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The human brain is a wonderfully complex organ characterized by heterogeneous 
connectivity between cellular and tissue units. This complexity supports the rich repertoire 
of dynamics and function that is characteristic of human cognition. While studies of brain 
connectivity have provided important insight into healthy cognition as well as its alteration 
in psychiatric disorders and neurological disease, an understanding of how this connectivity 
is embedded into the 3-dimensional space of the skull has remained elusive. In this article, 
we will motivate the importance of studying the brain as a spatially embedded network, 
particularly for understanding the rules of its development and alterations to those rules 
that may occur in neurodevelopmental disorders such as schizophrenia. We will review 
recent evidence for well-defined wiring rules in the brain, informed by notions of wiring 
minimization, spatially localized modules, and hierarchically nested topology. We will then 
discuss potential drivers of these rules in the form of evolution, genetics, energy, and the 
need for computational complexity. Finally, we will conclude with a discussion of emerging 
frontiers in the study of spatial brain networks, both in theory and modeling, and their 
potential to enhance our understanding of mental health.

© 2018 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Le cerveau humain est un organe merveilleusement complexe, caractérisé par une 
connectivité hétérogène entre les unités cellulaires et tissulaires. Cette complexité alimente 
le riche répertoire de dynamiques et de fonctions caractéristiques de la cognition humaine. 
Bien que les études sur la connectivité neuronale aient fourni des informations importantes 
sur la cognition saine ainsi que sur son altération observée dans les troubles psychiatriques 
et les maladies neurologiques, il reste difficile de comprendre comment cette connectivité 
est intégrée à l’espace tridimensionnel du crâne. Dans cet article, nous allons expliquer 
l’importance de l’étude du cerveau en tant que réseau spatialement intégré, en particulier 
pour comprendre les règles de son développement et les modifications de ces dernières 

* Corresponding author at: Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, 
USA.

E-mail address: dsb@seas.upenn.edu (D.S. Bassett).
https://doi.org/10.1016/j.crhy.2018.09.006
1631-0705/© 2018 Published by Elsevier Masson SAS on behalf of Académie des sciences.

https://doi.org/10.1016/j.crhy.2018.09.006
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:dsb@seas.upenn.edu
https://doi.org/10.1016/j.crhy.2018.09.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crhy.2018.09.006&domain=pdf


254 D.S. Bassett, J. Stiso / C. R. Physique 19 (2018) 253–264
qui peuvent intervenir dans les troubles neurologiques du développement tels que la 
schizophrénie. Nous examinerons la découverte récente de règles de câblage bien définies 
dans le cerveau, en nous appuyant sur les notions de minimisation du câblage, de modules 
spatialement localisés et de topologie imbriquée hiérarchiquement. Nous discuterons 
ensuite les moteurs potentiels qui gouvernent ces règles en matière d’évolution, de 
génétique, d’énergie et de nécessité d’une complexité computationnelle. Enfin, nous 
conclurons par une discussion des perspectives actuelles dans l’étude des réseaux 
neuronaux spatiaux, à la fois en matière de théorie et de modélisation, ainsi que leur 
potentiel pour améliorer notre compréhension de la santé mentale.

© 2018 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

The human brain is a complex organ that supports the rich set of behaviors, thoughts, and emotions that characterize 
our experiences. The tissue itself is far from homogeneous, crystalline, or completely disordered. Rather, it is segregated 
into areas, regions, or sectors each being characterized by a distinct set of attributes including cell types, gene expression 
profiles, and signaling chemicals [1–3]. Arguably even more striking is the intricate pattern of connectivity linking these 
areas with one another in a natural web [4–6]. Recent work has reported notable similarities between the architecture of 
this web or brain network, and the architecture of networks observed in manmade information processing and transmission 
systems [7]. Such similarities suggest the potential relevance of tools, models, and theories from network science for further 
developing our understanding of the brain [8].

In the contemporary landscape of scientific research, the treatment of the brain as a network has come to be formally 
known as network neuroscience [9] (Fig. 1). Common questions posed and addressed by this field range from the very basic to 
the highly translational. How does brain network architecture reflect a single human’s cognitive abilities [10]? How do brain 
networks change as children grow or in old age [11]? How do brain networks differ between individuals who are healthy 
and individuals who are suffering from mental illness [12–14]? Progress in answering these and related questions has 
begun to provide intuitions regarding how information is transmitted throughout the brain’s distributed circuitry. Yet such 
intuitions have also begun to motivate new questions regarding how the spatial locations of areas comprising the circuits, 
and the physical geometry of the edges connecting them, could impact the speed, precision, and veracity of information 
propagation and the complexity of the accompanying or ensuing dynamics.

The relevance of node location and edge geometry for system architecture and function can be naturally determined 
by considering the system to be a spatially embedded network, and by using tools developed explicitly for the analysis 
of spatial networks [15]. In an abstract (non-embedded) network, nodes form a set, and edges define pairwise relations 
or connections between nodes. In an embedded network, nodes are assigned a spatial location, such as coordinates in R3; 
then, edges are defined either as abstract connections between nodes, or as physical paths through R3 . These notions can be 
simply mapped to brain networks by assigning 3-dimensional coordinates to nodes corresponding to their physical location 
within the volumetric constraints of the skull. Edges can then reflect (non-embedded) shared information between nodes, 
or can reflect (embedded) physical wiring architectures that support the propagation of action potentials.

In this article, we review the recent literature underscoring the importance of considering the brain as a spatially em-
bedded network. To ensure that the exposition is as accessible as possible, we begin with a brief description of how brain 
networks are commonly constructed from imaging data, and we describe what topological features such networks tend to 
display (Fig. 1A). We then consider known neuroanatomy and neurophysiology to infer spatial constraints on the network’s 
architecture and function, and how such constraints might change over the distinct time scales of evolution and of develop-
ment (Fig. 1B). We then discuss statistics for quantifying these constraints, and a few generative models of brain networks 
that incorporate rules for spatial embedding. We close with a discussion of the relevance of these notions for understanding 
cognition and disease, and we highlight several important directions for future work.

2. Brain networks

Current efforts in the field of network neuroscience can be broadly categorized according to their study of three main 
types of brain networks: structural, functional, and morphometric [9]. In each case, we let G = (V , A) be a network of N
nodes, where V = {1, · · · , N} is the node set, and A ∈ R

N×N is the adjacency matrix whose element Aij gives the weight 
of the edge between node i and node j. Commonly, N ranges from 100 to 40,000. The three different types of networks 
have in common a fixed parcellation of the brain tissue into regions of interest, historically based on cytoarchitectonic 
boundaries and more recently also incorporating information about distinct functions [16]. Each region is then represented 
as a single network node. What differs across the network types is the metric used to define network edges. A structural
brain network defines edges between nodes based on physical (rather than statistical) connections between brain areas. 
Commonly, these structural edges reflect estimates of synaptic connections or bundles of neuronal axons, or white matter
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Fig. 1. Network science. (A) A schematic of the network neuroscience workflow from collection to analysis. First, either structural or functional data is 
collected (top), and then transformed into a network composed of nodes and edges (middle). From these networks, various statistics are calculated that 
measure different topological properties of interest (bottom). Local measures provide information about individual nodes in the network, paths and distances 
provide information about the patterns of edges, and mesoscale measures provide information about large-scale divisions of the network, for example into 
clusters, modules, or communities. (B) A schematic of different ways to sample networks over time, accomplished with different windows for network 
construction. (Top) Studies of dynamic functional connectivity can provide information about how brain network architecture changes over a series of short 
time windows spanning the course of an imaging experiment. (Middle) Static functional connectivity, on the other hand, can provide information only 
about features of the brain network architecture in a single time window. (Bottom) In contrast to both of the previous examples, structural connectivity 
does not change drastically after humans reach adulthood, except in relatively late age. Adapted with permission from [9].

tracts, that connect cell bodies, or gray matter, in distant regions of the brain. A functional brain network defines edges based 
on statistical relations between area activity time series, such as a correlation coefficient, coherence, synchronization index, 
or transfer entropy. Both structural and functional edges can be defined from imaging data collected from a single human, 
or a single non-human, animal. In contrast, a morphometric brain network is typically defined for a group of animals; here 
edges reflect cross-animal similarities in morphometric characteristics of brain regions, such as cortical thickness, surface 
area, gray matter volume, or curvature.

Brain networks can be defined across a range of spatial scales. The smallest scale commonly studied is that of individual 
cells, typically 4 microns (0.004 mm) in diameter. Each cell is represented as a node in the network, and synapses between 
cells are represented as structural edges, while correlations in cellular spiking activity are represented as functional edges. 
The most commonly studied cellular network is the connectome of the nematode C. elegans, which is reported to contain 
302 neurons, 6393 chemical synapses, 890 electrical junctions, and 1410 neuromuscular junctions [17]. In contrast, the 
largest scale brain network commonly studied is constructed at the level of brain areas, which are typically a few centime-
ters in diameter. Each area is represented as a node in the network, and tracts composed of bundles of neuronal axons are 
represented as structural edges, while correlations in neuronal ensemble activity are represented as functional edges. The 
most commonly studied large-scale brain networks have been well mapped by invasive imaging techniques in the mouse 
[18], Drosophila melanogaster [19], rat [20], cat [21], and macaque [22], and by non-invasive diffusion-based imaging tech-
niques in the human [23–26]. In future, concerted efforts in connectome mapping and dynamical modeling may benefit 
from emerging imaging techniques at intermediate spatial scales of measurement, a key focus area for current funding 
efforts across the globe [27].

Complementing this spatial diversity, brain networks can also be defined across a range of temporal scales, from mi-
croseconds to decades. At the smallest scale, structural edges represent physical connections and functional edges represent 
information-based relations that are true for the system over a period of a few microseconds [28]. At the largest tempo-
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ral scale, brain networks can be studied whose edges represent functional connections that are characteristic of an entire 
imaging experiment, typically extending over an hour or more [29]. Similarly, brain networks can be studied whose edges 
represent structural connections that are maintained over a period of years [30]. These various time scales over which brain 
networks can be constructed also affect the sorts of biological processes that can be probed using the tools of network 
neuroscience, from the short time scales of synaptic plasticity to the long time scales of development and aging.

The flexibility and generalizability of the network approach ensures not only that neural systems can be studied over 
diverse spatial and temporal scales, but also that such systems can be studied across a range of animal species [31]. Some 
questions are arguably best addressed in a single system. For example, the nematode C. elegans has a relatively short lifespan 
(2–3 weeks), and is therefore particularly useful in the study of aging. In contrast, humans display a rich repertoire of 
complex behaviors that are not well replicated in other species, and those behaviors are therefore best studied in humans 
alone. Complementing species-specific questions, there exist open avenues of inquiry that require cross-species comparisons. 
For example, the study of evolutionary constraints on energy consumption [32], network complexity [7], or system control 
[33] is usefully complemented by considerations of and analytical evaluations across species.

3. Spatial embedding of brain networks: intuiting rules

All of the diverse sorts of brain networks described in the previous section are physically embedded into the 
3-dimensional space of the organism (in the case of C. elegans), the exoskeleton (in the case of Drosophila), or the skull 
(in the case of mouse, rat, cat, macaque, and human). It is natural to suppose that such physical embedding occurs accord-
ing to certain rules, which might be enforced by natural constraints on development and evolution. While it is impossible 
to identify such constraints directly, it is possible to seek to intuit them from the observation of conserved properties across 
species. In the recent literature in network neuroscience, three such properties have been identified that provide intuitions 
regarding the rules of spatial embedding for brain networks: wiring minimization, spatially localized modules, and physical 
Rentian scaling.

Arguably the most consistently reported feature of spatially embedded brain networks is the feature of unexpectedly 
short structural edges, often referred to as wires. In fact the distribution of edge lengths, l, tends to be heavy-tailed. In an 
intermediate range of l, whose exact values depend upon the resolution of the measurement, this distribution can be fit by 
a power-law of the form

P (l) ∼ l−ψ (1)

where ψ is a parameter whose range of values is not yet well bounded, but is likely to become better known as the scaling 
phenomenon is assessed across multiple data sets [34]. The fact that the distribution of wiring lengths is heavily skewed to 
the left, with a markedly low average and long rightward tail, is suggestive of a preference for wiring minimization [35]. 
Observed quite early in the field in the context of tract-tracing studies of macaque cortex [36] and later in humans [34], this 
feature is also consistent with the near-optimal component placement hypothesis, which states that areas, ganglia, and even 
somata are laid out so as to nearly minimize the length of interconnections required [37]. Intuitively, wiring minimization 
allows for swift, precise, and veracious information transmission throughout the system. While long wires still exist, they 
are few in number, and appear to provide very specific benefits in terms of redundancy and dynamical complexity [38].

The second commonly observed property of physically embedded brain networks is spatially localized modules. In graphs 
and networks, a module is commonly defined as a set of nodes (and their connections with one another), where the 
nodes in the set are more densely connected to one another than expected under an appropriate random network null 
model [39]. Such modules are frequently identified in brain networks using community detection tools such as modularity 
maximization, InfoMap, k-means clustering, and others [39–41]. To enhance the reader’s intuition for these methods, we 
note that modularity maximization seeks to maximize a modularity quality function, the most common of which is

Q =
∑

i j

[(
Aij − γ Pij

)]
δ
(
Ci, C j

)
(2)

where Aij is the i jth element of the adjacency matrix, node i is assigned to community Ci and node j is assigned to 
community C j . The Kronecker delta δ(Ci, C j) is 1 if node i and node j are in the same community and zero otherwise, 
γ is a structural resolution parameter [42], and Pij is the expected weight of the edge connecting nodes i and j under 
an appropriate network null model [39]. Using this or a similar approach, it has been observed across many species that 
there is a clear tendency for modules in structural and functional brain networks to be composed of nodes that lie near one 
another in physical space [43]. In the human, functional brain networks – constructed from blood–oxygen level dependent 
(BOLD, a measure of metabolic activity in the brain) signals acquired with functional magnetic resonance imaging (fMRI) 
while the participant is resting – display between 7 and 17 modules at the largest topological scales in the network [16,
44]. Each module appears to be composed of regions that perform a similar function such as vision, audition, motion, 
or attention. Most modules are spatially localized, with the exception of the fronto-parietal module (thought to support 
executive function) and the default mode module (thought to support self-referential processes among others). The tendency 
for spatial localization of network modules is often interpreted as facilitating segregation of information processing.
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Fig. 2. Rentian scaling. (A) An illustration of the calculation of Rent’s exponent, which quantifies the fractal scaling of the number of connections to or from 
a region of the brain (left). Regions in space that contain relatively more nodes (higher value of n) tend to have relatively more connections (higher value 
of e), and the relation between these two variables is well-approximated by a power law with exponent p (right). (B) The Rentian scaling exponent, p, 
calculated from human brains predicts the gray–white matter ratio across evolution, suggesting that the efficient embedding of brain networks in physical 
space is a conserved property across mammals. This figure is adapted with permission from [7].

The third and final commonly observed property of physically embedded brain networks that we will discuss here 
is physical Rentian scaling [7]. First observed in computer circuits in the 1960s by E.F. Rent, this scaling law stipulates 
that when an abstract topological architecture has been efficiently embedded into a physical space, the number of pins 
(terminals, T ) at the boundaries of integrated circuit designs scales linearly in log–log space with the number of internal 
components (g), such as logic gates:

T = k g p (3)

where k is a Rent coefficient and p is the Rent exponent, which ranges from 0 to 1. Intuitively, this property suggests 
space-filling, fractal, hierarchically nested topology that has been efficiently embedded into physical space. In the context of 
brain networks, this property is examined by placing randomly sized rectangles (for approximately 2-dimensional systems 
like C. elegans) or randomly sized boxes (for approximately 3-dimensional systems like the human brain), and then by 
counting (i) the number of edges, e, crossing the boundary of a given box, and (ii) the number of nodes, n contained within 
that given box (Fig. 2A). If the system displays Rentian scaling, then

e ∼ k np (4)

where, as before, k is the Rent coefficient and p is the Rent exponent. Rentian scaling has been observed in distribution 
systems such as the London Underground [45], fungal chords, and rodent brain vasculature [46], and has also been observed 
in information distribution systems such as very large scale integrated circuits, the C. elegans connectome, and the human 
connectome [7,34]. In the context of neural systems specifically, these observations are consistent with the presence of 
wiring minimization and localized modules [47], but also further expand our intuitions by suggesting that the system can 
maintain highly complex topology (such as fractal hierarchically modular topology) in the face of heavy constraints on 
wiring (Fig. 2B).

4. Drivers of rules for spatial embedding

In the previous section, we described three properties of brain networks from which one can intuit the presence of 
heavy constraints on the manner in which topologies supporting information transmission and computation are instantiated 
in the physical volume of neural tissue. These constraints suggest the existence of rules for spatial embedding that ensure 
nearly-minimal wiring, spatially localized modules, and physical Rentian scaling. A natural next question is, “What mecha-
nisms could drive these rules for spatial embedding?” The answer to this question is likely quite multiplicitous, and here 
we simply review a few candidate mechanisms that fall under the generic categories of either (i) those that are structural 
or (bio)physical, or (ii) those that are functional or relevant to dynamics and behavior.

Structural or biophysical constraints can range from small-scale molecular drivers to large-scale volumetric constraints. 
Perhaps the simplest and most obvious structural constraint on the spatial architecture of brain networks is the fact that, for 
many organisms, the network must be embedded into the fixed and rather small volume within the skull. The cranial capac-
ity dictated by the skull has evolved by natural pressures, according to principles of morphological modularity, anatomical 
integration, and heterochrony [48]. The constraints imposed by its current size directly impacts the pattern of white mat-
ter connectivity that conserves both white and gray matter volume, leading to networks with nearly minimal wiring costs 
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Fig. 3. Brain networks display near minimal wiring with enhanced efficiency. (A) Comparisons of wiring length between empirical connectomes, and those 
with node placement shuffled to minimize wiring length in macaque and C. elegans. The local C. elegans network refers to neurons within the rostral 
ganglion. (B) Similar to the information presented in panel (A), but instead comparing the average metric length of the shortest path. Here, metric shortest 
path is the physical distance that must be traversed to travel from any node to any other node in the network. (C) Similar to the information presented in 
panel (A), but instead comparing the average path length. Here, average path length refers to the average number of processing steps (not metric distance) 
between any two nodes in the network. Figure adapted with permission from [36].

(Fig. 3) [49]. Yet, to the degree that this pattern-embedding problem has degenerate solutions, it is also of interest to con-
sider the potential constraints of energy and metabolism [47]. Intuitively, long wires may require more energy to develop, 
maintain, and use. Indeed, extensive prior work supports the notions that energy limitation is a selective pressure on the 
evolution of sensory systems [50], a constraint on coding and processing of sensory information [51], and a constraint on 
signaling in gray matter more generally [52]. It is interesting to speculate that such constraints – and the trade-offs between 
these constraints and information pressures on neural coding [53] – might be arbitrated by genetic material [54,55].

Complementing structural constraints on the spatial embedding of brain networks are considerations of the functions 
and dynamics that such networks – based on their topology and geometry – can support. Intuitively, a neural system char-
acterized by a preponderance of short distance connections can simply and effectively segregate functions from one another, 
and localize information processing. Yet, there may also be contrary pressures during development and evolution to max-
imize the speed of a response (which may require long-distance connections) and to enhance computational complexity 
(which may require an intricate balance of both short- and long-distance connections) [47]. As a simple example in the 
structural connectome of the human, the network’s mesoscale architecture has been shown not only to contain assortative 
modules, but also to contain core-periphery and bipartite subgraphs that can potentially support a greater diversity of func-
tional roles including integration and transient control [54]. Indeed, individual differences in the degree of diversity in these 
meso-scale structures was found to be correlated with individual differences in cognitive control [54]. Consistent with these 
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competing needs for topological diversity and wiring minimization, structural brain networks show topological properties 
that allow for fewer processing steps between distant regions than their minimally wired counterparts (Fig. 3). These and 
related studies support the notion that the observed spatial embedding of brain networks might reflect competing pressures 
for segregation versus integration, for local processing versus transient top-down control, and for speed of response versus 
computational complexity [47,56,57].

5. Spatial statistics, generative models, and null models

Because the spatial embedding of an abstract network topology into a physical area or volume can reflect key structural 
constraints and functional drivers that the system may experience, it is important to develop and apply network analysis 
tools, models, and theories that account for space. In general, efforts in brain network analysis have incorporated space in 
three general categories of approaches: descriptive statistics measuring the architecture of the network, generative network 
models that incorporate spatial considerations directly into the wiring rules, and null models for hypothesis testing that 
account for varying levels of spatial organization. While these efforts are not comprehensive of the approaches that might 
yet be useful to develop in the analysis of brain networks, they do represent important first steps in acknowledging that 
the spatial organization of network topology and geometry may be critical for an understanding of brain development and 
function.

5.1. Spatial statistics

In brain network analysis, the most common approach used to assess spatial embedding is to calculate spatially-informed 
statistics. At the smallest scale of individual edges, one might compute the mean, variance, skew, kurtosis or other features 
of the distribution of edge lengths. At the large-scale of statistics that account for the nature of paths throughout the entire 
network, one might consider spatially-informed measures of global efficiency. One example is the geometric global efficiency, 
which is defined as the reciprocal of the harmonic mean of the shortest physical path lengths between nodes [58], and 
intuitively reflects the routing capabilities of a network [46]. As another interesting alternative, one can consider statistics 
that explicitly measure the form of the map between abstract topology and physical geometry, such as that found in Rent’s 
rule [7].

To make this exposition more concrete, here we follow [59], and recount several summary spatial statistics that have 
been previously defined for use in understanding mesoscale organization in brain network architecture. Specifically, we con-
sider community structure given by a partition C = {C1, · · · , C K }, where Ci ⊂ V consists of the nodes in the ith community 
and K is the number of communities in G . For non-overlapping community structure, note that Ci ∩ C j = ∅ if i �= j. When 
this structure is embedded into physical space, it is of interest to quantify the physical, spatial organization of communities 
within the network. At this meso-scale, we consider the following statistics: the average pairwise spatial distance, spatial 
diameter, spatial extent, radius, and laterality of communities [59].

Community average pairwise spatial distance: Perhaps the simplest statistic one can compute for a spatially embedded 
modular network is the community average pairwise spatial distance, lCk , which has been defined as the average Euclidean 
distance between all pairs of nodes within a community [61]:

lCk = 2

NCk (NCk − 1)

∑

i, j∈Ck

∥∥ri − r j
∥∥ (5)

where ri is the position vector of node i and NCk is the number of nodes in community Ck . Intuitively, the average pairwise 
spatial distance of the entire network is defined similarly except that the calculation includes all nodes within the network.

Community spatial diameter: Next, we can calculate the maximum Euclidean distance between all pairs of nodes within a 
community, and we refer to this statistic as the community spatial diameter, dCk [61]:

dCk = max
i, j∈Ck

(∥∥ri − r j
∥∥)

(6)

Community spatial extent. We can also quantify the spatial extent of a community by estimating the area or volume of the 
community, normalized by the number of nodes within the community [61]:

sCk = 1

NCk

Vh (ri)i∈Ck
(7)

In 3 dimensions, Vh is the volume of the region bounded by the points of the convex hull of nodes within the community; 
in 2 dimensions, Vh is the area of the region bounded by the points of the convex hull of nodes within the community. The 
convex hull can be operationalized as the polygon constructed by connecting all points that constitute the perimeter of the 
community.

Community radius: The community radius ρCk can be estimated by calculating the length of the vector of standard 
deviations of all nodes in the community [62]:
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ρCk = (
1

NCk

∑

i∈Ck

‖ri‖2 − 1

N2
Ck

‖
∑

i∈Ck

ri‖2)
1
2 (8)

Community laterality. The human brain has a marked symmetry: the architecture, function, and dynamics of the left hemi-
sphere is strikingly similar to the architecture, function, and dynamics of the right hemisphere. While we do not yet have 
a complete understanding of the utility of this symmetry for human cognition and behavior, its existence motivates the 
question of whether and when mesoscale network structure is the same or different in the two hemispheres. We can op-
erationalize this question as one of estimating community laterality. Consider first that each node can be assigned to one 
of two categories, J 1 and J 2, and we wish to determine the extent to which a community localizes to one category or the 
other. For an individual community Ck , we can define the laterality �Ck as [60]:

�Ck =
∣∣N J 1 − N J 2

∣∣
NCk

(9)

where N J1 is the number of nodes located in category J 1, and where N J 2 is the number of nodes located in category J 2. 
Intuitively, when �Ck is small, the number of nodes in the community are evenly distributed between the two categories, 
while when �Ck is large, all nodes in the community are located in a single category.

5.2. Generative models

Beyond using spatially-informed statistics to describe the architecture of a physically embedded brain network, one 
might also wish to develop a generative model from which one can construct a network that has statistical similarities to 
those observed in real neural systems [63]. Formally, a generative network model is comprised of a wiring (or rewiring) 
rule that, when instantiated, produces a network. The common goal of generative network models is to intuit simple and 
parsimonious wiring rules that can produce networks similar to those that one hopes to model. Such generative models 
have been developed for C. elegans [64], the cat [65], the macaque [66], and the human [34,63,67]. In several of these 
models, the wiring rule contains a parameter that tunes a constraint on wiring length, and others even consider changes in 
the topological wiring constraints throughout the timescales of growth and development [34,64].

Importantly, models that account for spatial constraints tend to produce topologies that are similar to those observed in 
empirical brain networks (Fig. 4). For example, a common form of these models is the following:

P (u, v) = E(u, v)η × K (u, v)γ (10)

where P (u, v) gives the probability of forming an edge between brain region u and brain region v , E(u, v) denotes the 
Euclidean distance between region u and region v , η controls the characteristic connection length, K (u, v) represents an 
arbitrary non-geometric relationship between region u and region v , and γ scales the relative role of K (u, v) in the prob-
ability [63]. One particularly useful choice for K is some measure of the local clustering in the network, for example the 
number of nearest neighbors in common between node u and node v . A generative model instantiating this choice was re-
cently used to suggest that brain networks of patients with schizophrenia are well-fit by models with greater preference for 
local clustering and decreased penalties on long-distance connections [67]. Collectively, this and other related efforts have 
demonstrated that across a wide range of species, generative models that incorporate a penalty on long-distance connec-
tions produce networks that are more similar to those observed in real neural systems than models that do not incorporate 
such a penalty.

5.3. Null models

As one develops a generative model to produce an artificial topology reminiscent of the empirically observed topology, 
one might also wish to produce a family of models that can hold certain spatial constraints constant, thereby allowing 
formal statistical testing of topological signatures that are not explained by those constraints. This general effort falls within 
the scope of developing appropriate spatially-informed null models. Perhaps the simplest such null model is one in which 
the locations of edges are permuted uniformly at random while preserving the connection length distribution [68]. This null 
model allows one to determine whether the network topology one observes in the real system can be explained simply 
by the connection length distribution. Alternatively, one could also consider a connection length optimized null model, or 
one in which wiring is formally minimized while maintaining the same number of nodes and edges [7,68]. This null model 
allows one to determine whether the network topology one observes in the real system can be explained simply by a wiring 
minimization principle. Other even more complex null models can be constructed [69], and can be directly incorporated into 
community detection algorithms to identify communities that are not explained by the spatial constraints instantiated in 
the null [43,70,71].



D.S. Bassett, J. Stiso / C. R. Physique 19 (2018) 253–264 261
Fig. 4. Comparison of the similarity of models to brain networks. (A) A diagram of the 13 models tested. Models include both spatially embedded and 
non-embedded models, as well as both generative models and static models. Note: The upper right corner shows embedded generative models. (B) Sum 
of the magnitude of the differences in a battery of network statistics between empirical networks and models networks (indicated by abbreviations along 
the x-axis). Colors indicate different human subjects. Network measures included assortativity, hierarchy, clustering, Rentian scaling, fractal dimension, 
diameter, mean path length, modularity, and number of communities. Note: the hybrid distance-growth model, which is a spatially embedded generative 
model, displays the smallest difference from the empirically observed network statistics. Figure adapted with permission from [34].

6. Implications for cognition and disease

Given the marked spatial constraints observed in the topology of brain networks across a variety of species, it is natural 
to ask whether and how such constraints impinge upon cognition, or explain the alterations in cognition that are observed 
in neurological disease or psychiatric disorders. Answers to these questions remain largely elusive, but preliminary studies 
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Fig. 5. Observed differences in the statistics of brain networks in patients with schizophrenia compared to healthy controls. (A) Difference in path length 
between patients with schizophrenia and healthy controls across a range of thresholds. Here, the threshold determines the density of the binary network, 
with a threshold of 0.1 only preserving the 10% strongest edges in the weighted network. (B) The same comparison, but for both weighted and binary 
graphs. (C) The same comparison but for the clustering coefficient. (D) The same comparison but for the betweenness centrality. All of these findings are 
consistent with a randomization and decentralization of functional networks in schizophrenia. Figure reproduced with permission from [77].

are beginning to provide a few simple intuitions. We will separate our comments in this section into the implications of 
spatially embedded brain networks for cognition, and the implications of such networks for disease.

Because information is transmitted throughout neural systems in a physically instantiated manner, the length of physical 
connections can have direct implications for the lag between information dispersal and information receipt. Such lags are 
commonly modeled as being proportional to the physical length of tracts (or to the Euclidean distance between the center 
of mass of regions of interest) [72]. Functionally, lags play an important role in directly modulating the coordination of 
oscillatory activity [73] and impacting the nature and verity of neural code [74]. It is interesting to consider the potential 
lags – induced by the physical distances between processing units – that are implicit in the layout of areas and ganglia. 
Recent work has described a dominant gradient in cortical features from sensorimotor to transmodal areas [75], offering 
an intrinsic coordinate system that informs our understanding of how increasingly complex cortical functions could emerge 
from structural constraints [76].

Alterations in the spatial organization of brain networks, and the dynamics that occur atop them, are frequently ob-
served in neurological disease and psychiatric disorders, and may in part explain the observed alterations in cognitive 
function. Some of the earliest reports of such alterations in brain network organization highlighted a marked functional 
and structural network randomization in schizophrenia [77,78] both in familial and sporadic subtypes [79], which – at least 
on the surface – is considered to be related to the thought disturbances present in the disease (Fig. 5). Interestingly, this 
network randomization also theoretically confers some degree of resilience to injury, offering a candidate explanation for 
the persistence of the disease in the human population [80]. While schizophrenia displays marked alterations in network 
structure impacting dynamics, epilepsy displays marked network dynamics suggestive of alterations in underlying structure. 
Recent evidence suggests that the propagation of epileptic activity throughout cortical and subcortical tissue may manifest 
as recurrent spiral waves [81], which in their spatially-dependent character are reminiscent of anterior–posterior traveling θ
waves observed in the human hippocampus [82]. Indeed, the presence of spatially instantiated wave-like dynamics opens up 
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important areas for future work in modeling [83] and control [84] for the purposes of benefiting patients with neurological 
disease.

7. Conclusion & future directions

In summary, in this article we have reviewed recent literature supporting the notion that the spatial embedding of 
network topology in the brain provides important insights into its development, architecture, and function. We began with 
a simple summary of the types of brain networks currently being investigated across measurement modalities, spatial 
scales, temporal scales, and species. We then described three properties of brain networks from which one can intuit the 
presence of heavy constraints on the manner in which topologies supporting information transmission and computation 
are instantiated in the physical volume of neural tissue: wiring minimization, spatially localized modules, and physical 
Rentian scaling. Next, we considered a few candidate mechanisms that could drive the observed rules of spatial embedding, 
including those that are structural or (bio)physical, and those that are functional or relevant to dynamics and behavior. 
We described a few initial efforts to incorporate space into brain network analysis: descriptive statistics measuring the 
architecture of the network, generative network models that incorporate spatial considerations directly into the wiring 
rules, and null models for hypothesis testing that account for varying levels of spatial organization. We concluded with a 
discussion of the relevance of these notions for understanding cognition and disease.

Despite the important work to date addressing the architectural, functional, and developmental significance of spatial 
embedding in brain networks, much remains to be done. We envision that future work will further elucidate the implica-
tions of spatial constraints on brain network growth and development for the network’s topology, and for the network’s 
symmetry. While both topology and symmetry are known to impact dynamics and control from a theoretical perspec-
tive [85], little is known about how that symmetry is instantiated in the brain, or how different sorts of symmetry (radial 
in the jellyfish, bilateral in the human) might constrain the function of neural systems. We further envision that additional 
spatially-informed statistics will be constructed, particularly to accurately and parsimoniously characterize the organization 
of brain networks across diverse spatial scales of measurement. Such efforts could naturally capitalize on recent work de-
veloping multilayer and multiplex representations of neural systems. We look forward to these and related advances, which 
will ensure a better understanding of the spatial constraints on brain networks and their relevance for human cognition and 
disease.
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