. 1) satisfy the eigenstate thermalization hypothesis (ETH) 

[7,8], reviewed in details in Refs. [9,10]. In a nutshell, the ETH makes two assumptions for matrix elements of few-body 
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Fig. 1. Phase diagram of the random field Heisenberg spin chain Eq. (1). The vertical axis is the normalized energy density ε of the spin chain (0 ≤ ε ≤ 1), 
defined as ε = E−E0

Em−E0
with E0 (Em) the ground-state (maximum) energy. The horizontal axis is the disorder strength h. Left and right: cartoons of the 

energy spectra in the two phases. Figure extracted and adapted with permission from D.J. Luitz, N. Laflorencie, F. Alet, Phys. Rev. B 91 (2015) 081103 [4]. 
© 2015 American Physical Society. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

(e.g., local) observables O in the eigenbasis |n〉 of an isolated quantum system described by a Hamiltonian H : (i) diagonal 
matrix elements 〈n|O |n〉 � Ō (E) are smooth functions of the energy E , with Ō (E) matching the microcanonical expectation 
value of this observable, (ii) off-diagonal matrix elements 〈n|O |m〉 will vanish in the thermodynamic limit, exponentially 
fast with the microcanonical entropy for the average energy (En + Em)/2 (to be more precise, the prefactor will be a smooth 
observable-dependent function of the energy difference and average, times a random matrix element). These rather strong 
assumptions were verified numerically in a large variety of systems (see, e.g., [11–13]). In practice, we expect ETH to be 
verified even on small systems for the energy range close to the middle of the spectrum of H where the density of states 
is important. For the spectrum extrema, convergence to ETH expectations is slower and may not be observed within the 
range of system sizes where eigenstates can be exactly computed: this is why Fig. 1 does not include data for ε � 0.15 and 
ε � 0.9.

One may say that ETH eigenstates living at the same energy density (fixed ε) are similar (in the sense of ETH point (i) 
where they have the same expectation value for few-body observables), which is depicted by the use of the same color 
for mid-spectrum eigenstates in the left cartoon of Fig. 1. In the ETH phase, the reduced density matrix of a subsystem A
(say a few sites in the spin chain model Eq. (1)) of an eigenstate ρ̂A(|n〉) = TrB |n〉〈n| (with B the complement of A) will 
take a thermal form ρ̂A(|n〉) ∝ exp(−H/Tn). The temperature Tn matches the one of the canonical ensemble reproducing 
the eigenstate energy, 〈H〉Tn = 〈n|H |n〉. In the middle of the spectrum (ε = 0.5), which corresponds to infinite temperature, 
eigenstates behave exactly like random vectors (more precisely, eigenvectors of a random matrix with the same symmetry 
as the Hamiltonian). In one word, the eigenstates in the ETH phase are thermal and statistical mechanics works.

The ETH has important consequences for dynamics, as it indeed resolves the apparent paradox that most isolated quan-
tum systems, initialized in very different states |�(t = 0)〉, reach the same thermal equilibrium state at long times when 
following their own unitary dynamics |�(t)〉 = e−iHt |�(0)〉 (we denote this as a “quench experiment”). If ETH holds, one 
easily sees that any specific information encoded in the initial state will be washed out in the long-time limit, as any 
(few-body) observable 〈O (t → ∞)〉 → Ō (E0) will converge to the same equilibrium thermal value dictated by the energy 
E0 = 〈�(t = 0)|H |�(t = 0)〉 of the initial state. One can only emphasize that this thermalization is not due to an external 
bath (the system is isolated in this quench experiment), it is rather one part of the system that serves as a bath for another 
part.

1.1.2. MBL: avoiding thermalization with disorder
It was realized early on that a (strong enough) disorder can change the ETH picture. At strong disorder (right side of 

Fig. 1), the eigenstates are markedly different. For the model of Eq. (1), the Hamiltonian becomes classical in the strong-
disorder limit h → ∞, and the eigenstates are simple product states (e.g., | ↑↓↓↑ . . . 〉 in the {Sz} basis), which are readily 
seen not to satisfy the ETH and not to thermalize. For some systems, the non-interacting limit leads to a free-particle model 
in a strong random potential, mapping to the Anderson problem where localization can occur. The absence of thermalization 
is there intuitively understood as without interactions, there is no mechanism by which a part of the system can exchange 
energy/information/particles with another part. For other systems, the model with no interactions is not Anderson localized, 
but does nevertheless display localization properties when disordered interactions are present (see, e.g., Refs. [14,15]).

Can this non-thermalizing limit survive when branching in interactions between particles? The denomination many-body 
localization (MBL) was coined after the influential works of Refs. [16,17], which provided a positive answer to this question 
using perturbative calculations for disordered fermionic systems. We note several important early contributions [18,19], 
including those by Shepelyansky and coworkers [20–23], who also considered this very problem (in these early works, it 
was rather thermalization that was sought for, by adding interactions to a strongly disordered system).
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It is now understood that MBL is the prevalent alternative to thermalization for isolated quantum interacting systems 
in the presence of disorder. The MBL eigenstates, even at the same energy density, are different (as illustrated by different 
colors in the mid-spectrum eigenstates in the right cartoon of Fig. 1): for instance, the expectation value of a spin component 
at a given site (a very local observable) for a given eigenstate 〈n|Sz

i |n〉 will generically be different from the expectation 
value in the next eigenstate 〈n + 1|Sz

i |n + 1〉. Again in one word, MBL eigenstates are not thermal and a statistical mechanics 
description in terms of a canonical ensemble does not work. As emphasized in the review [1], one shall rather consider a 
single-eigenstate ensemble, a singular limit of the microcanonical ensemble.

1.2. Comparison of eigenstates and dynamics in the ETH/MBL phases

Besides checking the assumptions of ETH, we can use in practice different properties of the eigenstates as well as other 
probes of thermalization to address the existence of ETH/MBL phases. We mention here a few hallmark properties. The 
review [24] provides a more substantial account, while essentially focusing on the ETH phase.

1.2.1. Spectral and eigenvalues statistics
In the ETH phase, eigenvalues/states follow the statistics of Random Matrix Theory. For instance, since HrfH has only 

real matrix elements in the {Sz} basis, the eigenvalues should follow the Gaussian Orthogonal Ensemble (GOE) statistics: 
the Wigner semi-circle law for eigenvalues, the Wigner–Dyson law for the distribution of level spacings sn = En − En−1. 
To check this explicitly, one needs to define local average quantities (e.g., dividing the level spacing by the average one 
for this energy density) or ‘unfold’ the spectrum, which is not always obvious and free of finite-size effects for many-body 
systems. Oganesyan and Huse [25] introduced a useful computational quantifier, the ratio of consecutive level spacings 
rn = min(sn,sn−1)

max(sn,sn−1)
, which is free from local averaging effects. Its average value can be computed in the GOE ensemble to be 

〈r〉GOE � 0.5307. On the other hand, in the MBL phase, eigenvalues are non-correlated, and thus follow a Poisson distribution, 
for which one obtains a different average value 〈r〉Poisson � 2 ln(2) − 1 � 0.386. Computing the average value of 〈r〉 (over 
eigenstates, and disorder realizations) is an easy task that provides one way to distinguish MBL from ETH using level 
statistics (one of the symbols in Fig. 1 corresponds to the finite-size scaling analysis of 〈r〉).1 Note that an intermediate 
scenario proposed in Ref. [26] and based on a mapping to a Brownian motion process suggests intermediate critical statistics 
to occur in a large part of the ETH regime preceding the MBL transition point. However, this analysis was debated in a 
subsequent numerical study [27].

What about eigenstates? We recall that ETH eigenstates are similar, whereas MBL ones are different. A possible measure 
is then to compare the distribution of amplitudes of two eigenstates in a given computational basis (say {|i〉} = {|Sz〉}, the 
usual computational basis for the spin chain in Eq. (1)). This can be achieved by defining the occupation of basis state |i〉
by the eigenstate |n〉 as pi = |〈n|i〉|2, and comparing the two distributions pi and p′

i for two nearby eigenstates with the 
Kullback–Leibler divergence: KL = − 

∑
i pi ln pi

p′
i

(note that this quantity depends on the basis {|i〉}). In the GOE ensemble, 
two eigenstates are similar, giving rise to a finite value 〈KL〉GOE = 2, while 〈KL〉 diverges when increasing the system size for 
MBL eigenstates that become increasingly different.

1.2.2. Localization in Fock or configuration space?
The notion of occupation of basis state pi is also useful to try to draw an analogy between the Anderson localization (in 

real space) and MBL, which is often described as a localization in the Fock/configuration space. This issue will be discussed 
in more details in Section 3.7. Let us nevertheless mention already a few aspects of this problem here.

Precursor works by Altshuler et al. [19], Gornyi et al. [17], and Basko et al. [16], showing the existence of a finite-
temperature metal–insulator transition, were based on the idea of Anderson localization in the Fock space spanned by 
many-body states represented as Slater determinants built on single-particle (non-interacting) localized states. However, as 
later discussed by Bauer and Nayak in Ref. [28] for a lattice model of 1D interacting fermions in a random potential, building 
on the simple observation that the connectivity of the Fock space grows extensively with the physical system size, it was 
concluded that a true Anderson localization is not possible, even deep in the MBL phase. Extensive numerical investigations 
reached similar conclusions in Refs. [29,4] for the random field Heisenberg chain – Eq. (1) – studied in the computational 
basis (|i〉 = |Sz〉) through the participation (Shannon) entropy (measuring how much a given eigenstate extends over the 
configuration space) SSh = − 

∑
i pi ln pi . Such results [4] are displayed in the color coding of Fig. 1, which corresponds to 

the prefactor (between 0 and 1) of the volume-law scaling of SSh (see Ref. [4] for more details). It shows that ETH features 
full delocalization while the MBL regime is clearly non-ergodic while not genuinely localized (see Section 3.7).

1.2.3. Entanglement properties
As entanglement is a key notion in our understanding of MBL, we discuss in more details various entanglement aspects 

in the focus in Section 3.2.2 and Section 3.3, and just mention here the main distinction between entanglement in ETH 
and MBL states: the scaling of their entanglement entropy (EE) with subsystem size. We recall the definition of EE of a 

1 One should be careful to compute level spacings in the same symmetry sector, for instance working only with states with total magnetization Sz = 0
in the spin chain of Eq. (1). Mixing several sectors would erroneously lead to Poisson statistics in the ETH phase.
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Fig. 2. Exact diagonalization results for the disorder-average entanglement entropy computed at half-chains L/2 for the random field Heisenberg chain 
model Eq. (1) at a fixed energy density in the middle of the many-body spectrum (ε = 0.5) with L = 12, . . . , 22. One sees a qualitative change from 
volume-law at small disorder h to an area law at h > hc � 3.8. Figure adapted with permission from D.J. Luitz, N. Laflorencie, F. Alet, Phys. Rev. B 91 (2015) 
081103 [4]. © 2015 American Physical Society.

pure state |n〉: we consider a bipartition of the physical system A ∪ B into two parts A and B (say L A and LB sites of a 
spin chain of total size L = L A + LB ) and first trace over the degrees of freedom of B to obtain the reduced density matrix 
ρ̂A = TrB |n〉〈n|. The eigenvalues of ρ̂A define the entanglement spectrum {λi}, and the von Neumann EE for this bipartition 
is defined as S(|n〉) = −Tr

(
ρ̂A ln ρ̂A

)
.

As already mentioned, ρ̂A of a highly excited eigenstate in the ETH phase can be viewed as a thermal density matrix 
at finite temperature. Therefore, the corresponding EE is very close to the thermodynamic entropy of the subsystem at 
finite temperature, thus exhibiting an extensive (volume-law) scaling with the subsystem size (scaling as L A in the spin 
chain example). Indeed, eigenstates in the middle of the spectrum are akin to random states for which Page has derived 
the following scaling for a subsystem A with L A spins 1/2: S ∝ L A ln 2 [30]. At finite energy density ε > 0, one expects 
(for sufficiently large L A and LB ) that S A = s(E)L A where s(E) is the (thermodynamic) entropy density at the energy 
corresponding to the eigenstate considered. Such volume-law entanglement at high energy has been indeed observed in the 
ETH regime of disordered lattice systems [28,31,4].

The MBL eigenstates have radically lower EE. As first observed for interacting fermionic chains in a random potential 
[28], the scaling of bipartite entanglement entropies is clearly subvolumic in the MBL regime. Such a small (area-law) 
entanglement (S A = O (1) for a spin chain) was later confirmed in several numerical studies [31,4,32,33]. In Fig. 2, exact 
diagonalization results on the S = 1/2 random field Heisenberg chain model – Eq. (1) – are shown for the disorder-average 
EE of half-chains L A = L/2 for many-body eigenstates at very high energy (ε = 0.5 in Fig. 1) as a function of size L and 
disorder strength h. When normalized by the system size, the transition from volume-law to area-law scaling is clearly 
visible around hc � 3.8. One of the symbols in Fig. 1 corresponds to the volume versus area law distinction for the scaling 
of EE. Note that in the MBL regime, Ref. [28] reported a small logarithmic violation of the area law for the maximum 
entropy obtained from the optimal cut. Several important observations are in order: (i) MBL states at finite energy density 
are related (admittedly in a loose sense at this stage) to ground states of many-body systems, for which an area law is 
generically observed [34]. (ii) As they host low entanglement, MBL states can be efficiently represented by matrix product 
states (MPS) in one dimension, providing a very useful numerical arsenal for capturing highly-excited states, something 
which is usually not possible (see Section 3.9). (iii) It was actually proposed that a proper definition of a MBL state is that 
one can find a finite-depth unitary quantum circuit (with local unitary transformation) that will transform it into a product 
state [28].

Let us finally mention that bipartite fluctuations, which are believed to capture entanglement properties for several 
correlated ground-states [35], also provide a quantitative tool to track area versus volume law behaviors [4,36].

1.2.4. Transport
The ETH phase is characterized by the transport of energy and conserved quantities (such as the Sz spin component for 

Eq. (1)), whereas the MBL phase shows absence of transport.
The spin transport was studied for Eq. (1) in a series of works reviewed in Refs. [37,24] through the numerical evalua-

tion of the conductivity σ(ω) = 1−e−βω

2ω � 
[∫ ∞

−∞ dt eiωt〈 J (t) J (0)〉] and its dc part σdc = limω→0 σ(ω) with the spin current 
operator J = 1

L

∑
i(Sx

i S y
i+1 − Sx

i+1 S y
i ). In the MBL phase, the dc conductivity was indeed found to vanish σdc = 0, for any 

finite T . In the ETH phase at very low disorder, one expects on general ground to find a metallic behavior with σdc > 0, 
even though this is very difficult to show numerically. The detailed nature of the transport is a subject of current discussion, 
with a possibility of subdiffusive behavior near the transition to the MBL phase, instead of the expected diffusive behavior 
(see Section 3.5).
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1.2.5. Dynamics after a quench
Following the dynamics after a quench from some initial state |�(0)〉 also provides a sharp distinction between the two 

phases. In the ETH phase, one observes a fast transfer of information through the system. At long times, the system reaches 
thermal equilibrium, with a temperature associated with the initial energy of the state, as discussed above. This quantum 
information transfer is characterized by a rapid growth of EE of the time-evolved state |�(t)〉 = e−iHt |�(0)〉, which is 
ballistic S A(|�(t)〉) ∝ t [38] (in first approximation, see discussion in Section 3.5 for the impact of subdiffusion on this 
behavior) – eventually the EE will saturate to its equilibrium value s(E0)L A . Equivalently, any local observable 〈�(t)|O |�(t)〉
will equilibrate towards its canonical ensemble expectation value in the limit of long times. The memory of the initial state 
is lost: consider for instance initializing the Néel state |�(0)〉 = | ↑↓↑↓ . . . 〉, which has a maximal staggered magnetization 
ms = 2

L

∑
j(−) j S z

j = 1. At long times, it will equilibrate to 〈�(t → ∞)|ms|�(t → ∞)〉 = 0, its thermodynamic expectation 
value.

On the other hand, the MBL phase keeps memory of its initial state. For instance, 〈�(t → ∞)|ms|�(t → ∞)〉 → m∗ > 0
(see, e.g., [39]), and in general all local observables will equilibrate at long times, but not to the canonical ensemble [40]. 
Another symbol in Fig. 1 is a quantifier of the memory of an initial state (even though not obtained in a quench setup).

A signature of the MBL phase is that, even in the absence of transport of energy or spin/particles, quantum information 
spreads, albeit at a slow rate: the EE after a quench grows logarithmically with time S A(|�(t)〉) ∝ ln(t) [41–45]. This is 
a specific trait of MBL that marks a difference with Anderson insulators, which also show no transport, but for which 
S A(|�(t)〉) is bounded. Other ways of distinguishing an Anderson from a MBL insulator are discussed in Section 3.8. The 
entropy will eventually saturate in the long-time limit to a value that scales with the size L A , but for which the prefactor is 
lower than the thermal value s(E0). The origin of this log growth is discussed in Section 1.4.

1.3. Many-body mobility edge

At large enough disorder, all states are localized in what is often referred to as the full-MBL (fMBL) phase. The phase 
diagram of Fig. 1 presents, however, a feature not yet discussed: the location of the transition line between MBL and ETH 
states appears to vary with the energy density. This is a so-called many-body mobility edge, in analogy with the mobility 
edge present for the Anderson transition. Several other numerical studies beyond Ref. [4] also find a mobility edge in the 
same or other models (e.g., [31,46–49]). The importance of a mobility edge at finite energy density was emphasized in 
the early work of Basko, Aleiner and Altshuler [16], as it implies a finite transition temperature Tc > 0, below which MBL 
physics set in and transport vanish.

The existence of a mobility edge has, however, been debated on theoretical grounds. The main line of argument is based 
on the effect of a local fluctuation which has a higher energy than the background (a ‘hot bubble’), has thermal properties, 
is furthermore mobile, and can thus thermalize the other ‘cold’ parts of the sample (see Ref. [50] for more details). This 
type of fluctuation is always possible, and the authors of Ref. [50] argue that no many-body mobility edge can exist in the 
thermodynamic limit. In this view, computations that see a mobility edge are not performed on large enough system sizes 
to see this asymptotic regime, a scenario which is hard to test with numerics.

1.4. Capturing the essence of the MBL phase: local integral of motions

Of utmost importance to the understanding of the MBL phase is the fact that it has a simple description in terms of 
quasi-local degrees of freedom that commute with the Hamiltonian: they are referred to as l-bits (for localized bits) or 
lioms (local integrals of motions). They were first discussed in a phenomenological description of the MBL phase [51,52], 
and can now be constructed mathematically in a rigorous fashion for a class of spin chains [53,54]. Excellent reviews on the 
lioms approach to MBL can be found in Refs. [55,56]; we extract here only the main ideas.

At each site i of the system (say the spin chain of Eq. (1)), a Pauli-spin 2 operator τ z
i (a l-bit or liom), is constructed using 

only the original spin degrees of freedom on this site and ‘nearby’ sites: τ z
i = σ z

i + ∑
j,k

∑
α,β=x,y,z cα,β(i, j, k)σα

j σ
β

k + . . .

with coefficients c that decay exponentially with the distance between i and other sites j, k (hence quasi-locality). The key 
feature is that there exists such a quasi-local transformation that completely diagonalizes the Hamiltonian:

H = −
∑

i

h̃iτ
z
i +

∑

i, j

J i, jτ
z
i τ z

j +
∑

i, j,k

J i, j,kτ
z
i τ z

j τ
z

k + . . . (2)

The resulting Hamiltonian is completely classical: it does not imply l-bit flip operators τ x,y . All τ z ’s at all sites commute 
with each other, and with the Hamiltonian, hence they form a complete set of lioms. The first term is a local field term (in 
the strong disorder limit, one identifies h̃i = hi/2 for Eq. (1)), and all further terms J i, j,... are interactions between the lioms, 
which also decay exponentially with the distance between lioms. These interaction terms are crucial, as they distinguish a 
MBL from an Anderson insulator (for which all J i, j,... strictly vanish), and have important dynamical consequences.

2 To stick to the literature, we use Pauli instead of spins 1/2 operators here (connection with Eq. (1) is Sα = 1
2 σα , h̃i = hi/2).
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The fact that the many-body Hamiltonian can be diagonalized solely using a (quasi-)local unitary transform is quite re-
markable, as it is almost never the case for generic many-body systems: it signals some emerging local integrability of the 
MBL phase. There are many different ways to construct this transformation: by perturbation from the strong disorder limit, 
by considering infinite-time expectation values of local observables, etc. (see, e.g., Refs. [52,57–59,53,60–64]). Connections 
between the perturbative approach of Basko, Aleiner and Altshuler [16] used for lioms and the original lioms phenomenol-
ogy was performed in Ref. [65]. We note the beautiful analogy between the construction of lioms and the Fermi liquid 
approach (which also diagonalizes an interacting Hamiltonian into a quasi-particle basis) [66,67,56,68].

From this picture of lioms, one can recover all hallmarks of the MBL phase. A many-body eigenstate is simply given 
by the set of eigenvalues ±1 for each τ z

i , e.g., |1, 1, −1, 1, ...〉τ . ‘Static’ properties of the MBL such as the area law for 
entanglement entropy (which is proportional to the number of lioms ‘cut’ by the boundary between the two subsystems), 
Poisson statistics, different local observables for nearby eigenstates are direct consequences of this simple labeling. The 
memory of the initial state after a quench, as well as the fact that all local observables equilibrate to a given finite value at 
long-times, is also deduced from the overlap of such observables with the conserved operators τ z

i .
What about dynamics towards these equilibration values? This is where the interactions between lioms intervene: they 

provide a mechanism for dephasing. Interactions induce correction to the simple precession around the z-axis due to the 
first term h̃, and albeit at a slow rate, are able to entangle two spins at any distance: the low growth of entanglement 
(characteristic of MBL) is related to the exponentially weak interactions between the lioms. The precise way of how all local 
observables decay to the long-time values are discussed in Ref. [40] and in Section 3.8 as one way to distinguish MBL from 
Anderson localization.

The existence of lioms is now seen by many authors as the defining property of the MBL phase. For instance, analytical 
arguments regarding the possible existence of MBL in dimension larger than 1 (Section 3.6), or in the presence of certain 
symmetries (Section 3.1), equate the presence of MBL with existence of lioms. There are, however, some aspects of MBL 
physics which, at the moment, are not described in terms of lioms. For instance, there is no direct lioms picture for the 
existence of a many-body mobility edge (see Section 1.3) – models for lioms imply that all states are localized –, or for what 
happens at the MBL phase transition. We again invite readers interested in this integrability structure of the MBL phase to 
consult the existing reviews [55,56].

1.5. Lattice models for MBL

Besides the random-field Heisenberg spin chain – Eq. (1) –, several other lattice models have been used to investigate 
MBL, mostly in a one-dimensional geometry. We cite only a few here, without mentioning all possible variants (in lattice 
geometry, range or type of coupling constants, etc.) or discussing systems with long-range [69–72] or mean-field interactions 
[47,73–75,22,76].

The closely related S = 1/2 XXZ spin chain in a random field

HXXZ =
∑

i

Sx
i Sx

i+1 + S y
i S y

i+1 + �Sz
i Sz

i+1 −
∑

i

hi Sz
i (3)

is a generalization of Eq. (1) (obtained at � = 1) to anisotropic interactions. It is equivalent, via a Jordan–Wigner transfor-
mation, to the interacting spinless fermionic model

Hsf = 1

2

∑

i

c†
i ci+1 + cic

†
i+1 + V

∑

i

(ni − 1/2)(ni+1 − 1/2) −
∑

i

μini (4)

with V = �, μi = hi , c†
i , ci creation and annihilation operators, ni = c†

i ci occupation operator at site i (open boundary 
conditions are assumed to make a strict correspondence with HXXZ). Both models are useful to make a connection with 
Anderson localization, as the non-interacting case V = � = 0 corresponds to a free-particle model in a random potential. 
These models also have a U(1) symmetry, corresponding to the conservation of total spin magnetization Sz (total charge 
number 

∑
i ni).

The nature of the disorder is encoded in the distribution of hi : the most-studied distributions are the box distribution 
(hi uniformly distributed in [−h, h]), the bimodal distribution hi = h (−h) with a probability p (1 − p) [77,45], and the 
quasi-periodic case hi = h cos(2βπi) with β an irrational number [78–80]. The latter case corresponds when V = � = 0 to 
the well-studied Aubry–André model [81]. All these distributions lead to a MBL phase at large disorder strength h.

Another spin model has also been studied: the Ising chain in a transverse field (with next-neighbor interactions):

H Ising =
∑

i

J 1
i S z

i Sz
i+1 +

∑

i

J 2
i S z

i Sz
i+2 −

∑

i

�i Sx
i (5)

It has a smaller Z2 (Ising) symmetry, with a conserved total parity P = ∏
i Sx

i . The case with no next-neighbor interactions 
J2 = 0 can also be mapped to a free-fermion model (alternatively a different term such as 

∑
i J 2

i Sx
i Sx

i+1 can be chosen for 
the same purpose). The disorder can be put either in the Ising J 1,2 or transverse field � terms. These models also show 
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MBL behavior at large disorder, with the addition of a new feature: inside the MBL phase, the Z2 symmetry can be broken 
or not, resulting in two different MBL phases (see Section 3.1.1).

Another important model with respect to experimental perspectives (Section 2) is the spinfull fermionic 1d Hubbard 
model

H = −t
∑

i,σ=↑,↓
c†

i,σ ci+1,σ + ci,σ c†
i+1,σ + U

∑

i

n↑
i n↓

i −
∑

i

μi(n
↓
i + n↑

i ) (6)

with c†
i,σ , ci,σ creation and annihilation operators, nσ

i = c†
i,σ ci,σ occupation operator of a fermion with spin σ at site i, 

with a random (e.g., μi taken in a box distribution) or quasi-periodic (μi = � cos(2βπi)) potential. MBL features have been 
found at large disorder, albeit with an important observation [82]: the charge sector appears localized (with for instance a 
non-vanishing charge density correlation 〈m(0)m(t)〉 at long-time with m = ∑

i(−)i(n↑
i + n↓

i )), while the spin sector shows 
no localization (the spin density correlator 〈s(0)s(t)〉, with s = ∑

i(−)i(n↑
i − n↓

i ), vanishes at long time). This absence of a 
true fully localized phase could be related to the SU (2) symmetry of this model (see discussion in Section 3.1). Indeed, 
when different disorders μ↑

i n↑
i , μ↓

i n↓
i are chosen for different spin orientations (random magnetic field breaking the SU(2) 

symmetry), full MBL is recovered [82]. The explicit construction of independent lioms for the Hubbard model confirms this 
scenario: the total number of lioms with a support on M consecutive sites is found to be 4M − 1 for the random magnetic 
field case (thus full-MBL) and to be smaller 4M/2, albeit interestingly quite large, when the disorder does not couple to spin 
[63].

We also note that the 1d bosonic Hubbard model [14], the related 1d model of Josephson Junction arrays [83], and 
the 1d t– J model [84] have been studied with disordered potential or interactions, with also MBL behavior found at large 
disorder.

2. Review of experiments

Can the intriguing aspects of MBL developed above be experimentally probed? This is a particularly legitimate question 
since most of the conclusions on MBL have been reached for closed, isolated systems, a situation problematic for experiments 
due to the inevitable coupling with the environment. While initial development of the MBL field was driven by theory (with 
numerics contributing actively), several major experiments, mostly on cold-atoms, changed the situation. The first series of 
experiments described below were all based on ultracold atomic and molecular setups (cold atoms, trapped ions) that are 
reasonably well isolated from baths and decoherence, and for which disorder, and in some cases interactions, are also well 
controlled. These experiments often follow the dynamics after a quench from a simple initial state. Several questions are 
opened by these new developments, which we briefly review here.

A first cold-atom experiment showing a signature of a MBL (localized) phase was presented in the group of I. Bloch, with 
the study of the post-quench dynamics of a charge density wave (selected as an initial state and consisting of an almost 
perfect alternation of filled and empty sites) in a 1d ultracold fermionic gas with a quasi-periodic potential [85]. The system 
is well described by the Hubbard model with a quasi-periodic potential, of strength denoted by �, see Section 1.5 and 
Eq. (6). Interactions are controlled with the help of Feshbach resonances, while the quasi-periodic potential is obtained by 
superposing two laser beams with incommensurate frequencies. Fig. 3 displays as a function of time (measured in hopping 
units) the experimentally measured imbalance, which is the normalized difference between the number of particles in 
odd (Nodd) or even (Neven) sites of the optical super-lattice: I(t) = |Nodd(t)−Neven(t)|

Nodd(t)+Neven(t) . Measurements of site occupation are 
performed with band-mapping techniques [85].

The initial maximal imbalance rapidly decays to its equilibrium zero value in the absence of the quasi-periodic potential. 
The MBL phase is, on the other hand, characterized by a non-vanishing value of the imbalance at long time, meaning that 
the system keeps a memory of the initial state (as encoded in such a local measurement). The same group [86] finds absence 
of MBL in a two-dimensional system of coupled identical one-dimensional tubes (with the same quasiperiodic potential as 
in the previous work).

Another experiment on chains of trapped ions [87], performed in the group of C. Monroe, can be modeled by an Ising 
model with long-range interactions in a random transverse field. The effective spin 1/2 degrees of freedom correspond to 
hyperfine states of 171Yb+ ions. Long-range Ising interactions (with a tunable power-law exponent ranging from α = 0 to 
3) are generated by stimulated Raman transitions, whereas the disorder in the form of a random transverse field can be 
‘programmed’ experimentally using ac Stark shifts. With this setup, Ref. [87] finds clear signatures of a MBL phase, as probed 
by a non-zero value of staggered magnetization in the long-time after a quench from an initially programmed Néel state 
(this measure is identical to imbalance in the cold-atom experiments above). Recently, a similar experiment [88] was used 
to create a time crystal by driving the MBL phase with an oscillating field (see Ref. [89] for a review of such experiments).

These experiments very nicely confirmed the theoretical prediction that MBL is possible for 1d lattice systems in the 
presence of strong disorder. Further recent experiments are now able to address questions that are extremely challeng-
ing for theory: study of the phase transition, of dynamics in the thermal phase in 1d, and in the full phase diagram of 
two-dimensional systems.

Using a quantum microscope setup with interacting bosonic atoms in a two-dimensional optical lattice with a disordered 
potential, Ref. [90] found signatures similar to those in previous 1d fermionic experiments (non-zero saturation value of 
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Fig. 3. Experimental measurement of the time-dependence of the imbalance I(t) for various strengths of the quasi-periodic potential � (and interactions 
U ). Figure taken from M. Schreiber et al., Science 349 (2015) 842 [85]. Reprinted with permission from the AAAS.

imbalance), pointing towards the existence of a MBL phase in 2d. At slight variance with the 1d case, in this experiment the 
imbalance was measured with respect to an initial state where half of the system was full of particles, and the other half 
empty. The role of interactions as well as the continuous nature of the transition have been also addressed in this work. The 
fermionic experimental setup has also been adapted to simulate a two-dimensional system with independent quasi-periodic 
potential in both directions [91], finding at large disorder almost no relaxation for imbalance – pointing again towards 2d 
MBL – as well as a striking slowing down of imbalance dynamics at intermediate disorder (before the transition). The typical 
system sizes probed experimentally in two-dimensions are by several orders of magnitude larger than the (very limited) 
ones accessible to numerics in two-dimensions, fully following the logic of analog quantum simulators. Future prospects 
include reaching even larger systems.

Even for 1d systems where theoretical tools are more advanced, experiments can probe regimes or physics that are 
difficult to study from a theoretical viewpoint. Using the 1d quasi-periodic setup, Lüschen et al. [92] studied the influence 
of laser-induced controlled dissipation, showing that the imbalance decays in a stretched-exponential form. The impact 
of a periodic drive (with a modulated amplitude of the quasi-periodic potential �(t) = � + A sin(ωt)) on the MBL phase 
observed in 1d was studied in Ref. [93]. For a strong drive A = �, experiments indicate that the MBL phase found at large 
� can be destroyed and replaced by a drive-induced ergodic phase at sufficiently slow frequency. Finally, a slowing down 
of transport was also observed in the thermal phase as approaching the transition [94].

Let us now conclude by mentioning a few different experimental situations where MBL has been considered or discussed. 
Systems with dipolar interactions such as ultra-cold polar molecules or NV centers in diamonds have been discussed in 
the context of MBL [95]. The latter case of NV centers was experimentally investigated using ‘black’ diamond (with many 
centers) where a slow subdiffusive (power-law) relaxation was reported [96]: whether MBL is (partly) at play here is an open 
issue. In the different context of condensed matter physics where, instead of response after a quench, transport properties 
are usually probed, it is important to mention that a dramatic drop of conductivity at low temperature in disordered 
indium-oxide films (close to a zero temperature superconducting-insulator transition driven by a magnetic field) has been 
interpreted as the signature of entrance into a MBL phase [97]. A recent NMR-type experiment in a nuclear spin chain 
(fluorapatite) presents evidence for a MBL phase in such a system [98]. Connections between MBL physics and the dynamical 
nuclear polarization process have also been highlighted, with a polarization maximum close to the MBL transition [99–101].

3. Focus on a selection of topics

3.1. MBL and symmetries

The existence of phases in equilibrium statistical mechanics is traditionally related to the notion of spontaneous sym-
metry breaking in the standard Landau approach, with a local-order parameter characterizing the broken symmetry. More 
recent uses of symmetries beyond the Landau picture include the classification of topological matter and various types of 
short/long-range entangled phases. It is legitimate to also ask about the role of symmetries for the MBL phase, which is not 
adequately captured by equilibrium statistical mechanics. Probably the full picture of what types of MBL phase(s) and phase 
transition(s) are compatible with a given symmetry is not present yet; we nevertheless provide two important examples of 
the relation between symmetries and MBL.

3.1.1. Order in MBL states: Ising and topological
One example where the MBL phase evades several of the important paradigms of equilibrium statistical mechanics is 

the existence of long-range order in one-dimensional systems (with short-range interactions) at finite energy density – 
which counterpart in equilibrium at finite temperature is forbidden [102]. Counterintuitively, disorder may help in ordering. 
This was discussed first in Refs. [103,104,28] and pedagogically reviewed in Ref. [1], from which we sketch the basic idea 
through the following example: consider a lattice spin model – e.g., Eq. (5) – that has an Ising symmetry characterized by a 
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parity operator P , even in the presence of disorder. Each eigenstate |n, p〉 of the system on finite samples has a fixed parity 
eigenvalue p = ±1, but this symmetry can be broken spontaneously in the thermodynamic limit. On finite large systems 
indeed, there is a phase for which the states |φ±

n 〉 = 1√
2
(|n, p〉 ± |n, −p〉) (which break the parity symmetry) can have an 

exponentially long lifetime. This is completely similar to the more familiar ferromagnetic states | ↑↑↑ . . .〉 and | ↓↓↓ . . .〉 in a 
pure Ising quantum chain (with no disorder): they are not the finite-size ground-states in the ferromagnetic phase – rather 
the ground-states are close to the parity preserving states 1√

2
(| ↑↑↑ . . .〉 ± | ↓↓↓ . . .〉) which are extremely close in energy 

for strong Ising coupling –, but they have an exponentially long lifetime (with the size of the chain) and eventually become 
the symmetry-broken ground-states in the thermodynamic limit.

Why a similar phenomenon can occur in the MBL phase for excited states? The physical idea is that domain walls, which 
usually destroy the long-range Ising order at finite temperature in equilibrium statistical mechanics, are now localized 
even at finite energy density [103]. The long-range order, which is not of ferromagnetic, but rather of spin-glass type, is 
preserved in excited states and can be captured by considering adapted dynamical spin–spin correlations functions as well 
as a spin-glass-like susceptibility [31,105]. Thus inside the phase diagram of a disordered model with such a symmetry, one 
can find both a ‘regular’ paramagnetic MBL phase (with no order present in the excited states) and a ‘spin-glass’ MBL phase 
(with order present). This latter phase can additionally present a pairing of eigenvalues on finite-size spectra [103] (similar 
to the pairing of the two p = ±1 ground states in the broken symmetry phase of the pure Ising model). These two types of 
MBL phases have been observed in numerical simulations [105,31,106].

The nature of the phase transition between these two MBL phases has been addressed in a few works [105–108] using in 
particular strong disorder renormalization group techniques adapted to excited states [105]. This transition hosts a new type 
of MBL-critical states, which could form a full phase under certain conditions for a type of disordered critical models: this is 
the ‘quantum critical glass’ (see Section 3.1.2). Note also that for certain models, the MBL phase can be shown [109–112] to 
necessarily break such a symmetry (and be a MBL-spin glass), in line with the idea that not all symmetries are compatible 
with MBL (see Section 3.1.2).

The same type of argument can be used and extended to show the existence of topological order in excited MBL states 
for a family of models, for instance in Refs. [104,113] where signatures of Z2 × Z2 symmetry protected order are found 
in highly excited states. The compatibility of the MBL phase with various types of order (including symmetry protected 
topological order) has been also discussed in Refs. [103,114,115] (see also Section 3.1.2). Overall, all these possibilities are in 
line with the idea that MBL states are good platforms to host new phases of matter, as they are immune to thermalization 
and do not allow transport of excitations that usually destroy these phases at equilibrium.

3.1.2. MBL-compatible symmetries
Here we summarize a recent work by Potter and Vasseur [109] (see also Ref. [116]), who argued that MBL (in the strict 

sense of Section 1.4 with exponentially localized lioms) is not possible for systems that have a non-Abelian symmetry. 
The argument is based on the following observation: the global symmetry is promoted to a local one in an (exponentially 
localized lioms) MBL phase. This creates an exponential number of degeneracies for each energy level, as there are p >
1 extra-quantum numbers needed to label each liom for non-Abelian symmetries. Resonances between different energy 
levels will be strongly favored by this large degeneracy (i.e. even a small perturbation will have the corresponding matrix 
elements), resulting in the destruction of MBL.

According to Ref. [109], possible ways out for non-Abelian symmetries are thus the following: (i) a MBL phase happens, 
but it is accompanied by a simultaneous breaking of the larger symmetry group to a smaller Abelian group, (ii) a quantum 
critical glass (for non-Abelian groups with finite number of irreducible representations), which is a critical-form of MBL 
states that are neither thermal nor localized (again in the sense of exponentially localized lioms), (iii) or, probably more 
ubiquitously, thermalization and no MBL at all. The arguments presented in this work start with the definition of MBL as 
given by the existence of local integral of motions (Section 1.4) – the authors argue however that the general results, based 
on symmetry arguments, should even hold for (putative) MBL states which are not described by lioms.

These results complement those obtained on the compatibility of MBL with symmetry-protected topological order [114,
115]. Case (i) above has been observed in numerical simulations, leading to rich phase diagrams [110,111]. The quantum 
critical glass (case (ii)) has been predicted by a real-space renormalization group method to occur in non-Abelian spin chains 
[107]. These new forms of critical MBL states have specific signatures (see the reviews Refs. [117,118]): critical correlations 
in eigenstates, log correction to the area law, as well as modified forms (powers of log) of entanglement dynamics after a 
quench. In a sense, they are quantum critical points promoted to exist in each high-energy excited state. Quantum critical 
glasses have not been observed in microscopic models yet.

3.2. The thermal–MBL transition

3.2.1. Generalities
The nature of the phase transition between the thermal/ergodic phase and the MBL phase is quite subtle and elusive, 

and let us already emphasize that it continues to defy a full theoretical understanding. We only briefly review some of the 
approaches attempted, but the interested reader is referred to a recent review [117], which describes in more detail several 
aspects discussed below.
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First, let us mention what this phase transition is not. Since it separates a regular ‘thermal’ phase from a non-
thermodynamic (MBL) phase, the accumulated knowledge on equilibrium statistical mechanics of phase transitions is not 
always helpful. It is often described as an ‘eigenstate phase transition’, since an exponential number of eigenstates (located 
at the same energy density) suddenly change properties in a radical way, as well as a ‘dynamical phase transition’, as it 
leaves no trace in standard thermodynamics – only dynamical probes are expected to see the transition. There is no simple 
mean-field or Landau theory for this transition, or no simple limit or microscopic toy model where it is understood (see 
however Refs. [119,120]). Also, most theoretical approaches are restricted to one-dimensional lattice systems, which are so 
far the only ones (together with some mean-field models) where the MBL phase is ascertained.

The current consensus is that, in one dimension, the transition to the MBL phase has both continuous and discontinuous 
aspects triggered by non-local effects. This conclusion is reached from finite-size numerics and phenomenological renor-
malization group (RG) approaches. Numerics that address the transition are mostly obtained with exact diagonalization on 
modest sample sizes (at most 22 spins [4] for the model Eq. (1), which nevertheless corresponds to a large configuration 
space of dimension 7·105), are consistent with the finite-size scaling form of continuous transitions, which a correlation/lo-
calization length that diverges as a power law of the distance to the critical point: ξ ∼ |h −hc|−ν . Most numerical studies [4,
31] obtain an exponent ν ∼ 1, which violates a bound [121] ν ≥ 2/d, an equivalent of the Harris bound for stability of con-
tinuous phase transitions with respect to disorder. This discrepancy is often attributed to numerics not being in the correct 
scaling regime (because of too small system sizes), even though the very applicability of this bound has been criticized [119].

On the other hand, two phenomenological models for the transition have originally been proposed [122,123], based 
on some ad hoc strong disorder renormalization group rules. Both have in common to consider regions (clusters) of MBL 
and thermal clusters that can merge according to some renormalization rules, depending on their internal level splitting 
as well as tunneling amplitudes between clusters (see discussion in Section 3.6). The two approaches differ by the precise 
renormalization rules and the fact that Ref. [123] finds that the transition is driven by only a backbone of thermal regions 
with long-range entanglement, which are very diluted (they occupy a finite fraction of the sample at the transition), but act 
as an effective bath for the rest of the system composed of MBL regions. This approach has been further improved [124] by 
providing a more precise description of the thermal blocks, making connection with the picture of ergodic grains discussed 
in Ref. [125]. Both RG schemes find a continuous phase transition with a critical exponent ν ∼ 3, consistent with the bound.

Let us finally note that a partly different renormalization scheme has been recently proposed [126,127], with an analysis 
of the resonant couplings pointing towards an avalanche mechanism, where an ergodic block of small size is able to ther-
malize an arbitrary large localized sample as soon as the localization length in this region is large enough. The outcome 
of this analysis [126,127] is the distinction between a non-diverging typical localization length and an average localization 
length that diverges from the MBL side, but stays finite in the thermal side up to the transition point – hence showing again 
both continuous and discontinuous aspects. A numerical test of the validity of the avalanche scenario has been performed 
in a spin chain model (with ergodic grains represented by random matrices) in Ref. [128].

3.2.2. Entanglement properties
The key role and specific behavior of entanglement at the transition has been highlighted in most approaches. Numerics 

see a peak of the variance of entanglement at the transition [31,4], and entanglement is one of the key parameters in the 
RG descriptions [122,124].

Critical entanglement entropy The precise behavior of the scaling of entanglement entropy right at the transition is still 
debated. This question was first addressed by Grover in Ref. [129], who considered the case of a small subsystem L A � L. 
Assuming the entropy to be a continuous scaling function of L A/ξ (where ξ is a characteristic lengthscale diverging at 
the transition) with no L-dependence, the strong subadditivity of entanglement led to the fact that S(L A) must display a 
thermal volume-law scaling at the MBL criticality. Exact diagonalization studies [4,130,32] are compatible with a subthermal 
volume-law entanglement entropy at criticality, while not in the relevant regime of the small subsystem L A � L. In another 
limit, which does not addresses the scaling regime L � L A � 1, Khemani et al. [33] focused on the L A = 1 case (one 
spin), for which a strong subthermal entropy was found, suggesting a discontinuity of S at the ETH–MBL transition. A 
similar conclusion was reached in Ref. [124], based on an improved renormalization group [123]. While not exact, this 
technique allows one to deal with very large system sizes and to be in the scaling regime L � L A � 1. For system sizes 
such that L � ξ , the short interval entanglement displays a discontinuous jump across the transition from a fully thermal 
volume law on the ETH side, to an area law on the MBL side. An alternative approach, developed by Monthus in Ref. [131]
for a toy-model having a MBL critical point very close to Poisson statistics, concluded for an intermediate critical scaling 
S(L A) ∼ Lα

A with 0 < α < 1, neither volume nor area law. The discrepancy between these two results [124,131] could be 
attributed to the different level statistics inherent to these two approaches.

Critical distributions Instead of simply looking at the disorder/eigenstate average entropies, a closer look into their distribu-
tions is very instructive, as first discussed in Refs. [28,31,4,133] where an enhancement of the variance was reported when 
approaching the ETH–MBL transition. Results from Yu et al. [132] for the model of Eq. (1) are discussed in Fig. 4 (right), 
where the four small panels show the qualitative change in the distributions of entanglement slopes (which quantifies the 
volume-law prefactor, averaged over all cuts in each chain). In this work, a bimodal structure for such distributions was 
shown to develop at criticality; this feature is quite surprisingly also observed at the level of a single disorder realization 
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Fig. 4. Numerical results illustrating the peculiar properties of the EE distributions across the ETH–MBL transition. Right: from Yu et al. [132] for model 
Eq. (1), by increasing the disorder h, the distributions of entanglement slopes (computed among different samples and eigenstates in the middle of the 
spectrum) display a clear qualitative change. When the transition is approached, a bimodal structure is identified. This structure is also visible for a single 
random sample (inset) for 6000 eigenstates. Figure extracted with permission from X. Yu, D.J. Luitz, B.K. Clark, Phys. Rev. B 94 (2016) 184202 [132], 
copyright (2016) by the American Physical Society. Left: from Khemani et al. [33], the standard deviation �S (normalized by the thermal entropy ST ) is 
shown as a function of disorder strength W for model Eq. (1) with additional second-neighbor xy coupling (yielding a critical disorder Wc ∼ 7). Depending 
on the set over which �S is computed (across samples, cuts, eigenstates), the variance displays different properties. Figure extracted from V. Khemani, S. 
Lim, D. Sheng, D.A. Huse, Phys. Rev. X 7 (2017) 021013 [33].

(see inset, where the distribution is computed from eigenstates in the same disorder sample). As argued in two recent stud-
ies [33,134], a key for understanding the ETH–MBL transition lies in the differences between fluctuations of entanglement 
coming from different eigenstates in the same disorder sample, from those coming from different samples (see Fig. 4 taken 
from Ref. [33]).

Ref. [134] speculates that there are accordingly two different universality classes for the MBL/thermal transition, one 
dominated by eigenstate fluctuations (in the same sample), and a second one by the quenched disorder. On too small system 
sizes, the second universality class could be hidden by the first one, for which the bound ν ≥ 2/d (derived for quenched 
disorder) does not apply. This scenario is consistent with numerical simulations for a spin chain with quasi-periodic disorder, 
a case which is argued to have milder finite-size effects. The transport properties of such quasi-periodic chains have also 
been investigated in this light [80]. In any case, the ultimate critical behavior for systems with a true random potential is 
still unknown.

3.2.3. Possible directions
What are the prospects for a better understanding of the transition? Regarding theory and numerics in particular, this 

is intimately linked to progresses in computational methods for MBL (see Section 3.9 for a more detailed account of the 
available methods). There is some hope that advances in matrix-product states or operator techniques could be pushed to 
be able to capture eigenstates closer to the phase transition, coming from the MBL side. The important caveat there is that 
these variational methods are usually biased towards low-entanglement states, which can be problematic if the distribution 
of entanglement of eigenstates is broad near the transition, as observed in exact diagonalization [13,132] (see Section 3.2.2). 
Another possibility, which also relies on specific properties of the MBL phase, is to improve diagonalization by a flow of 
unitary transforms.

Starting from the other direction, one can maybe get insight from standard numerical techniques (e.g., quantum Monte 
Carlo or series expansion) that are valid on this thermalizing side of the transition, e.g., by tracking diverging signatures of 
transport properties as one approaches the transition. Two new recent important advances in the family of matrix-product 
states methods, namely using a time-dependent variational principle [135] or a density matrix truncation method [136], 
show great promises for simulating dynamics also in the thermal phase, giving hope to capture the transition.

And finally, experiments in the near future will probably be able to address in more details and/or complement theory 
on several properties of this phase transition.

3.3. Entanglement spectroscopy

Besides the scaling of entanglement entropy, and given the success of this approach for pure many-body problems [137,
138], several works [139–145] considered the information contained in the entanglement spectrum (ES) {λi} of the reduced 
density matrix (RDM) ρ̂A of eigenstates or time-evolved states. One often writes the RDM as ρ̂A = e−H E with H E the 
entanglement Hamiltonian, with eigenvalues − ln(λi) forming a ‘pseudo-energy’ spectrum.
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Fig. 5. Entanglement spectra for various situations computed using exact diagonalization (except (b) L = 30 obtained with MPS) for cuts at half-chain. (a) 
From Yang et al. [139], in the ergodic regime the (disorder-averaged) entanglement levels computed for L = 16 are well described by the Marčenko–Pastur 
distribution (see text). Figure extracted with permission from Z.-C. Yang et al., Phys. Rev. Lett. 115 (2015) 267206 [139], copyright (2015) by the American 
Physical Society. (b) From Serbyn et al. [141], in the MBL regime the first sequence of entanglement levels follows a power law. Figure extracted with 
permission from M. Serbyn et al., Phys. Rev. Lett. 117 (2016) 160601 [141], copyright (2016) by the American Physical Society. (c–d) From Geraedts et al. 
[140], in the MBL regime, the high-energy part of the ES whose density is shown in panel (c) displays a semi-Poisson distribution for the level spacing 
sλ (d). Figures extracted with permission from S.D. Geraedts, R. Nandkishore, N. Regnault, Phys. Rev. B 93 (2016) 174202 [140]. © 2016 American Physical 
Society.

3.3.1. Entanglement spectrum properties for the MBL problem
First in the ergodic regime, the RDM spectrum is very well described by the Marčenko–Pastur (MP) distribution, which 

characterizes the eigenvalues density of a random Wishart matrix [146], as shown in Refs. [139,142], see Fig. 5a. In this 
thermal regime, the entanglement level statistics is also well described by the random matrix theory of appropriate ensem-
ble (GOE or GUE depending on the symmetry of the Hamiltonian) [140]. Interestingly, the MP form remains quite robust 
in the ‘high-energy’ part of H E (smallest entanglement levels) when approaching the MBL transition while the ‘low-energy’ 
part starts to deviate. This is in contrast with usual expectations for ground states of either pure [137,147] or disordered 
systems [148] for which the universal part is rather expected in the ‘low-energy’ sector.

In the MBL phase, the distribution of entanglement levels qualitatively changes from the flatness of the MP distribution 
towards a more singular form, as shown in Ref. [141]. Interestingly, a clear two-component structure of the ES shows up in 
the MBL regime. The first entanglement levels λ1 ≥ λ2 . . . obey a power-law distribution λi ∼ 1/iγ [141] for the low-energy 
part, as visible in Fig. 5 (b), with an exponent γ ∝ 1/ξ (ξ being a characteristic many-body localization length). This specific 
behavior has important consequences for numerics based on matrix-product states (see Section 3.9) as the number of 
retained entanglement levels required to match the exact EE (within a given precision) is quite low in the MBL phase, in 
contrast with the ETH phase where this number grows with system size (see, e.g., Fig. 4 in Ref. [141]).

The high-energy part, while representing a totally subdominant weight in the MPS-like description of MBL eigenstates, 
seems to retain some universal information, as emphasized in Ref. [140], where a level statistics of the semi-Poisson form 
was found for the distribution of ES gaps sλi = − ln λi+1 + ln λi , with level repulsion (in contrast with the true energy 
spectrum, which follows a genuine uncorrelated Poisson distribution), see Fig. 5 (c–d). In addition let us also mention the 
analytical results of Monthus [131], who discussed the multifractal properties of the ES in the MBL regime and at the 
transition.

3.3.2. Dynamics of the entanglement spectrum
So far, we discussed the entanglement spectroscopy of eigenstates. One can also learn interesting physics using out-of-

equilibrium protocols, such as the one proposed by Yang et al. [145]. In this work, which main results are displayed in Fig. 6, 
the level statistics of the ES has been studied through the distribution of the gap ratio P (r) with ri = (λi −λi−1)/(λi+1 −λi)

at time t = 1000 (in units of hopping) after a quench from a non-entangled initial product state. While for non-interacting 
Anderson localization (Fig. 6, left), uncorrelated Poisson statistics emerge for the entanglement levels after a long time, the 
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Fig. 6. From Yang et al. [145], exact diagonalization results obtained for L = 12 (unless specified) Heisenberg S = 1/2 chains with i.i.d. random fields 
in longitudinal zi and transverse xi directions. Entanglement is computed from L/2 bipartitions. The distribution of entanglement gap ratio P (r) with 
ri = (λi − λi−1)/(λi+1 − λi) at time t = 1000 (in units of hopping) after a quench from a non-entangled initial product state is displayed in various 
situations. Left: non-interacting Anderson localization where the ES displays Poisson statistics. Center: ETH regime showing GUE behavior. Right: MBL 
regime with GUE statistics emerging if the largest entanglement levels are discarded (inset). Figures extracted with permission from Z.-C. Yang et al., Phys. 
Rev. B 96 (2017) 020408 [145]. © 2017 American Physical Society.

situation is qualitatively different when interactions are present. In this case, the ES after a long time t = 1000 displays 
Wigner–Dyson (of GUE type) statistics for both ETH and MBL regimes (Fig. 6, center and right panels). This strongly con-
trasts with the energy level statistics, which signals a qualitative difference between Wigner–Dyson in the ETH regime vs.
Poisson for the MBL phase, but is not able to discriminate between Anderson and MBL insulators (both showing a Poisson 
behavior). More precisely, in the MBL regime, the ES statistics approaches Wigner–Dyson slowly in time ∼ 1/ ln t [145], a 
behavior interpreted in light of the lioms (Section 1.4), whose mutual interaction decays exponentially with their relative 
distance.

3.4. Role of disorder

3.4.1. Type of disorder: true-random versus quasiperiodic, bond versus sites
In the model discussion of Section 1.5, we introduced several types of disorder terms: true random disorder (box or 

bimodal distribution, we can also consider Gaussian distribution) versus quasi-periodic potential; disorder that acts on 
kinetic or potential terms (identically one can distinguish bond versus site disorder), etc. While they all have in common 
the possibility of promoting a MBL phase, we briefly mention a few important differences.

True disorder admits the possibility of Griffiths regions, regions of space where the disorder is anomalously different (say 
much larger) than average. These regions have been argued to be responsible for the subdiffusive regime observed in the 
thermal phase in several 1d models [149], as they act as bottlenecks for transports. Quasi-periodic potentials do not allow 
for such regions (they may nevertheless show slow subdiffusion from other mechanisms [182]).

Regarding the transition (see Section 3.2): first, the bound derived [121] (an extension of the result by Chayes et al. 
[150]) for the correlation length exponent is ν ≥ 2/d for the true random disorder, stronger than the bound expected from 
the Harris–Luck criterion [151] (but not derived) for a quasi-periodic potential ν ≥ 1/d. Second, as discussed in Section 3.2, 
the quasi-periodic and true random disorder may have different finite-size effects close to the transition, on top of (possibly) 
different universality classes.

We also note the under-exploited possibility to use binary disorder (e.g., hi = ±h), as it offers the unique possibility to 
perform an exact average over disorder using series expansion techniques [77] or ancillary spins in DMRG-like methods 
[45,152].

Finally, let us make the simple remark that the symmetries that are preserved/broken by the type of chosen disorder are 
crucial (see Section 3.1) – as commonly known for the Anderson transition. For instance, for a random quantum spin 1/2 
Heisenberg chain, if the disorder in on-site such as in the random-field case of Eq. (1), the model symmetry is reduced to 
U (1), in which case a MBL phase is possible at large disorder. On the other hand, if the disorder is solely located on the 
bonds (random-bond chain), the SU(2) symmetry is preserved and the model has no MBL phase [107,116].

3.4.2. Is disorder needed?
The above question was asked quite early, in the quest for a so-called translation-invariant MBL phase [153–157] (see 

also the precursor work of Ref. [158]). Several ideas emerge with different mechanisms by which an effective disorder is 
generated in an otherwise clean system. Several of the proposals are based on the mixture of slow and fast particles (where 
the slow particles effectively act as a disorder potential) [155,159,160], some others are based on quantization of classical 
glassy models (where the effective disorder is created by a dynamical constraint) [161,162]. Another idea is to allow a 
higher dimensional local Hilbert space (e.g., models with spins S > 1/2), which would be slower to explore and could leave 
room for slowing-down and MBL [153,6].

Most of these proposals were backed up by numerics that showed several hallmarks of MBL: slow (compatible with log) 
growth of entanglement, slow dynamics after a quench, Poisson-like spectral statistics etc. Diagnosis in terms of entangle-
ment after a partial measurement (e.g., on the slow particles) has also been identified in the closely related proposal of 
quantum disentangled liquids [163] .
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Most of these models were based, however, on a separation of energy scales in the Hamiltonian: high/low hopping term 
for the fast/slow particles, low potential to kinetic energy ratio, etc. This can become problematic due to the finite samples 
used in the numerics, which are in a sense less representative of the ‘thermodynamic limit’ than for models that do not have 
such separation of scales. This idea was highlighted in the work by Papic, Stoudenmire and Abanin [164], which shows that 
the density of states for several of the proposed models is given by well-separated bands for the system sizes considered in 
the regime where MBL was ‘detected’ – whereas on larger systems, the bands would eventually merge and MBL hallmarks 
disappear. In other words, this means that in a given regime of parameters, small systems can mimic the phenomenology 
of MBL with extremely long transient times before actually reaching thermal equilibrium. This regime, dubbed ‘quasi-MBL’ 
[160] or ‘asymptotic localization’ [154] is certainly interesting in its own right and could perhaps be explored by explicitly 
engineering small systems (such as Josephson Junction arrays) in the good parameter regime.

The distinction between quasi-MBL and true MBL requires access to very long-time dynamics on large-enough systems, 
which is not always possible with numerics in all parameter ranges. While accordingly we cannot provide a definitive 
statement, it appears that most previous proposals of translation-invariant MBL (with possible exceptions of Refs. [165,
166]) show this transient quasi-MBL regime. A recent work rationalizes this slow regime in terms of a perturbation theory 
that allows one to classify the different processes and associated time scales that ultimately lead to delocalization [167]. 
Other recent ideas have been explored to circumvent this, using again a two-species construction, by, e.g., considering the 
Anderson-like localization of free particles in an effective disorder induced by another locally conserved degree of freedom 
variable [168–170].

A bubble-like argument [156] (see Section 1.3, Section 3.6) also predicts that ultimately there is no full translation-
invariant MBL: a small resonant bubble will always delocalize and thermalize the full system. Note that, whereas the 
conclusions of this bubble argument seem to be corroborated by the numerics mentioned above, it is not the case for 
other situations with bubble arguments, most notably the prediction of absence of mobility edge [50] (see Section 1.3). 
This thus leaves some uncertainty on whether such asymptotic phenomenological arguments are relevant/backed up by 
simulations on the currently available system sizes.

3.5. Anomalous transport in the thermal regime

Has the existence of a MBL phase or phase transition any reverberation outside of its location in the phase diagram of a 
disordered system? A large number of works has observed some anomalously slow dynamical properties in several systems 
(mostly one-dimensional) in the thermal portion of the phase diagram, which is often described in terms of a ‘subdiffusive’ 
regime prior to the transition. This regime is not free of controversies/uncertainties, as can be seen in the very good reviews 
[171,37,24], which summarize the current knowledge on this topic.

The slow dynamics in this ‘subdiffusive’ regime has been evidenced (from numerical simulations) by power-law decays 
of the autocorrelation function of the local magnetization/density 〈Sz

i (0)Sz
i (t)〉 ∝ t−β [149,172], of imbalance I(t) ∝ t−γ or 

growth of entanglement entropy S(t) ∝ t1/zent after a quench [173], as well as a specific frequency dependence of the ac 
conductivity σ(ω) ∝ ω1−2/z [149,174]. All the exponents in these expressions do no take their diffusive value, but rather 
vary continuously with the disorder strength in the thermal regime. Relations between these different exponents should be 
satisfied under some general conditions; however, the numerical evidence for an agreement between exponents is far from 
being unquestionable [24]. On the other hand, an analysis [175] based on a coarse-grained surface growth picture suggests 
that exponents corresponding to various growing lengthscales associated with different quantities (entanglement, conserved 
quantities, operator spread, etc.) should differ. A connection between off-diagonal matrix elements (in the eigenbasis) and 
subdiffusive exponents has also been pointed out [176]. One should also note that other numerical studies of dc conductivity 
[177,178] conclude, on the other hand, to a non-zero value in the thermal phase (in contradiction with the subdiffusive 
scenario [149,174]), and that other numerics deduce from the analysis of density propagators that the subdiffusive regime 
is actually transient [179].

Besides theory, it is important to note that two recent experiments [94,91] also observe a slow decay of imbalance (after 
a quench) compatible with a power-law decay with a varying exponent (with additional log corrections in Ref. [91]), at least 
on the time scales accessible before background decays become too important.

The extent of this subdiffusive part of the thermal regime has also been debated [149,173,180,177,178] in the model 
of Eq. (1): is the transport always subdiffusive as soon as disorder is present, or a transition between diffusive/subdiffusive 
regimes exist? The most advanced numerical work [181] on large spin chains (using a different technique where the trans-
port is probed in a spin chain weakly coupled with a boundary bath) concludes that there is a purely diffusive phase at 
weak disorder in this model, favoring the second scenario.

Assuming that there is slow transport inside the thermal phase (at least on the sizes/time scales probed by numerics and 
experiments), its origin is not fully understood yet. The most prominent scenario [149] is the existence of spatial regions 
where the disorder is anomalously high, which act as bottlenecks for transport in one-dimensional systems. One can show 
that indeed these so-called Griffiths regions (reviewed in Ref. [171]) in the thermal phase do create slow transport in 
one dimension, with varying power laws, as they result in a broad distribution of relaxation times. The phenomenological 
renormalization group treatments of the transition [122,123] (Section 3.2) also conclude that such broad distributions arise 
in the thermal phase, near the transition. However, as also pointed out in Ref. [24], there are reasons to believe that 
the Griffiths regions may not be solely responsible for the observed subdiffusions: similar varying power laws have been 
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observed in systems with quasiperiodic potentials [79,182,183] – which do not harvest spatial Griffiths regions –, and in two 
dimensional systems (in some approximate theoretical treatment [184] and in experiments [91]) where the Griffiths effect 
should be less effective. Also at the quantitative level, the subdiffusive effects are observed at quite low disorder (e.g., far 
off an estimate of the critical region), where one naively could expect Griffiths regions to have altogether minor influence. 
Other alternatives have been proposed, such as rare regions in the initial state [173] – but this only applies for probes of 
slow dynamics after a quench.

As can be seen from this short summary, several questions regarding anomalous transport remain open. More work is 
needed in that direction, especially understanding the type of transport in dimension higher than one (which will perhaps 
soon no longer be out of reach for numerics). Another intriguing question is whether this subdiffusive regime is related to 
the so-called ‘bad metal’ phase argued in Ref. [6].

3.6. Investigation in d > 1

So far, we mostly discussed MBL occurring in one-dimensional systems. Can a stable MBL phase be expected in dimension 
larger than one? This is a difficult question from the theoretical point of view, since exact numerics are not of much help 
in d > 1 (due to the too large Hilbert spaces), whereas they are pivotal in d = 1. Furthermore, the RG treatments have not 
been adapted to dimensions larger than one up to now. In this situation, we thus rely on more phenomenological scaling 
arguments.

It is long understood (see, e.g., Ref. [185]) that the transition to the ETH phase can be roughly located by considering 
the ratio between the average matrix element and level spacing. Consider (as in, e.g., Refs. [186,125]) a thermal region in 
the sample of linear size L, surrounded by a localized region described in terms of lioms (Section 1.4). The exponential 
many-body splitting scales as � ∼ exp(−Ld)·Ld/2. The typical matrix element for flipping a liom located at a distance r
scales as � ∼ √

exp(Ld) · exp(−r/ξ), where ξ is some estimate of the localization length on the MBL side. When � � �, 
the localized states hybridize (the liom flips) and the MBL region at distance r from this ergodic grain is unstable and 
thermalizes.

This argument suggests that in dimension d > 1, localized systems are not stable. The competition between hybridization 
and many-body level spacing can be found in models of destabilization of MBL by ergodic grains or bubbles [186,125,
75] and in phenomenological RG treatments [122–124,126], and can be turned into an effective criterion for locating the 
ergodic/MBL transition [187]. Of course, the argument above was refined in these works by providing precise models for 
the thermal grain, the coupling with the MBL region, as well as backreaction effects on how the MBL regions can affect 
the spectral features of the ergodic grain (see Ref. [171] for a discussion). Including all these ingredients appear to confirm 
that in dimension d > 1, localized systems are unstable to inclusion of ergodic regions (caused, e.g., by a rare fluctuation of 
disorder), even for very strong disorder. Indeed, up to now and despite numerical attempts (see, e.g., the very interesting 
recent variational studies of Ref. [188] and Ref. [189]), there is no firm unbiased evidence of MBL in theoretical works in 
d > 1, where the rigorous arguments of Refs. [53,54] do not apply, and the thermal phase is always present.

Note finally that Ref. [190] proposes, within an heuristic approach, that this description is incomplete and that in d > 1, 
states can exist with at the same time ETH statistics and approximately conserved lioms, resulting in a dynamical phase 
similar to MBL.

We emphasize that the argument above is asymptotic (valid for long-enough time and large systems), and that on time 
scales typical of those probed in, e.g., cold-atom setups, experimental data in d > 1 can be well explained/interpreted in 
terms of MBL and/or slow dynamics (see the 2d experiments presented in Section 2). Finally, there might be models with 
some specific symmetries, disorder properties or geometrical constraints that could escape the argument (see Ref. [191] for 
an example of a 1d model with constraints that induce a MBL phase with a different mechanism). Also it does not apply 
for systems with long-range interactions (e.g., there is a MBL phase in the mean-field model of Refs. [47,73]) – see in this 
context the analysis of the localization transition in a central spin model [75].

3.7. MBL as an Anderson problem on high-connectivity graphs

3.7.1. Anderson problem in Fock and configuration spaces
Fock space properties The picture of MBL as an Anderson problem on a complex graph has been developed early on in the 
first works on MBL [19,17,16], relying on a weak interaction approach. In this formalism, a typical many-body Hamiltonian 
is rewritten as a tight-binding model defined on a complex graph of size D = dimension of the Hilbert space that grows 
exponentially with the volume3 ∼ exp(N):

H = −
∑

α

μα |α〉〈α| −
∑

〈α �=β〉
Vαβ |α〉〈β| + h.c. (7)

The states |α〉 are many-body Slater determinants built on non-interacting localized orbitals, the on-site (correlated random) 
energies μα are the Hartree–Fock terms, and the off-diagonal interaction part yields hopping Vαβ between ‘nearest-neighbor 

3 In this section and to make the discussion less specific to 1d, we use N instead of L for the total number of sites.
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Fig. 7. Wave function occupation in the configuration space {|k〉} of a single high-energy eigenstate |�〉 (in the middle of the many-body spectrum) for the 
random-field Heisenberg chain model, Eq. (1). Results for a chain of L = 16 spins S = 1/2, which corresponds to a D = 12870 dimensional configuration 
space. In the ETH regime (a), one sees the weights pk = |〈k|�〉|2 almost uniformly distributed over the configuration space, with the links connecting 
nearest neighbors, the size of the circles being proportional to the weights pk . In the MBL regime (b), we can distinguish one configuration that is strongly 
occupied (big black disk) together with only a few neighbors. Most of the configurations are occupied with a very small weight (region inside the green 
circle). Panel (c) is a zoom over this green circle region. While ergodicity is clearly visible in the ETH case (a), the non-ergodic character of the MBL 
eigenstate (b–c) is manifest.

sites’ 〈α �= β〉, see, e.g., Ref. [28] for more details. The number of matrix elements coupling two states |α〉 and |β〉 grows 
polynomially with the volume ∼ N such that it was argued by Bauer and Nayak that it is unlikely to observe a non-vanishing 
inverse participation ratio (IPR), defined for a given eigenstate |e〉 in the Fock basis by IPRe = ∑

α |〈α|e〉|4, even in the MBL 
regime. To our best knowledge, no such explicit numerical calculation of Anderson localization in the Fock space spanned 
by single particle Slater determinants has been reported. Note the related work of Refs. [66,67], where the authors consider 
the localization properties of the eigenstates of the single-particle density matrix computed in a given many-body eigenstate 
|e〉, giving insights on real space (but not Fock space) localization properties.

Configuration space Another way to explore the analogy between MBL and Anderson localization relies on rewriting the 
model as a single particle problem in a complete configuration basis, for instance for the S = 1/2 Hamiltonian Eq. (1) in the 
basis spanned by the spin projections {Sz

i }, where it reads

H = −
D∑

k=1

μk|k〉〈k| − t
∑

〈kl〉
|k〉〈l| + h.c. (8)

each ‘site’ k encoding a given spin configuration | . . . ↑↓↓↑↓ . . .〉. For the particular many-body Hamiltonian Eq. (3), 
the on-site energies μk are given by the diagonal terms, i.e. for a given state |k〉 the local chemical potential is 
μk = ∑N

i=1〈k|hi Sz
i − �Sz

i Sz
i+1|k〉, and the hopping between nearest neighbor sites 〈k l〉 is constant t = 1/2 and given by 

the off-diagonal spin-flip terms of the original many-body Hamiltonian. This analogy has been exploited in several works 
[192,29,4,193,48].

The explicit numerical calculation of the IPR in this computational basis was performed in Refs. [29,4], where important 
insights have been reached regarding localization properties of eigenstates. A visual representation of typical eigenstates 
is given in Fig. 7. In the delocalized regime, (a) ergodicity is clearly visible with an almost perfect delocalization in the 
configuration space, i.e. IPR ∼ 1/D ∼ 2−N . On the other hand, the MBL regime in panels (b–c) displays a clearly non-ergodic 
distribution of the weights, with a broad hierarchy between a ‘localization center’, its first neighbors, and further neighbors 
(see zoom in panel c), which have very small weights. This breaking of ergodicity, first noticed by De Luca and Scardicchio 
in Ref. [29], has been confirmed for configuration spaces of size up to D = 705432 by Luitz et al. [4]. However, the support 
of MBL eigenstates is not finite, as one would naively expect for a simple Anderson localization in this complex network, but 
instead numerical data from [4] rather suggest IPR ∼ 1/Nl or IPR ∼ γ −N (with ln(γ ) � 1), probably a direct consequence of 
the connectivity of the configuration space, which grows as N .

Strong disorder decimation in the configuration space It is worth mentioning the original work of Monthus and Garel in 
Ref. [192], where they generalized the Aoki real-space renormalization scheme for single-particle Anderson localization 
[194] to the above formulated many-body problem Eq. (8). By gradually decimating the sites having the strongest couplings, 
new couplings are generated in the configuration lattice up to the two last surviving sites. The finite size scaling of the 
effective hopping between these two last sites gives an estimate of the two-point Landauer transmission [195,196], which 
decays exponentially with the distance in the MBL phase, while it remains finite in the delocalized regime. Using such an 
approximate scheme, a quite accurate estimate of the critical point was obtained [192] for interacting fermionic chains with 
nearest and next-nearest neighbor repulsion in a random potential, in good agreement with numerical results [25].
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3.7.2. Links with Anderson localization and ergodicity breaking in random graphs
The fact that MBL physics can be viewed as an Anderson problem defined on highly connected random graphs has 

triggered several debates addressing the possible connections with single-particle dynamics on tree-like complex networks 
[19,17,197–200]. While a true localization transition is not questionable on such finite connectivity graphs [201,202], the 
most pressing issue, still debated, concerns the possibility to stabilize a delocalized non-ergodic phase (dubbed ‘bad metal’), 
intervening in a finite region of the phase diagram between the insulating and the conventional delocalized regimes. Note 
that the simplest example of such a strange phase is the critical state at the Anderson transition point where non-ergodicity 
can be characterized by a set of multifractal exponents [203]. Various numerical works have reached different conclusions 
regarding the possibility to achieve such a non-ergodic bad metal in random graph geometries. First suggested in Refs. [198,
199,204], it was later argued that this apparent lack of ergodicity was due to severe finite size effects [205–207]. In par-
ticular, using large system sizes (up to 2·106 sites), Garcia-Mata et al. [207] identified a single delocalized regime that 
appears non-ergodic at small scales below a non-ergodicity volume (diverging at the localization transition), but ergodicity 
is recovered at large enough scales above this characteristic volume.

3.7.3. Consequences for the many-body problem
While the structure of the configuration or Fock spaces locally resembles a tree, there are several differences that could 

potentially change the physics: (i) the connectivity grows slowly (logarithmically) with the size of the Hilbert space; (ii) the 
random energies are strongly correlated since an exponentially large number of μk in Eq. (8) are built from N random fields; 
(iii) the network is not precisely random, but rather built deterministically by rules coming from the off-diagonal elements. 
As argued in Ref. [29], the growing connectivity is probably the most serious ingredient that makes the approximation 
questionable.

Nevertheless, the question addressing the existence of a bad metal regime in the delocalized phase can also be posed 
for the many-body problem. Evidences for a unique delocalized phase (asymptotically ergodic in the configuration space) 
has been provided by Refs. [4,208], while Refs. [83,209] conclude for an intermediate non-ergodic region. However, as 
discussed by Luitz and Bar Lev in Ref. [24] a precise definition of non-ergodicity is still lacking, and one should perhaps 
favor basis-independent measures of ergodicity, which is not the case with the IPR or related participation entropies.

Finally, let us also mention the recent analysis on the Bethe lattice by Biroli and Tarzia [210], who report anomalous 
slow dynamics when approaching the Anderson localization transition, at least for the finite time range explored in their 
numerics. Interestingly, this observation supports the idea that studying the non-interacting Anderson model on the Bethe 
lattice as a toy model for MBL allows one to qualitatively capture non-trivial features, such as the subdiffusion discussed in 
Section 3.5.

3.8. How to (experimentally) distinguish a MBL from an Anderson insulator?

As presented in Section 2, there is clear evidence reported for the existence of a dynamical localization in cold-atom 
experiments, but a vexing situation still persists. If we blindly consider the data of Fig. 3 in the disordered regime without 
looking at the legend, there is no way to know if they emanate from an Anderson insulator or from a MBL phase, as 
both phases result in a non-zero saturation value of imbalance. Showing that the localization observed in experiments is 
indubitably MBL would be very compelling.

At the theoretical level, the difference between an Anderson insulator and a MBL insulator is subtle but well identified: it 
emanates from the existence of interactions between the lioms – all terms behind the first one in Eq. (2) – in the MBL case. 
Physically, this results in dephasing being present in MBL, while it is not there for Anderson insulators. In this framework, 
the goal is in principle now simple: find a probe of dephasing.

Several ways are possible. The first historical proof of dephasing was the slow growth of entanglement entropy after a 
quench in the MBL phase (for an Anderson insulator, the entanglement is rapidly bounded by a constant). While there have 
been important pioneer experiments [211,212], the experimental determination of entanglement dynamics in a scalable 
many-body system is however not yet at a mature stage to be able to distinguish Anderson localization from MBL.

Still within the framework of quench experiments, one can find an experimentally-accessible observable 〈O (t)〉 that will 
contain a contribution from the time evolution of one liom operator 〈τ x

i (t)〉 (or a few, such as 〈τ x
i (t)τ x

j (t)〉): this is actually 
generically the case for most local observables. Such observable will generically decay to its long-time value in a power-law 
fashion characteristic of the MBL phase (related to the lengthscale on which lioms interact), whereas it will not decay in 
an Anderson insulator [40]. There may be, however, several practical caveats. Oscillations on top of the power law can 
be strongly depending on the local observable, the initial state and the final saturation value. Also the saturation value 
(which depends on the overlap of the local observable with the conserved quantity τ z

i ) may be close to the initial value, 
and render the determination of a power-law regime difficult. These two effects are typically present in the imbalance of 
Section 2. Other observables such as correlation functions at different sites may contain contributions from different power 
laws, complicating the analysis [40]. In practice, a few observables have been demonstrated to qualify, most of them rooting 
in quantum information: the concurrence between nearest-neighbor particles [213], or the dynamics of the quantum mutual 
information between two [214] (or more [215]) sites.

Another possible route is interference experiments. A first work [216] highlighted how a coherent spin manipulation at 
two different locations in the system (non-local spin-echo protocol) could pick up the weak interaction between the lioms, 
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Fig. 8. From Fan et al. [224]: Dynamics after a quench from an initial product state of the entanglement entropy and of the OTOC (with A = σ x
2 , B = σ x

8 ) 
for a random field XXZ chain – Eq. (3) – of size L = 8., in the Anderson (� = 0) and MBL (� = 0.2) regimes for large disorder strength h = 5. In the MBL 
phase, the OTOC decays as a power law, whereas it stays constant � 1 in the Anderson case. Figure extracted from R. Fan et al., Science Bulletin 62 (2017) 
707, under Creative Commons Attribution License (CC BY).

resulting in different signals for MBL and Anderson insulators. An alternative method based on spin noise spectroscopy has 
also been proposed [217]. Finally, other schemes use a single-spin probe coupled with the disordered many-body system of 
interest, and allow one to distinguish Anderson from MBL by considering revivals in the dynamics of this probe [218], or 
using the ability of this setup to measure the Loschmidt echo [219].

Another type of correlator was also shown to be useful in this context. This is the Out-of-Time-Order Correlator (OTOC), 
defined as follows: C(t) = 〈A(t)B A(t)B〉, where A and B are Hermitian local operators – think about spin flips at different 
positions A = Sx

i and B = Sx
j , for instance, in the random field Heisenberg spin chain, Eq. (1) –, and A(t) = eiHt A e−iHt . 

This correlator was introduced in the context of quantum chaos theory [220,221] as a measure of scrambling of quantum 
information, the impossibility of the system to recover the information lost in dynamics solely by performing local measure-
ments. Indeed, it can be understood as the overlap between two states (see, e.g., Ref. [222]): one where we first punch the 
system by B , let the system evolve during time t to then punch with A, and a second state where we first let the system 
evolve to t to apply A, then go back in time to apply B at time zero, and finally let the system evolve back to time t to 
be able to compare it with the first state. The OTOC is a quantum proxy of the ‘butterfly effect’ as it diagnoses the spread 
of quantum information, this feature turning out to be crucial to distinguish the various states of matter of interest. In an 
ergodic/chaotic system, the OTOC reaches its saturation value exponentially fast. On the other hand, there is no spread of 
information in an Anderson insulator and the OTOC never decays. Finally, in the MBL phase, the spread of information is 
slow, which will result in a power-law decay of OTOC to this saturation value. A series of paper showed clearly that the 
OTOC distinguishes MBL from Anderson [223–227,222], as much as the dynamics of the EE do (see Fig. 8 for an illustration).

While the definition of OTOC is more complex, it has probably a richer physical context. What about experiments? 
Several protocols have been proposed to measure the OTOC, where the needed reversal of time is often performed using 
an ancilla/switch/control degree of freedom [227–229]. As a matter of fact, the OTOC has been experimentally measured 
for specific initial/thermal states in a molecule-based NMR quantum simulator [230] and trapped ions [231] systems. These 
protocols seem to be complex to be carried out in the currently working MBL experiments (Section 2), and there is probably 
a need for finding a closely related measure that could be experimentally implemented. A recent step in this direction has 
been proposed in Ref. [232], where, instead of performing an overlap, a measurement is inserted after an OTOC sequence.

3.9. The computational challenge of MBL

As can be seen above, numerical studies play a great role in the study of MBL. Conversely, the specificities of the MBL 
problem (physics in the middle of the spectrum, isolated systems, strong disorder, low entanglement) pushed computa-
tional physicists to create new methods or extend some existing ones. Indeed, well-established numerical methods for the 
condensed-matter many-body problem face an important challenge. As MBL physics primarily deals with isolated systems 
(no bath), usual finite-temperature quantum Monte Carlo methods, or high-temperature series expansion are not appro-
priate. Also, techniques which are designed to capture ground-state physics, such as iterative diagonalization (e.g., Lanczos 
method), standard density matrix renormalization group (DMRG) or zero-temperature series expansions, bring no informa-
tion for the middle of the spectrum.

Specific numerical methods have been used, which work in principle in the full phase diagram of MBL models (see a 
partial review in Ref. [24]). Shift-invert exact diagonalization consists in applying Krylov space iterative methods to the 
operator (H − λ)−1, allowing one to probe an arbitrary energy density in the spectrum by computing the eigenpairs closest 
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to the shift λ. These methods, used for the first time in the MBL context in Ref. [4], allowed one to reach up systems 
composed of up to 22 spins 1/2 for model Eq. (1) (instead of 16 spins for standard full diagonalization methods). A recent 
extension [233] pushed further the limit of shift-invert calculations to 26 spins 1/2. The Krylov space is also very useful for 
exact time dynamics to expand the evolution operator e−iHt , allowing one to simulate exactly dynamics of up to 34 spins 1/2 
[234,173], albeit up to moderately small times (typically t ∼ 100 in the units of Eq. (1)). This technique is thus particularly 
useful when thermalization is fast (at low disorder), and complementary to other methods, described below, which work 
well when the information spread is slow. Numerical linked cluster expansion techniques have also been extended to work 
for the MBL problem, using either discrete [77] or continuous [130] disorder.

Another effective strategy is to implicitly or explicitly use properties/knowledge of the MBL phase to extend the existing 
methods. The low entanglement of the MBL states allows them to be captured and computed as matrix product states 
[28,235,236]. In particular, the DMRG algorithm has been adapted to high-energy excited states by targeting the low-energy 
states of the shifted Hamiltonians (H −λ)2 or (H −λ)−1 [236,237,32,141,49]. An interesting alternative (dubbed DMRG-X) is 
to take advantage of the liom structure and target a MPS state with maximal overlap with a simple product state [235,238]. 
Since in the full-MBL phase, all states have a matrix product state structure, it is possible to define the full diagonalization 
unitary operator as a Matrix Product Operator [239–242], leading to numerical schemes that are efficient relatively deep 
in the MBL phase. MPS methods are also very useful to follow the dynamics in the MBL phase due to the slow growth of 
entanglement: the already-existing time-evolving block decimation (TEBD), time-dependent DMRG (t-DMRG), or light-cone 
RG algorithms [45] are particularly powerful in this context.

The promising family of methods of unitary flows also takes explicitly advantage of the liom structure in the MBL phase. 
The idea is to iteratively produce transformations on a small scale that diagonalize the Hamiltonian – in doing so, the 
lioms are explicitly constructed [59,56,188]. This procedure can be seen as an example of a Hamiltonian flow towards its 
diagonalization, for which there are several possibilities [243]. A particular form, the Wigner flow, has been used to estimate 
the transition between MBL and ETH phases [244]. These flow techniques have been extended to study time dynamics after 
a quench in the MBL phase [188].

In a different interesting perspective, it was also proposed to construct local approximations to the lioms to define a 
shifted Hamiltonian, whose ground-state properties are studied using quantum Monte Carlo techniques [245].

Finally, real-space renormalization group techniques usually considered for computing the ground-state properties of 
strongly disordered systems were extended to finite-excited states (RSRG-X) [105], and have been instrumental to determine 
the properties of the phase transition in between two MBL phases (with or without order, see Section 3.1.1), of quantum 
critical glasses [107] as well as to build the effective models [123] for the RG approach to the transition (Section 3.2). 
Whether or not one of these methods, a combination of several, or a completely new idea will be able to better capture the 
transition between the ETH and MBL phases is an open issue (see discussion in Section 3.2).

4. MBL phase and quantum simulations

As this is the main subject of this topical issue, we take this opportunity to briefly review connections between MBL and 
quantum simulations, in several possible meanings. The peculiar entanglement properties of MBL states (see Sections 1, 3.2.2
and 3.3) naturally suggest such connections.

MBL states have been very early on argued to be good candidates to store quantum information [28]. The main idea 
is that a MBL system has a memory of its initial conditions and, for instance, the sign of an initially encoded imbalance 
will not change even at very long times, and will be measurably different from zero. Another possibility is to use MBL 
states that sustain topological/Ising order (see Section 3.1.1), which is actually protected by disorder from decoherence 
[103]. Consequently, two quantum information processing protocols based on MBL states have been proposed: one explicitly 
uses the symmetry breaking mechanism of Section 3.1.1 to store and manipulate (including with quantum gates) quantum 
information [246], the other uses the MBL dephasing as a purification resource in a protocol based on spin echoes and 
quantum phase estimations [247].

The operability of a quantum computing system based on MBL states would crucially depend on the smallness of the 
coupling to the environment. Bauer and Nayak [28] argue that the MBL phase cannot act as a self-correcting quantum 
memory in the case of a non-zero external perturbation rate. Very early work [76] also focused on the destructive role 
of interactions (i.e. they induce a transition to the thermal phase) for a quantum-computing model based on a localized 
many-body system, even for a perfectly isolated system. Quite interestingly, taking an opposite point of view, Refs. [248,
249] analyze how a working quantum computer (with a relatively small number of qubits) could help in simulating/un-
derstanding MBL on systems larger than those available to classical computations (Section 3.9), with Ref. [249] discussing 
performances of various quantum algorithms to simulate Eq. (1) on a quantum computer.

In this spirit, the cold-atom experiments presented in Section 2 can be seen as quantum analog simulations of theoretical 
models of MBL. At the moment, the standard model of MBL – the spin chain of Eq. (1) – has never been implemented 
experimentally, but as already mentioned, there are already several situations where the quantum analog experiments are 
further ahead than simulations (on classical computers), in particular for 2d systems or regarding controlled coupling to 
a bath. Of course, not all observables or properties of MBL can be measured given a specific quantum analog setup – the 
cold-atom experiments cannot compute properties of (large) individual eigenstates, or spectral statistics –, and this situation 
is certainly comparable to that of other quantum simulators. An interesting point that can be reached with the current 
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experimental state of the art would be to create specific disorder patterns (such as ones including Griffiths regions with, 
say, a local strong disorder), in order to probe the bubble-like scenarios that are pivotal in the current understanding of MBL 
stability. Another relevant point would be to probe the existence of a mobility edge in experiments that probe 1d MBL, by, 
e.g., preparing initial states with different energy densities, or by using different measurements that probe independently 
the existence of localized and extended states. The latter program was recently realized to demonstrate the existence of 
a single-particle mobility edge in a non-interacting system by measuring long-time imbalance and cloud expansion of a 
charge density-wave state prepared to be initially present in the center of an optical lattice [250].

Finally, we would like to insist that the exploration of MBL physics triggered several important technical developments in 
numerical computations of interacting quantum systems, as reviewed in Section 3.9, and allowed one to reveal new phases 
of matter (excited-state order, Floquet time crystals – see Section 5), which are not present in non-disordered systems. It 
thus sounds likely that in the near future new quantum computation schemes or implementations will be devised, both at 
theoretical and experimental levels, based on the unique properties of MBL.

5. Conclusion

We tried to highlight several aspects of the new physics appearing in closed quantum systems when interactions and 
strong disorder effects interplay, leading to new states of matter. The resulting many-body localized phase can be considered 
as the generic scenario beyond thermalization in disordered quantum systems. Quantum entanglement being a cornerstone 
to MBL, several interesting perspectives naturally emerge for alternative models of quantum computation with/for MBL 
states.

There are several aspects of the problem not covered here. For instance, we did not discuss what happens when a MBL 
phase is coupled with a bath [251–253,181]: adding dissipation often leads to stretched exponential signals [254–256,92], 
e.g., for imbalance decays. Another very interesting topic that we left out are the new ‘Floquet’ phases of matter, such as 
time crystals (see, e.g., [257,258,88,259]), which emerge when a MBL system is periodically driven. Also a very interesting 
issue is the fate of MBL for systems with long-range interactions [69–72], in particular dipolar interactions [95] relevant for 
recent experiments on, e.g., NV centers in diamond [259,96].

We conclude by emphasizing that much more questions are still open or yet to be asked on this exciting topic.
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