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We report a theoretical study of a quantum optical model consisting of an array of 
strongly nonlinear cavities incoherently pumped by an ensemble of population-inverted 
two-level atoms. Projective methods are used to eliminate the atomic dynamics and 
write a generalized master equation for the photonic degrees of freedom only, where the 
frequency-dependence of gain introduces non-Markovian features. In the simplest single 
cavity configuration, this pumping scheme gives novel optical bistability effects and allows 
for the selective generation of Fock states with a well-defined photon number. For many 
cavities in a weakly non-Markovian limit, the non-equilibrium steady state recovers a 
Grand-Canonical statistical ensemble at a temperature determined by the effective atomic 
linewidth. For a two-cavity system in the strongly nonlinear regime, signatures of a Mott 
state with one photon per cavity are found.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous présentons l’étude d’un modèle d’optique quantique consistant en un réseau de 
cavités fortement non linéaires en présence de pompage incohérent induit par un ensemble 
d’atomes à deux niveaux, avec inversion de population. Nous appliquons une méthode 
projective afin d’éliminer les degrés de liberté atomiques, et dérivons une équation 
maîtresse généralisée contenant uniquement les degrés de liberté photoniques, dans 
laquelle le pompage dépendant de la fréquence induit des effets non markoviens. Dans le 
cas simple d’une cavité, cette méthode de pompage induit de nouveaux effets de bistabilité 
et permet la création d’états de Fock avec un nombre défini de photons. Dans le cas de 
plusieurs cavités dans un régime faiblement non markovien, l’état stationaire hors équilibre 
prend la forme d’un ensemble grand-canonique, dont la température effective est définie 
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par la largeur du spectre d’émission des atomes. Dans une configuration à deux cavités, 
en régime fortement non linéaire, nous observons la signature d’un état de Mott avec un 
photon par site.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The study of quantum many-body systems is one of the most active fields of modern condensed-matter physics. Among 
the most celebrated effects, we can mention frictionless flows in superfluid and superconducting systems and the geometri-
cal quantization features of the fractional quantum Hall effect. While this physics was traditionally studied in liquid Helium 
samples [1,2], in atomic nuclei [3], in quark–gluon plasmas [4,5], or in electron gases confined in solid-state devices [6–9], 
the last two decades have witnessed impressive advances using ultra-cold atomic gases trapped in magnetic or optical 
traps [10–12].

In the last few years, a growing community has started investigating many-body effects in the novel context of the 
so-called quantum fluids of light [13], i.e. assemblies of many photons confined in suitable optical devices, where effective 
photon–photon interactions arise from the optical nonlinearity of the medium. After the pioneering studies of Bose–Einstein 
condensation [14] and superfluidity [15] effects in dilute photon gases in weakly nonlinear media, a great interest is 
presently being devoted to strongly nonlinear systems, where even single photons are able to appreciably affect the op-
tical properties of the system.

The most celebrated example of such physics is the photon blockade effect [16], where the presence of a single photon in 
a cavity is able to detune the cavity frequency away from the pump laser, so that photons behave as effectively impenetrable 
particles. Experimental realizations of this idea have been reported by several groups using very different material platforms, 
from single atoms in macroscopic cavities [17] to single quantum dots in photonic crystal cavities [18,19] or to single 
Josephson qubits in circuit QED devices for microwaves [20,21].

Scaling up to arrays of many cavities coupled by photon tunneling is presently a hot challenge in experimental physics, 
as it would realize a Bose–Hubbard model for photons where the photon blockade effect may lead to a rich physics, includ-
ing the superfluid to Mott-insulator phase transition at a commensurate filling or Tonks–Girardeau gases of impenetrable 
photons in one-dimensional continuum models. The first works on strongly correlated photons were restricted to quasi-
equilibrium regimes where the photon loss rate is much slower than the internal dynamics of the gas so that the system 
has time to thermalize and/or be adiabatically transferred to the desired strongly correlated state [22,23]. While this as-
sumption might be satisfied in suitably designed circuit-QED devices in the microwave domain, radiative losses are hardly 
negligible in realistic optical cavities in the infrared or visible domain, so that thermalization is generally far from being 
granted [13,21].

As a result, a very active attention has been recently devoted to the peculiar non-equilibrium effects that arise for realis-
tic loss rates. Starting from the pioneering work on photon blockade in non-equilibrium photonic Josephson junctions [24], 
the interest has been focused on the study of schemes to generate strongly correlated many-body states in the very non-
equilibrium context of photon systems, where the steady state is not determined by a thermal equilibrium condition, but 
by a dynamical balance of driving and losses.

The first such scheme proposed in [25] was based on a coherent pumping: provided the different many-body states are 
sufficiently separated in energy, many-photon processes driven by the coherent external laser are able to selectively address 
each many-body state as done in optical spectroscopy of atomic levels. In this way, the non-equilibrium condition is no 
longer just a hindrance, but offers new perspectives, as it allows one to individually probe each excited state. Furthermore, 
the appreciable radiative losses make microscopic information on the many-body wavefunction be directly encoded in the 
quantum coherence of the secondary emission from the device [26–28]. While this coherent pumping scheme offers a viable 
way to generate and control few photon states in small arrays, its efficiency is restricted to mesoscopic systems where the 
different states are well separated in energy. Moreover, this scheme intrinsically leads to coherent superpositions of states 
of different photon number: while this feature is intriguing in view of observing many-body braiding phases [28], it is not 
ideally suited to generate states with a well-defined photon number such as Mott-insulator states.

The identification of new schemes that do not suffer from these limitations is therefore of great importance in view 
of experiments. In the present work, we study the potential of frequency-dependent gain processes to selectively generate 
strongly correlated states of photons in arrays of strongly nonlinear cavities. The frequency-dependence of amplification is 
a well-known fact of laser physics and is often exploited to choose and stabilize a desired lasing mode [29]. In the last 
years, a series of works by our groups [30,31] have explored its effect on exciton-polariton Bose–Einstein condensation 
experiments, in particular questioning the apparent thermalization of the non-condensed fraction [32–36]. All these works 
were however restricted to the weakly interacting regime where quantum fluctuations can be treated in the input–output 
language by means of a Bogoliubov-like linearized theory around the mean field. Here we tackle the far more difficult case 
of strong nonlinearities, which requires including the non-Markovian features due to the frequency-dependent gain into the 
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many-body master equation for the strongly interacting photons and then to solve the quantum many-body theory of the 
generalized driven-dissipative Bose–Hubbard model.

In the last years, similar questions have been theoretically addressed by several groups. Just to mention a few of them, 
a scheme to obtain a thermal state at finite temperature with a non-vanishing effective chemical potential for photons 
has been proposed in [37] using a clever parametric system–bath coupling with as special eye to circuit-QED and opto-
mechanical systems. A further development in this direction [38] has considered pumping by two-photon processes in the 
presence of an auxiliary shadow lattice in a circuit-QED architecture: in spite of the complexity of the proposed set-up, the 
mechanism underlying the stabilization of many-body states is very similar to our frequency-dependent gain. With respect 
to these proposals and to the engineered dissipations originally proposed for atoms [39] and then extended to photons [40,
41] to organic polaritons [42,43], and circuit QED systems [44–46], our approach has the crucial advantage of being based on 
a quite commonly observed feature of laser and photonic systems such as a frequency-dependent gain. Finally, a pioneering 
discussion of the onset of collective coherence in a related model of a cavity array embedding population-inverted atoms 
has recently appeared in [47], but little attention was paid to the effect of strong nonlinearities nor to the development of 
a tractable quantum formalism.

The aim of this article is to introduce the readers to the basic physics of a frequency-dependent incoherent pumping and 
to first illustrate the consequences of the resulting non-Markovianity in the simplest configurations before attacking more 
complex many-body effects. With this idea in mind, the structure of the article is the following. In Sec. 2, we present the 
physical system and we develop the theoretical model based on a master equation for the cavities coupled with the atoms 
of the gain medium. The projective method to eliminate the atomic degrees of freedom and write a master equation for the 
photonic density matrix is sketched in Sec. 2.2 along the lines of the general theory of [48]. A first application of the method 
to a single cavity configuration is discussed in Sec. 3 and specific features of the weak and the strong nonlinearity cases 
are illustrated, e.g., a novel mechanism for optical bistability and the selective generation of Fock states with a well-defined 
photon number. The richer physics of many cavity arrays is discussed in Sec. 4: in a Markovian regime, the photonic 
steady state has the surprisingly trivial form of a Grand-Canonical distribution of infinite temperature, and therefore is 
fully independent of the many-body photonic Hamiltonian. In a weakly non-Markovian regime, an effective Grand-Canonical 
distribution of finite temperature is obtained even in the absence of thermalization mechanisms; in a strongly nonlinear 
and non-Markovian regime, signatures of a Mott insulator state with one photon per cavity are illustrated. Conclusions are 
finally drawn in Sec. 6. In the Appendices, we provide the details of the derivation of the photonic master equation using 
projective methods, on the exact stationary state in the Markovian case, on a perturbative expansion of the coherences in 
the weakly non-Markovian limit, and on further numerical validation of the purely photonic master equation.

2. The physical system and the theoretical model

2.1. The physical system

In this work, we consider a driven-dissipative Bose–Hubbard model for photons in an array of k coupled nonlinear 
cavities of natural frequency ωcav. In units such that h̄ = 1, the Hamiltonian for the isolated system dynamics has the usual 
form [13,21,49]:

Hph =
k∑

i=1

[
ωcav a†

i ai + U

2
a†

i a†
i aiai

]
−
∑
〈i, j〉

[
Ja†

i a j + hc
]

(1)

They are arranged in a one-dimensional geometry and are coupled via tunneling processes with amplitude J . Each cavity 
is assumed to contain a Kerr nonlinear medium, which induces effective repulsive interactions between photons in the 
same cavity with an interaction constant U proportional to the Kerr nonlinearity χ(3) . Dissipative phenomena due the finite 
transparency of the mirrors and absorption by the cavity material are responsible for a finite lifetime of photons, which 
naturally decay at a rate �loss.

As mentioned in the introduction, the key novelty of this work with respect to earlier work consists in the different 
mechanism that is proposed to compensate for losses and replenish the photon population. Instead of a coherent pumping 
or a very broad-band amplifying laser medium, we consider a configuration where a set of Nat two-level atoms is present in 
each cavity. Each atom is strongly pumped at a rate �pump, spontaneously decays to its ground state at a rate γ and, most 
importantly, is coupled with the cavity with a Rabi frequency �R: as a result, the atoms provide an incoherent pumping 
of the cavities, with a frequency-dependent rate centered at the atomic frequency ωat. Our choice of two different physical 
mechanisms for nonlinearity and pumping (for example, two different atomic species) allows us to tune independently 
photonic interactions and emission.

The free evolution of the atoms and their coupling with the cavities are described by the following Hamiltonian terms,

Hat =
k∑

i=1

Nat∑
l=1

ωatσ
+(l)
i σ

−(l)
i (2)

H I = �R

k∑ Nat∑[
a†

i σ
−(l)
i + aiσ

+(l)
i

]
(3)
i=1 l=1
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the atomic frequency ωat is assumed to be in the vicinity (but not necessarily resonant) with the cavity mode, and the 
atom–cavity coupling is assumed to be weak enough �R � ωat, ωcav to be far from the ultra-strong coupling regime [50]
and from any superradiant Dicke transition [51].

As usual, the dissipative dynamics under the effect of the pumping and decay processes can be described in terms of a 
master equation for the density matrix ρ of the whole atom–cavity system,

∂tρ = 1

i

[
Hph + Hat + H I,ρ

]+L(ρ) (4)

where the different dissipative processes are summarized in the Lindblad super-operator L = Lpump + Lloss, at + Lloss, cav, 
with

Lpump = �pump

2

k∑
i=1

Nat∑
l=1

[
2σ

+(l)
i ρσ

−(l)
i − σ

−(l)
i σ

+(l)
i ρ − ρσ

−(l)
i σ

+(l)
i

]
(5)

Lloss, at = γ

2

k∑
i=1

Nat∑
l=1

[
2σ

−(l)
i ρσ

+(l)
i − σ

+(l)
i σ

−(l)
i ρ − ρσ

+(l)
i σ

−(l)
i

]
(6)

Lloss, cav = �loss

2

k∑
i=1

[
2aiρa†

i − a†
i aiρ − ρa†

i ai

]
(7)

describing the pumping of the atoms, the spontaneous decay of the atoms, and the photon losses, respectively. The σ±(l)
i

operators are the usual raising and lowering operators for the l-th atom in the i-th cavity. We introduce the detuning 
δ = ωcav − ωat of the bare cavity frequency with respect to the atomic frequency. In the following, we shall concentrate on 
a regime in which pumping of the atoms is much faster than their spontaneous decay, �pump � γ , so the Lloss, at Lindblad 
term can be safely neglected.

For simplicity, we will also restrict our attention to the �pump � √
Nat �R regime, where the atoms are immediately 

repumped to their excited state after emitting a photon into the cavity: under such an assumption, an atom having decayed 
to the ground state does not have the time to reabsorb any photon before being repumped to its excited state. In this 
regime, complex cavity-QED effects such as Rabi oscillations do not take place and the photon emission takes place in an 
effectively irreversible way [48,52]: as a result, we are allowed to eliminate the atomic dynamics from the problem and 
write a much simpler photonic master equation involving only the cavity degrees of freedom.

2.2. Closed master equation for the photonic density matrix

Under the considered �pump � �R approximation, the atomic population is concentrated in the excited state and it is 
possible to use projective methods to write a closed master equation for the photonic density matrix where the atomic 
degrees of freedom B have been traced out, ρph = TrBρ . All details of the (quite cumbersome) calculations can be found in 
Appendix A. The resulting photonic master equation reads

∂tρph = −i
[

Hph,ρph(t)
]+Lloss +Lem (8)

with

Lloss = �loss

2

k∑
i=1

[
2aiρa†

i − a†
i aiρ − ρa†

i ai

]
(9)

Lem = �em

2

k∑
i=1

[
ã†

i ρai + a†
i ρãi − aiã

†
i ρ − ρãia

†
i

]
(10)

describing photonic losses and emission processes, respectively. While the loss term has a standard Lindblad form at rate 
�loss, the emission term keeps some memory of the atomic dynamics as it involves modified lowering and raising operators

ãi = �pump

2

∞∫
0

dτ e(−iωat−�pump/2)τ ai(−τ ) (11)

ã†
i = [ãi

]† (12)

which contain the photonic (Hamiltonian and dissipative) dynamics during pumping. In the limit we are considering in 
which photonic losses are slow with respect to atomic pump, these operators are the interaction picture ones with respect 
to the photonic Hamiltonian in the cavity array and have a simpler expression:
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ai(τ ) = eiHphτ ai e−iHphτ (13)

The Fourier-like integral in Eqs. (11) and (12) is responsible for the frequency selectivity of the emission, as the integral is 
maximum when the free evolution of ai occurs at a frequency close to the atomic one ωat.

A deeper physical insight on the operators (11) and (12) can be obtained by looking at their matrix elements in the 
basis of eigenstates of the photonic Hamiltonian. We consider two eigenstates | f 〉 (resp. 

∣∣ f ′〉) with N (resp. N + 1) photons 
and energy ω f (resp. ω f ′ ). After elementary manipulation, we see that the emission amplitude follows a Lorentzian law as 
a function of the detuning between the frequency difference of the two photonic states ω f ′ f = ω f ′ − ω f and the atomic 
transition frequency ωat,〈

f ′∣∣ ã†
i | f 〉 = �pump/2

−i(ωat − ω f ′ f ) + �pump/2

〈
f ′∣∣a†

i | f 〉 (14)

Upon insertion of (14) into the master equation (8), one can associate the real part of the Lorentzian factor with an effective 
emission rate

�em(ω f ′ f ) = �0
em

�2
pump/4

(ωat − ω f ′ f )
2 + �2

pump/4
(15)

while the imaginary part can be related to a frequency shift of the photonic states under the effect of the population-
inverted atoms. In the next section, this point will be made more precise under a secular approximation.

The width of the Lorentzian is set by the pumping rate �pump, that is by the autocorrelation time τpump = 1/�pump of 
the atom seen as a frequency-dependent emission bath. The peak emission rate exactly on resonance is equal to

�0
em = 4Nat�

2
R

�pump
(16)

While the �pump � √
Nat�R assumption automatically implies that the emission is much slower than the atomic repumping 

rate, �em � �pump, no constraint needs being imposed on the parameters J , U and δ = ωcav − ωat of the photonic Hamil-
tonian, which can be arbitrarily large. Whereas an extension of our study to the �loss � �pump regime would only introduce 
technical complications, entering the �em � �pump regime is expected to dramatically modify the physics, as a single atom 
could exchange photons with the cavity at such a fast rate that it has not time to be repumped to the excited state in 
between two emission events. As a result, reabsorption processes and Rabi oscillations are possible, which considerably 
complicate the theoretical description. These issues will be the subject of future investigations.

2.3. Reformulation in Lindblad form in the secular approximation

In the case the system has a discrete spectrum, it is possible in the so-called secular approximation to write another 
photonic master implementing non-Markovian effects with a more standard Lindblad form, compatible with Monte Carlo 
wave-function simulations [53] and giving equivalent driven-dissipative dynamics. This can be explained by the following 
argument: in a weak dissipation limit (�em, �loss very small with respect to the gaps in the spectrum) terms of the den-
sity matrix ρ f , f̃ , ρ f ′, f̃ ′ which would be rotating at different frequencies ω f , f̃ , ω f ′, f̃ ′ if the system were isolated, are not 
coupled with each other by dissipation since the coupling �0

em, �loss is negligible with respect to their frequency difference 
�ω = ω f ′, f̃ ′ − ω f , f̃ = ω f ′, f − ω f̃ ′, f̃ . Considering this, all relevant dissipative transitions verify then �ω 
 0. Restricting the 
previous master equation given by Eqs. (8), (10) and (14) to these transitions, it is possible to rewrite the dynamics in the 
following way (details of the derivation are given in Appendix B):

∂tρph = −i

[
Hph +

(∑
i

H lamb,i

)
,ρph(t)

]
+Lloss + L̄em (17)

with

L̄em(ρph) = �em

2

k∑
i=1

[
2ā†

i ρphāi − āiā
†
i ρph − ρphāiā

†
i

]
(18)

〈
f ′∣∣ ā†

i | f 〉 = �pump/2√
(ωat − ω f ′, f )

2 + (�pump/2
)2 〈 f ′∣∣a†

i | f 〉 (19)

〈
f ′∣∣ Hlamb,i| f 〉 = 1

2

∑
f ′′

〈
f ′∣∣ai

∣∣ f ′′〉( (ω f ′′, f − ωat)�pump/2

(ωat − ω f ′′, f )
2 + (�pump/2)2

+ (ω f ′′, f ′ − ωat)�pump/2

(ω − ω ′′ ′)2 + (� /2)2

)〈
f ′′∣∣a†

i | f 〉. (20)

at f , f pump



J. Lebreuilly et al. / C. R. Physique 17 (2016) 836–860 841
Note that the jump operators ā†
i have the same form as the ones considered in [38] and have for effect to modify the 

transition rate, while the “imaginary part” of Eq. (14) induces an additional Hamiltonian contribution in the form of a Lamb 
shift. Notice that the two master equations Eqs. (8), (17) are slightly different. However, under the considered approximation, 
they are expected to provide equivalent dynamics. The latter form has the advantage of being of Lindblad form, and thus is 
directly compatible with MCWF simulations [53] and can be useful from a numerical point of view.

The secular approximation can be very restrictive (particularly in the thermodynamic limit where the spectrum is con-
tinuous). However, our feeling is that the reformulation of Eq. (17) should be accurate in a wider range of parameters. 
Quantitatively, we anticipate the condition �em, �loss � �pump to be sufficient. More investigations in this direction are 
under way.

3. One cavity

As a first example of application, we consider the simplest case of a single nonlinear cavity. A special attention will be 
paid to the stationary state ρss of the system for which Eq. (8) imposes

0 = −i
[

Hph,ρss
]+Lloss (ρss) +Lem (ρss) (21)

In our specific case of a single cavity, the photonic states are labelled by the photon number N and have an energy

ωN = Nωcav + 1

2
N(N − 1)U (22)

Correspondingly, the N → N + 1 transition has a frequency

ωN+1,N = ωcav + NU (23)

and the corresponding photon emission rate is

�em(ωN+1,N) = �0
em

(�pump/2)2

(ωN+1,N − ωat)2 + (�pump/2)2
(24)

As no coherence can exist between states with different photon number N , the stationary density matrix is diagonal in the 
Fock basis, ρss = δN,N ′πN with the populations πN satisfying

(N + 1)�lossπN+1 − (N + 1)�em(ωN+1,N)πN + N�em(ωN,N−1)πN−1 − N�lossπN = 0 (25)

where the two last terms of course vanish for N = 0. As only states with neighboring N are connected by the emission/loss 
processes, detailed balance is automatically enforced in the stationary state, which imposes the simple condition on the 
populations,

(N + 1)�lossπN+1 − (N + 1)�em(ωN+1,N)πN = 0 (26)

which is straightforwardly solved in terms of a product,

πN = π0

N−1∏
M=0

�em(ωM+1,M)

�loss
=
(

�0
em

�loss

)N N−1∏
M=0

(�pump/2)2

(ωM+1,M − ωat)2 + (�pump/2)2
π0 (27)

The excellent agreement of this result with a numerical solution to the full atom–cavity system is illustrated in Appendix E.

3.1. Linear regime

For a vanishing nonlinearity U = 0, all transition frequencies ωN+1,N are equal to the bare cavity frequency ω0 and the 
populations of the different N states have a constant ratio

πN+1

πN
= �0

em

�loss

(�pump/2)2

δ2 + (�pump/2)2
(28)

where we remind that δ = ωcav − ωat. For weak pumping and/or large detuning, one has

�0
em

(�pump/2)2

δ2 + (�pump/2)2
< �loss (29)

so the density matrix for the cavity shows a monotonically decreasing thermal occupation law. For strong pumping and 
close to resonance, one can achieve the regime where the emission overcompensates losses and the cavity mode starts 
being strongly populated:

�0
em

(�pump/2)2

δ2 + (� /2)2
> �loss (30)
pump
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Fig. 1. (a) Emission vs. loss rate as a function of the detuning from the atomic frequency ωat: the three curves are for peak emission �0
em larger (red 

dash-dotted), equal (black dashed), smaller (green solid) than the loss rate �loss. (b–d) Populations πN of the N-photon state as a function of N in the 
three cases ω2 ≤ ωcav (b), ω1 ≤ ωcav ≤ ω2 (c), ωcav ≤ ω1 (d). In the three panels, the open dots are the numerical results of the atom–cavity theory, 
while the solid line is the prediction of the analytical purely photonic theory; the dashed curves show the ratio �em(ωN+1,N )/�loss as a function of N . 
Parameters: δ/U = 4 (b), −2 (c), −6 (d). In all panels, 2U/�pump = 0.2, 2�loss/�pump = 0.0006, 2�R/�pump = 0.02.

The transition between the two regimes is the usual laser threshold, but our purely photonic theory is not able to include 
the gain saturation mechanism that serves to stabilize laser oscillation above threshold [29,52]: within our purely photonic 
theory, the population would in fact show a clearly unphysical monotonic growth for increasing N . A complete description in 
terms of the full atom–cavity master equation would of course solve this pathology, including a gain saturation mechanism 
according to usual laser theory, but this goes beyond the scope of the present work.

3.2. Optical bistability phenomena in weak nonlinear cavities

For U > 0, the situation is much more interesting as the effective transition frequency depends on the number of pho-
tons,

ωN+1,N = ωcav + NU ≥ ωcav (31)

so the gain condition

�0
em

�loss

(�pump/2)2

(ωN+1,N − ωat)2 + (�pump/2)2
≥ 1 (32)

can be satisfied in a finite range of photon numbers only, as it is illustrated in Fig. 1(a). As a consequence, even a weak 
nonlinearity U is able to stabilize the system for any value of �0

em, even in the absence of any gain saturation mechanism.
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Fig. 2. Purely photonic simulation of the two-time coherence function g(2)(τ ) in the weakly nonlinear regime. Parameters U/�pump = 0.1, �loss/�pump =
0.03, �0

em/�pump = 0.04, δ = −6U as in Fig. 1(d).

For �0
em < �loss, losses always dominate. For �0

em > �loss, the gain condition is instead satisfied in a range of frequen-
cies [ω1, ω2] around ωat. Under the weak nonlinearity condition U � �pump, the [ω1, ω2] range typically contains a large 
number of transition frequencies ωN+1,N at different N . Three different regimes can then be identified depending on the 
position of the cavity frequency ωcav with respect to the [ω1, ω2] range.

(i) If ω2 ≤ ωcav, then the gain condition is never verified, and the population πN shown in Fig. 1(b) is a monotonically 
decreasing function of N . In this regime, the state of the cavity field is very similar to a thermal state, as it usually happens 
in a laser below threshold. (ii) If ω1 ≤ ωcav ≤ ω2, the population πN shown in Fig. 1(c) is an increasing function for small 
N , shows a single maximum for N 
 N̄ = (ω2 − ωcav)/U , and finally monotonically decreases for N > N̄ .

The phenomenology is the richest in the regime (iii) where ωcav ≤ ω1. In this case, for small N values, the population 
πN decreases from its initial value π0 until the nonlinearly shifted frequency enters the gain interval for N 
 N̄ ′ = (ω1 −
ωcav)/U . After this point, πN starts increasing again until it reaches a local maximum at N 
 N̄ = (ω2 −ωcav)/U . Finally, for 
even larger N values, it begins to monotonically decrease. An example of this complicate behavior is shown in Fig. 1(d).

The existence of two well-separate local maxima at N = 0 and N 
 N̄ in the photon number distribution πN suggests that 
the incoherently driven nonlinear cavity exhibits a sort of bistable behavior: when it is prepared at one maximum of the 
photon number distribution πN , the system is trapped in a metastable state localized in a neighborhood of this maximum 
for a macroscopically long time. Switching from one metastable state to the other one is only possible as a result of a large 
fluctuation, so it has a very low probability, typically exponentially small in the photon number difference between the two 
metastable states.

This bistable behavior is clearly visible in the temporal dependence of the delayed two-photon correlation function

g(2)(τ ) = 〈a†(t)a†(t + τ )a(t + τ )a(t)〉ss

〈a†(t)a(t)〉ss〈a†(t + τ )a(t + τ )〉ss
(33)

which has been plotted in Fig. 2. At short times, the value of g(2) is determined by a weighted average of the contribution 
of the two maxima according to the stationary πN . After a quick transient of order 1/�em, loss, which corresponds to a fast 
local equilibration of the probability distribution around each of its maxima, the g(2) correlation function slowly decays to 
its asymptotic value 1 on a much longer time-scale mainly set by the exponentially long switching time from one maximum 
to the other.

Before proceeding, it is worth emphasizing that the present mechanism for optical bistability bears important differences 
from the dispersive or absorptive optical bistability phenomena discussed in textbooks [54,55]. On the one hand, there is 
some analogy to dispersive optical bistability in that the intensity-dependence of the refractive index is responsible for a 
frequency shift of the cavity resonance; on the other hand the frequency-selection is not provided by the resonance condi-
tion with a monochromatic coherent incident field rather by the frequency dependence of the gain due to the incoherent 
pump.

3.3. Photon number selection in strongly nonlinear cavities

In the opposite limit U � �pump, the nonlinearity is so large that a change of photon number by a single unity has a 
sizable effect on the emission rate �em(ωN+1,N ). As discussed in Appendix A, the derivation of the photonic master equation 
remains fully valid in this regime provided �pump � �0

em, �loss.
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Fig. 3. Selective generation of a N0 = 2 photon (upper panel) and N0 = 3 photon (lower panel) Fock state: population πN as a function of N for different 
pumping parameters. The points are the result of a purely photonic simulation, the lines are a guide to the eye. Left panel parameters: for all curves δ = −U , 
2�R/�pump = 0.01, and then for each particular curve 2�loss/�pump = 2·10−5 (blue solid line), 2·10−6 (green, dashed line), 2·10−7 (red, dash-dotted line), 
2·10−8 (magenta, dotted line). 2U/�pump = 103/2 (blue solid line), 102 (green, dashed line), 105/2 (red, dash-dotted line), 103 (magenta, dotted line). Right 
panel parameters: fora ll curves δ = −U , 2�R/�pump = 0.01, and then 2�loss/�pump = 5·10−8 (blue solid line), 5·10−9 (green, dashed line), 5·10−10 (red, 
dash-dotted line), 5·10−11 (magenta, dotted line). 2U/�pump = 2·105/2 (blue solid line), 2·103 (green, dashed line), 2·107/2 (red, dash-dotted line), 2·104

(magenta, dotted line). The goal of these choices of parameters was to control the steady-state ratios P (N +1)/P (N) = 10−2 and P (N)/P (0) = 0.1, 1, 10, 100
(blue, green, red, magenta).

Fig. 4. Left panel: purely photonic simulation of the two-time coherence function g(2)(τ ) for a strongly nonlinear regime in a (metastable) N0 = 2 photon 
selection regime. The inset shows a magnified view of the short time region. Parameters: 2U/�pump = 100, 2�loss/�pump = 2 · 10−3, 2�em/�pump = 0.2, 
δ = −U ; in the language of Fig. 3, the present parameters would correspond to a regime where the N = 0, 2 states are almost equally occupied. Right 
panel: preparation of the metastable state at N0 = 2 starting from a N = 4 π(4) (red dot-dashed) π(2) (green dashed) π(0) (blue solid). Same parameters 
as in Fig. 3.

The ensuing physics is most clear in the regime when the maximum emission rate is large, but only a single transition 
fits within the emission lineshape: these assumptions are equivalent to imposing that

�0
em

�loss
� 1 and

�0
em

�loss

�2
pump

U 2
� 1 (34)

with the further condition that the emission is resonant with the N0 → N0 + 1 transition,

ωat = ωcav + N0U (35)

As a result, only this last transition is dominated by emission, while all others are dominated by losses.
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In terms of the diagrams in Fig. 1, the stationary distribution πN is therefore sharply peaked at two specific values, N = 0
and at N = N0. Examples of this physics are illustrated in Fig. 3: the two peaks are always clearly visible, but depending on 
the parameters, their relative height can be tuned to different values almost at will. It is however important to note that 
having a sizable stationary population in the N = N0 peak requires quite extreme values of the parameters as population 
would naturally tend to accumulate at N = 0, and this difficulty turns out to be exponentially harder for larger N0.

The physics underlying this behavior can be easily explained in terms of the asymmetry in the switching mechanisms 
leading from N = 0 to N = N0 and vice versa. The former process requires in fact a sequence of several unlikely emission 
events from N = 0 to N = N0 −1, as emission is favoured only in the last step. On the other hand, decay from N = N0 occurs 
as a consequence of a single unlikely loss event from N = N0 − 1 to N = N0 − 2: as soon as the system is at N = N0 − 2, it 
will quickly decay to N = 0.

The rate �acc of such an accident can be estimated as follows: the probability that the system in N = N0 − 1 decays to 
N = N0 − 2 is a factor (N0 − 1)�loss/(N0�

0
em) smaller than the one of being repumped to N = N0. As the rate at which the 

system decays from N = N0 to N0 − 1 is approximately equal to N0�loss, one finally obtains

�acc = N0�loss
(N0 − 1)�loss

N0�
0
em

� N0�loss (36)

This longer time scale τacc = �−1
acc is clearly visible in the long tail of the time-dependent g(2)(t) that is plotted in the left 

panel of Fig. 4. The quick feature at very short times corresponds to the emission rate �em.
If needed, the characteristic time scale τacc could be further enhanced by adding a second atomic species whose transi-

tion frequency is tuned to quickly and selectively emit photons on the N − 2 → N − 1 transition. In this way, the accident 
rate can be efficiently reduced to �(2)

acc 
 �loss
(
�loss/�0

em

)2 � �acc. By repeating the mechanism on k transitions, one can 
suppress the accident rate in a geometrical way to �(k)

acc 
 �loss
(
�loss/�0

em

)k � �acc. Finally, the Fock state with N0 photons 
can be fully stabilized to an infinite lifetime and no problem of metastability if N0 different atomic species are included so 
as to cover all transitions from N = 0 to N = N0.

From a slightly different perspective, we can take advantage of the slow rate of accidents �acc to selectively prepare a 
metastable state with N = N0 photons even in parameter regimes where the N = 0 state would be statistically favoured at 
the steady state. Though the state will eventually decay to N = 0, the lifetime of the metastable N = N0 state can be long 
enough to be useful for interesting experiments: the idea to prepare the state with N0 photons is to inject a larger number 
N > N0 of photons into the cavity: the system will quickly decay to the N = N0 state where the system remains trapped 
with a lifetime �−1

acc .
The efficiency of this idea is illustrated in the right panel of Fig. 4 where we plot the time evolution of the most 

relevant populations πN . The initially created state with N = Nin photons quickly decays, so that the population accumulates 
into N = N0 on a time-scale of the order of �loss; the eventual decay of the population towards N = 0 will then occur 
on a much longer time set by �acc. It is worth noting that this strategy does not require that the initial preparation be 
number-selective: it will work equally well if a wide distribution of Nin is generated at the beginning, provided a sizable 
part of the distribution lies at N > N0. Furthermore, this idea removes the need for extreme parameters such as the ones 
used in Fig. 3 to obtain a balance between π(N) and π(0): as a result, the difficulty of creating a (metastable) state of N0
photons is roughly independent of N0.

These results show the potential of this novel photon number selection scheme to obtain light pulses with novel non-
classical properties: for instance, upon a sudden switch-off of the cavity mirrors, one would obtain a wavepacket containing 
an exact number of photons sharing the same wavefunction. With respect to the many other configurations discussed in 
the recent literature to produce N-photon Fock states and photon bundles [56–58], our proposal has the advantage of giving 
a deterministic preparation of a N-photon Fock state in the cavity, which can then be manipulated to extract light pulses 
with the desired quantum properties.

4. Cavity arrays

After having unveiled a number of interesting features that occur in the simplest case of a single cavity, we are now in a 
position to start attacking the far richer many-cavity case. From now on, we consider that the isolated photonic Hamiltonian 
is the Bose–Hubbard one with tunneling J and interaction constant U . Throughout this section, we shall make heavy use 
of the purely photonic description previously derived, which allows us to consider bigger systems with a higher number of 
photons. A numerical validation of this approach against the solution to the full atom–cavity master equation is presented 
in Appendix E.

4.1. Markovian regime

We begin by considering the Markovian limit of the theory, which is recovered for �pump = ∞, i.e. for a frequency-
independent gain. In this case, the emission term of the master equation for photons Eq. (10) reduces to the usual Lindblad 
form
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Lem = �0
em

2

k∑
i=1

[
2a†

i ρai − aia
†
i ρ − ρaia

†
i

]
(37)

For a single cavity, the stationary state is immediately obtained as

πN = 1

1 − �0
em

�loss

(
�0

em

�loss

)N

(38)

a necessary condition for stability for this system is of course that �0
em < �loss. For �0

em > �loss, amplification would in fact 
exceed losses and the system display a laser instability: while a correct description of gain saturation is beyond the purely 
photonic theory, the full atom–cavity theory would recover for this model the standard laser operation [52,48,29].

For larger arrays of k sites, a straightforward calculation shows that, in the Markovian limit, the stationary matrix keeps 
a structureless form,

ρ∞ =
∑

N

πN IN (39)

with

πN = 1∑
M D M

(
�0

em
�loss

)M

(
�0

em

�loss

)N

(40)

Here, D N = (N+k−1)!
(k−1)!N! is the dimension of the Hilbert subspace with a total number of photons equal to N , and IN is the 

projector over this subspace. The interested reader can find the details of the derivation in Appendix C.
This result shows that independently of the number of cavities and the details of the Hamiltonian, in the Markovian limit 

the density matrix in the stationary state corresponds to an effective Grand-Canonical ensemble at infinite temperature 
β = 0 with a fugacity z = eβμ = �0

em/�loss determined by the pumping and loss conditions only: all states are equally 
populated and the system does not display much interesting physics. In particular, the steady state does not depend on the 
tunneling amplitude J and on the photon–photon interaction constant U .

4.2. Effective Grand-Canonical distribution in a weakly non-Markovian and secular regime

The situation changes as soon as some non-Markovianity is included in the model. In this section, we start from a 
weakly non-Markovian case where all relevant transitions adding one photon have a narrow distribution around the bare 
cavity frequency, |ω f ′ f − ωcav| � �pump. We also assume a secular limit where U , J � �0

em, �loss, so that the non-diagonal 
terms of the density matrix in the photonic Hamiltonian eigenbasis oscillate at a fast rate and are thus effectively decoupled 
from the (slowly varying) populations. In this limit, we can safely assume that all coherences vanish and we can restrict our 
attention to the populations. This somehow critical approximation will be justified a posteriori in the next section, where 
we treat perturbatively the coupling of populations with coherences and show both analytically and numerically that in the 
weakly Markovian regime, their contribution is of higher order in the ‘non-Markovianity’ parameter 1/�pump and therefore 
can be safely neglected.

Under these assumptions, the transfer rate on the 
∣∣ f ′〉→ | f 〉 transition where one photon is lost from N + 1 to N has a 

frequency-independent form

T f ′→ f = �loss
∣∣〈 f |a

∣∣ f ′〉∣∣2 (41)

while the reverse emission process depends on the detunings � f ′ f = ω f ′ f − ωcav and δ = ωcav − ωat as

T f → f ′ = �0
em

∣∣∣〈 f ′∣∣a† | f 〉
∣∣∣2 �2

pump
4

(� f ′ f + ωcav − ωat)2 + �2
pump
4


 �̃0
em

∣∣∣〈 f ′∣∣a† | f 〉
∣∣∣2 [1 − β� f ′ f +O

(
� f ′ f

)2] (42)

with

�̃0
em =

(
�pump/2

)2
(ωcav − ωat)2 + (�pump/2

)2 �0
em (43)

β = 2(ωcav − ωat)

(ωcav − ωat)2 + (�pump/2
)2 (44)

In this expression, the weakly non-Markovian regime is characterized by having |β� f ′ f | � 1: in this case, the square bracket 
in Eq. (42) can be replaced with no loss of accuracy by an exponential



J. Lebreuilly et al. / C. R. Physique 17 (2016) 836–860 847
Fig. 5. Left and center panels: average number of photons n1 = 〈a†
1a1〉 (left) and spatial coherence g(1)

1,2 = 〈a†
1a2〉/〈a†

1a1〉 (center) in a two cavity system with 
small U/�pump and J/�pump as a function of the non-linearity U at fixed �pump. In red dots, exact resolution of the photonic master equation, and in black 
solid line the grand canonical ensemble ansatz. Parameters: 2 J/�pump = 0.02, 2�loss/�pump = 0.002, 2�em/�pump = 0.0014, 2δ/�pump = 0.6. Right panel: 
purely photonic simulation of the relative quantum coherence between two arbitrarily chosen two-photon eigenstates ρi j/

√
ρiiρ j j as a function of 1/�pump

(the result does not depend on the specific eigenstates considered). As expected, this coherence vanishes in 1/�2
pump in the Markovian limit 1/�pump → 0. 

The value above 1 for large 1/�pump signals breakdown of positivity of the density matrix as we move out of the validity regime of the purely photonic 
master equation. Parameters: J/�loss = 1, �em/�loss = 0.5, δ = −�loss , U/�loss = 2.

1 − β� f ′ f 
 e−β� f ′ f (45)

which immediately leads to a Grand-Canonical form of the stationary density matrix

ρ∞ = 1

�
eβNμe−βH (46)

with an effective chemical potential

μ = 1

β
log

(
�̃0

em

�loss

)
+ ωcav (47)

and an effective temperature kB T = 1/β: most remarkably, even if each transition involves a small deviation from the bare 
cavity frequency ωcav, the cumulative effect of many such deviations can have important consequences for large photon 
numbers, so as to make the stationary distribution strongly non-trivial. Remarkably, both positive and negative temperature 
configurations can be obtained from Eq. (44) just by tuning the peak emission frequency ωat either below or above the bare 
cavity frequency ωcav. As expected for a thermal-like distribution, detailed balance between eigenstates is satisfied

T f ′→ f π f ′ − T f → f ′π f =
∣∣∣〈 f ′∣∣a† | f 〉

∣∣∣2
⎡
⎣�loss

1

�

(
�̃0

em

�loss
eβωcav

)N+1

e−βω f ′ +

− �̃0
em e

−β
(
ω f ′ f −ωcav

)
1

�

(
�̃0

em

�loss
eβωcav

)N

e−βω f

⎤
⎦= 0 (48)

but it is crucial to keep in mind that this thermal-like distribution does not arises from any real thermalization process, but 
is a consequence of the specific form chosen for pumping and dissipation. The application of this concept to the study of 
effective thermalization effects in a driven-dissipative non-Markovian condensate in the weakly interacting regime will be 
the subject of a future work, also with an eye to photon [34] and polariton [14,33] Bose–Einstein condensation experiments.

A numerical test of this result for a two-cavity system with a strong pumping �pump � U , J and a large enough photon 
number so to induce appreciable nonlinear effects is shown in Fig. 5. The results of this comparison are displayed in the 
left and central panels: excellent agreement between an exact resolution of the photonic master equation and the grand 
canonical ensemble ansatz is found in both the average photon number and the first-order coherence.

4.3. Beyond the secular approximation

In the weakly non-Markovian regime, the validity of the effective Grand-Canonical description can be extended outside 
the secular approximation according to the following arguments. As a first step, we decompose the master equation as

dρ = [M0 + δM]ρ (49)

dt
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where the super-operators M and δM act of the linear space of density matrices ρ as

M0[ρ] = −i [H,ρ] + �loss

2

k∑
i=1

[
2aiρa†

i − a†
i aiρ − ρa†

i ai

]
+ �̃0

em

2

k∑
i=1

[
â†

i ρai + a†
i ρâi − aiâ

†
i ρ − ρâia

†
i

]
(50)

and

δM[ρ] = �̃0
em

2

k∑
i=1

[
δa†

i ρai + a†
i ρδai − aiδa†

i ρ − ρδaia
†
i

]
(51)

with

ã†
i = �̃0

em

�0
em

(
â†

i + δa†
i

)
(52)

and 〈
f ′∣∣ â†

i | f 〉 =
(

e−β� f ′ f − i
ωcav − ωat

�pump

)〈
f ′∣∣a†

i | f 〉 (53)

from which we deduce that

〈
f ′∣∣ δa†

i | f 〉 =
�pump→∞

〈
f ′∣∣a†

i | f 〉
(

−i
� f ′ f

�pump
+O

(
� f ′, f

�pump

)2
)

(54)

Using similar arguments to the Markovian case of Appendix C, we can easily show that the grand canonical distribution is 
a steady state of this modified M0 operator,

M0(eβNμe−βH ) = 0 (55)

As the correction term δM vanishes in the Markovian limit proportionally to 1/�pump, we can calculate the lowest-
order correction to the steady state in δM. Expanding the steady state in powers of 1/�pump keeping a constant 
(ωcav − ωat)/�pump, we see easily that the first-order corrections in Eq. (54) are purely imaginary, so that populations 
are perturbed only to second order in β� f ′ f . In our Markovian limit, these corrections then vanish even if we perform 
simultaneously the Markovian and thermodynamic limit.

Secondly, coherences (which are exactly zero in the Markovian case, see Sec. 4.1) should be then proportional to 1/�pump. 
However, we have shown in Appendix D that the linear contribution to coherences vanishes when we sum over all sites of 
the system. We conclude thus that in the weakly non-Markovian limit, coherences between eigenstates of the Hamiltonian 
are quadratic in 1/�pump, and therefore remain very small even out of the secular approximation.

As a further verification of this analytical argument, in the right panel of Fig. 5 we have shown the �pump dependence 
of the coherence between an arbitrary pair of two-photon states as well as the error in the population of an arbitrary 
eigenstate, between the true steady state and the grand canonical distribution. As expected on analytical grounds, both 
these quantities scale indeed as �−2

pump.
From these arguments, we conclude that the breakdown of the secular approximation that occurs in the thermodynamic 

limit where the spectrum becomes continuous should not affect the effective thermalization of the steady state in the 
weakly non-Markovian regime of large �pump. Even if the steady-state is not affected, we however expect that the relatively 
strong dissipation will significantly affect the system dynamics. A complete study of this physics will be the subject of a 
future work.

5. Two cavities with strong nonlinearity

5.1. Towards Mott-insulator physics

As a final example of application of our concepts, in this last section we present some preliminary results on the most 
interesting case of two strongly nonlinear cavities with U � �pump: extending the photon-number selectivity idea to the 
many-cavity case, we look for many-body states that resemble a Mott insulator [11,13,49]. As in the single cavity case, 
the strong pumping �em � �loss would favour a large occupation of the sites, but it is counteracted by the effect of the 
nonlinearity U � �pump, which sets an upper bound to the occupation: the result is a steady-state with a well-defined 
number of photons per cavity.

The result of the numerical calculations based on the photonic master equation are shown as black lines in Fig. 6(a–c) 
in the ωcav = ωat case: for a high emission rate �0

em and a strong nonlinearity U , signatures of the desired Mott state with 
one particle per site are visible in the steady-state average number of photons that tends to 1 for a strong nonlinearity U
[panel (a)], in the probability of double occupancy that tends to 0 [panel (b)], and in the one-body coherence between the 
two sites that also tends to 0 [panel (c)].
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Fig. 6. Purely photonic simulations of steady-state observables as a function of 2U/�pump in a two-cavity system: (a) average number of photons 
n1 = 〈a†

1a1〉, (b) one-site two-body correlation function g(2)
1,1 = 〈a†

1a†
1a1a1〉 = 〈n1(n1 − 1)〉, (c) inter-site one-body correlation function g(1)

1,2 = 〈a†
1a2〉/〈a†

1a1〉. 
Parameters: 2 J/�pump = 0.2, 2�loss/�pump = 0.002, 2�em/�pump = 0.06 (solid black line). Red dashed line, same simulation with a weaker 2�em/�pump =
0.00144. Panel (d), from left to right: state occupancy, energy and two-site spatial coherence of the different eigenstates of the Hamiltonian, at the maxi-
mum coherence point 2U/�pump = 0.16 of the red dashed line.

While these results are a strong evidence of the N0 = 1 Mott state, a similar calculation for larger N0 ≥ 2 Mott states is 
made much more difficult by metastability issues and the Mott state would typically have a finite lifetime. As in the single 
cavity case, we expect that this problem could be fixed by adding several atomic species on resonance with the different 
photonic transitions below N0.

Based on this preliminary analysis, we can attempt to make some claims on the structure of the non-equilibrium phase 
diagram of our model. As for J = 0, one can efficiently create a Fock state in each cavity, we expect that for small J the 
system will remain in a sort of Mott state. On the other hand, in the weakly interacting regime, we expect the system to 
display a coherent Bose–Einstein condensate [30]. In between, one can anticipate that the system should display some form 
of non-equilibrium Mott–Superfluid transition. Analytical and numerical studies in this direction are in progress.

5.2. An unexpected mechanism for coherence

The red dashed lines in the same panels Fig. 6(a–c) show the same simulation for a weaker emission rate �0
em, which 

allows us to consider weaker values of the nonlinearity without increasing too much the photon number. In particular, in 
panel (c) we see that the non-negligible value of 2 J/�pump is responsible for a significant spatial coherence between the 
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two sites, which attains a maximum value g(1)
12 ≈ 0.26 for an interaction strength 2U/�pump 
 0.16 of the same order of 

magnitude as the tunnel coupling 2 J/�pump = 0.2.
The quite unexpected appearance of this coherence can be understood as follows. On the one hand, in the absence of 

tunneling J = 0, all the dynamics is local and we do not expect any spatial coherence. On the other hand, in the absence of 
interactions U = 0 and for zero detuning, symmetric and anti-symmetric states are equally close to resonance (albeit with 
opposite detuning) and then equally populated, so there should not be any coherence either. However, in the presence of 
both tunneling and small interactions (i.e. for J , U �= 0 and U � J ), the energy of all eigenstates (symmetric/anti-symmetric 
states with various photon numbers) is perturbatively shifted in the upward direction by (small) interactions U . As a result, 
symmetric states, which are below the resonance, get closer to resonance and become more populated than the anti-
symmetric ones, which get farther to the resonance and are thus depleted. As one can see in the plot of the energy, the 
spatial coherence and the steady-state occupancy of the different eigenstates shown in Fig. 6(d) for the maximum coherence 
point induce an overall positive coherence between the two sites.

Even though the nonlinearity is only active for states with at least two photons, it is interesting to note that also in the 
N = 1 manifold the antisymmetric state is less populated than the symmetric one. This population unbalance is inherited 
from the one in the above-lying N > 1 states, as the decay preferentially occurs into the symmetric state. Since no coherence 
is expected in both limiting cases of purely interacting U � J and non interacting U/0 = 0 photons, the maximum of the 
coherence is obtained when interactions and tunneling are of the same magnitude, U ≈ J : this result is clearly visible in 
panel of Fig. 6(c).

Investigation of this many-body physics in the more interesting case of larger arrays that can accommodate a larger 
number of photons requires sophisticated numerical techniques to deal with the dynamics in a huge Hilbert space [59,60]
and will be the subject of future work. A very exciting advance in this direction was recently published in [38] for strongly 
interacting photons in the presence of a synthetic gauge field for light: analogously to the Mott insulator state studied here, 
the combination of the effectively frequency-dependent pumping (obtained via two-photon pumping in the presence of an 
auxiliary lattice) and the many-body energy gap was predicted to generate and stabilize fractional quantum Hall states of 
light.

6. Conclusions

In this work, we have proposed and characterized a novel scheme to generate strongly correlated states of light in 
strongly nonlinear cavity arrays. Photons are incoherently injected in the cavities using population-inverted two-level atoms, 
which preferentially emit photons around their resonance frequency. The resulting frequency-dependence of the gain will 
be the key element to generate and stabilize the desired quantum state. A manageable theoretical description of the sys-
tem is obtained using projective methods, which allow one to eliminate the atomic degrees of freedom and describe the 
non-Markovian photonic dynamics in terms a generalized master equation.

The efficiency of the our pumping scheme to generate specific quantum states is first validated on a single-cavity system: 
for weak nonlinearities, a novel mechanism for optical bistability is found. For strong nonlinearities, Fock states with a 
well-defined photon number can be generated with small number fluctuations.

In the general many cavity case, in the weakly non-Markovian case the steady state of the system recovers a Grand-
Canonical distribution with an effective chemical potential determined by the pumping strength and an effective inverse 
temperature proportional to the non-Markovianity: this very general results may have application to explain apparent ther-
malization in recent photon and polariton condensation experiments.

Finally, the power of frequency-dependent pumping to generate strongly correlated states of light is illustrated in the 
case of a strongly nonlinear two-cavity system, which, in the strongly non-Markovian regime, can be driven into a state that 
closely reminds a Mott-insulator state. A general study of the potential and of the limitations of the frequency-dependent 
gain to generate generic strongly correlated states with many photons will be the subject of future work.
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Appendix A. Derivation of the purely photonic master equation via projective methods

In this Appendix, we give more details on the derivation of the photonic master equation (8). Starting from the full 
atom–cavity master equation (4), we show how for a sufficiently small atom–cavity coupling �R the atomic degrees of 
freedom can be eliminated. The frequency-dependence of the atomic amplification is then accounted for as a modified 
Lindblad term (10). Our treatment is based on the discussion in the textbook [48].
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A.1. General formalism

We consider a quantum system that undergoes dissipative processes. As it is not isolated, its state can not be described 
by a wave function, but by a density matrix ρ evolving according to the master equation:

∂tρ = L(ρ(t)) (56)

where L is some linear “super-operator” acting on the space of density matrices. Given an arbitrary initial density matrix 
ρ(t0), the density matrix ρ at generic time t is equal to ρ(t) = eL(t−t0)ρ(t0).

Now we are only interested in some part of the density matrix, which can represent some subsystem. This can be de-
scribed by a projection operation on the density matrix Pρ . We call Q = 1 −P the complementary projector. We decompose 
the Lindblad operator L in two parts L0 and δL such that:⎧⎨

⎩
L = L0 + δL
PL0Q = QL0P = 0
P δLP = 0

(57)

Such a decomposition is always possible.
Then we define a generalized interaction picture for the density matrix and for generic superoperators A with respect 

to the evolution described by the free L0 and the initial time t0:{
ρ̂(t) = e−L0(t−t0)ρ(t)
Â(t) = e−L0(t−t0)AeL0(t−t0) (58)

As discussed in [48], we can get an exact closed master equation for the projected density matrix in the interaction 
picture

∂tPρ̂(t) =
t∫

t0

dt′�(t, t′)Pρ̂(t′) (59)

which translates into

∂tPρ(t) = L0(ρ(t)) +
t∫

t0

dt′�̃(t − t′)Pρ(t′) (60)

in the Schrödinger picture. In the interaction picture, the self energy operator � is defined as:

�(t, t′) =
∞∑

n=2

t∫
t′

t1∫
t′

..

tn−1∫
t′

dt1..dtnPδL̂(t)QδL̂(t1)QδL̂(t2)...QδL̂(tn)QδL̂(t′)P (61)

and results from the coherent sum over the processes leaving from P , remaining in Q and then coming back finally to P . 
In the Schrödinger representation, we have:

�̃(t − t′) = eL0(t−t0)�(t, t′)e−L0(t′−t0) = �(0, t′ − t)eL0(t−t′) (62)

We call τc = 1/�ω the characteristic decay time/inverse linewidth for the self energy, which corresponds in general to 
the correlation time of the bath, and we estimate the rate of dissipative processes as � 
 �τc = ∫∞

t0
dt�(t, t0). We put 

ourselves in the regimes in which, with respect to these dissipative processes, the bath has a short memory, i.e. � � �ω. 
In that regime the density matrix in the interaction picture is almost constant over that time τc . Furthermore, if t − t0 � τc, 
then the integral in Eq. (59) can be extended from −∞ to t . From this equation and from (59), we get an equation of 
evolution for the density matrix which is local in time:

∂tPρ̂(t) =
∞∫

0

dτ�(t, t − τ )Pρ̂(t)

=
∞∫

0

dτ
[

e−L(t−t0)�(0,−τ )eL(t−t0)
]
Pρ̂(t)

= e−L(t−t0)

∞∫
dτ�(0,−τ )Pρ(t) (63)
0
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In the Schrödinger picture, this gives the time-local master equation:

∂tPρ̂(t) =
⎡
⎣L0 +

∞∫
0

dτ�(0,−τ )

⎤
⎦ Pρ(t) = LeffPρ(t) (64)

with

Leff = L0 +
∞∫

0

dτ�(0,−τ ) (65)

It is worth stressing that while the bath is Markovian with respect to dissipative processes induced by the perturbation ∫∞
0 dτ�(0, −τ ), no Markovian approximation has been made with respect to the dynamics due to L0, which can still 

be fast. For the specific system under consideration in this work, this means that the emission rate �em has to be slow 
with respect to the gain bandwidth set by the atomic pumping rate �pump, which is the case in the weak coupling limit √

Nat �R � �pump, but no restriction is to be imposed on the parameters U , J and ωcav −ωat of the Hamiltonian, which can 
be arbitrarily large. This means that the physics can be strongly non-Markovian with respect to the Hamiltonian photonic 
dynamics.

A.2. Application to the array of cavities

A.2.1. Preliminary calculations
With the notation from section 2, we choose the projectors in the form:

Pρ =
∣∣∣e(1)

1 e(1)
2 e(1)

3 ...
〉 〈

e(1)
1 e(1)

2 e(1)
3 ...

∣∣∣⊗ Trat(ρ) (66)

where we have performed a partial trace over the atoms, and then make the tensor product of the density matrix and 
the atomic density matrix with all atoms in the excited state. We chose this particular projector because in the weak 
atom–cavity coupling regime, we expect atoms to be repumped almost immediately after having emitted a photon in the 
cavity array, and thus to be most of the time in the excited state. Moreover this projection operation gives us direct access 
to the photonic density matrix, and thus we do not lose any information on photonic statistics. With the notation of the 
previous section we have:

L(ρ) = −i
[

Hph + Hat + H I,ρ
]+Ldiss(ρ) (67)

with

Ldiss = Lpump, at +Lloss, cav (68)

We decompose L into two contributions. The first one is:

L0(ρ) = −i
[

Hph + Hat,ρ
]+Lloss, cav(ρ) −A(ρ) +PAQ(ρ) (69)

with

A(ρ) = �pump

2

k∑
i=1

Nat∑
l=1

[
σ

−(l)
i σ

+(l)
i ρ + ρσ

−(l)
i σ

+(l)
i

]
(70)

The superoperator L0 verifies the condition (57): The last term in the expression of Eq. (69) comes from the fact that the 
pumping term A in L0 does not verify this condition: as a result, we have to remove the part unfixed by projector and put 
it in the other operator:

δL(ρ) = −i [H I,ρ] + �pump

2

k∑
i=1

Nat∑
l=1

2σ
+(l)
i ρσ

−(l)
i −PAQ(ρ) (71)

These two operators then satisfy the conditions (57), and we can apply the projection method to get the evolution of 
Pρ(t), that is of Trat(ρ)(t). As we are interested in the regime in which �pump � √

Nat �R, �loss, we will compute the 
self energy at the lowest non-zero order of these two latter parameters. Since �loss quantifies the photonic loss rate, we 
will approximate the photonic dynamics as being a Hamiltonian one during the time while the atom is reinjected in the 
excited state, i.e. during the characteristic time 1/�pump of the integration kernel of Eq. (60). To this order of precision, 
the calculation for one cavity is easily generalizable to k cavities, thus we will restrict for simplicity to the case of a single 
cavity containing a single two-level atom, Nat = 1.
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A.2.2. Self-energy calculation
We are going to calculate the self-energy to the lowest order in �R. We have

δL = Lpump − i(H+ + H−)L + i(H+ + H−)R −PAQ (72)

with ⎧⎨
⎩

Lpump(ρ) = �pumpσ
+ρσ−

H+ = �Rσ
+a

H− = �Rσ
−a†

(73)

By (H±)L/R we intend the superoperator multiplying a matrix ρ by the matrix H± on its left/right. First we have LpumpP =
PAQP = H+

L P = H−
R P = 0, so starting from a projected state Pρ , we have to start with H−

L or H+
R . In fact, to the lowest 

order in �R, the non-zero contributions to the self energy are:

A = −PH+
L H−

L (t′ − t)P
B = −PH−

R H+
R (t′ − t)P

C = PH+
R H−

L (t′ − t)P
D = PH−

L H+
R (t′ − t)P

E = ∫ t
t′ dt̃ PLpump(t)QH+

R (t̃ − t)H−
L (t′ − t)P

F = ∫ t
t′ dt̃ PLpump(t)QH+

L (t̃ − t)H−
R (t′ − t)P

G = −∫ t
t′ dt̃ PAQH+

R (t̃ − t)H−
L (t′ − t)P

H = −∫ t
t′ dt̃ PAQH−

L (t̃ − t)H+
R (t′ − t)P

(74)

with

�(0, t′ − t) = A + B + C + D + E + F + G + H (75)

We then calculate the different processes, applied on some projected matrix Pρ:

A(Pρ) = −�2
Re(iωat−�pump/2)(t−t′)aa†(t′ − t)Pρ

B(Pρ) = −�2
Re−(iωat+�pump/2)(t−t′)Pρa(t′ − t)a†

C(Pρ) = �2
Re(iωat−�pump/2)(t−t′)a†(t′ − t)Pρa

D(Pρ) = �2
Re(−iωat+�pump/2)(t−t′)a†Pρa(t′ − t)

E(Pρ) = �pump�2
R

t∫
t′

dt̃ e(−iωat−�pump/2)(t−t̃)e(iωat−�pump/2)(t−t′)a†(t′ − t)Pρa(t̃ − t)

F (Pρ) = �pump�2
R

t∫
t′

dt̃ e(iωat−�pump/2)(t−t̃)e(−iωat−�pump/2)(t−t′)a†(t̃ − t)Pρa(t′ − t)

G(Pρ) = −�pump�2
R

t∫
t′

dt̃ e(−iωat−�pump/2)(t−t̃)e(iωat−�pump/2)(t−t′)a†(t′ − t)Pρa(t̃ − t) = −E(Pρ)

H(Pρ) = −�pump�2
R

t∫
t′

dt̃ e(iωat−�pump/2)(t−t̃)e(−iωat−�pump/2)(t−t′)a†(t̃ − t)Pρa(t′ − t) = −F (Pρ) (76)

where by a(t′ − t) we intend the evolution of the photonic annihilation operator in the photonic Hamiltonian interaction 
picture (we remind that we neglected photonic losses during the integration time). We see that the last four contribution 
cancel each other, and that only the first four contributions remain.

A.2.3. Master equation
Using the expression for the self-energy �(t) derived in the last section, as well as general results on the master equation 

obtained by projective methods in Appendix A.1, we then obtain the (temporally non-local) master equation:
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∂tPρ = −i
[

Hph,Pρ
]+L�(Pρ) (77)

+ �2
R

∞∫
0

dτ e(iωat−�pump/2)τ a†
(

eL0(τ )Pρ(t − τ )
)

a(−τ )

+ �2
R

∞∫
0

dτ e−(iωat+�pump/2)τ a†(−τ )
(

eL0(τ )Pρ(t − τ )
)

a

− �2
R

∞∫
0

dτ e(iωat−�pump/2)τ aa†(−τ )
(

eL0(τ )Pρ(t − τ )
)

− �2
R

∞∫
0

dτ e−(iωat+�pump/2)τ
(

eL0(τ )Pρ(t − τ )
)

a(−τ )a†

At lowest order in �R, we can assume the interaction picture density matrix in the convolution product to be constant, 
ρ̂(t − τ ) 
 ρ̂(t), i.e. eL0τ ρ(t − τ ) 
 ρ(t). Making the trace over the bath, we get:

∂tρph = −i
[

Hph,ρph
]+L�(ρph) (78)

+ �2
R

∞∫
0

dτ e(iωat−�pump/2)τ a†(−τ )ρph(t)a

+ �2
R

∞∫
0

dτ e−(iωat+�pump/2)τ a†ρph(t)a(−τ )

− �2
R

∞∫
0

dτ e(iωat−�pump/2)τ aa†(−τ )ρph(t)

− �2
R

∞∫
0

dτ e−(iωat+�pump/2)τ ρph(t)a(−τ )a†

then we can perform completely the integral and we get our final form for the non-Markovian master equation, which is 
local in time:

∂tρ = −i
[

Hph,ρph
]+ �loss

2

[
2aρa† − a†aρ − ρa†a

]
+ 2�2

R

�pump

[
ã†ρa + a†ρã − aã†ρ − ρãa†

]
(79)

with {
ã = �pump

2

∫∞
0 dτ e(−iωat−�pump/2)τ a(−τ ),

ã† = �pump
2

∫∞
0 dτ e(iωat−�pump/2)τ a†(−τ ) = [ã]† (80)

where a(−τ ) means the photonic annihilation operator in the photonic Hamiltonian interaction picture.
If | f 〉 and | f 〉′ are two eigenstates of the photonic Hamiltonian with a photon number difference of one, we see that the 

matrix elements of the modified annihilation and creation operators ã and ã† involved in the emission process are:⎧⎨
⎩

〈 f | ã†
∣∣ f ′〉= �pump/2

−i(ωat−ω f f ′ )+�pump/2 〈 f |a†
∣∣ f ′〉

〈
f ′∣∣ ã | f 〉 = �pump/2

i(ωat−ω f f ′ )+�pump/2

〈
f ′∣∣a | f 〉

(81)

The non-Markovianity comes from the energy-dependence of the prefactors.
For several cavities, the reasoning is exactly the same and we get the multicavity master equation:

∂tρ = −i
[

Hph,ρph
]+ �loss

2

k∑
i=1

[
2aiρa†

i − a†
i aiρ − ρa†

i ai

]
+ 2�2

R

�pump

k∑
i=1

[
ã†

i ρai + a†
i ρãi − aiã

†
i ρ − ρãia

†
i

]
(82)

with
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〈 f | ãi
∣∣ f ′〉= �pump/2

i(ωat − ω f ′ f ) + �pump/2
〈 f |ai

∣∣ f ′〉 (83)

〈
f ′∣∣ ã†

i | f 〉 = �pump/2

−i(ωat − ω f ′ f ) + �pump/2

〈
f ′∣∣a†

i | f 〉 (84)

where here also | f 〉 and | f 〉′ are two eigenstates of the many cavity photonic Hamiltonian: once again the emission depends 
on the many body photonic dynamics via the prefactors in (83)–(84).

Appendix B. Lindblad form for the photonic master equation in the secular approximation

In this Appendix, we present the derivation of the Lindblad form Eq. (17) for the photonic master equation including 
non-Markovian effects under the secular approximation. To do this, we calculate the matrix elements L

em, f′,f̃′,f,f̃ of the 

emission superoperator coupling the term of the density matrix in the eigenstate basis 〈 f |ρ ˜| f 〉 with 
〈
f ′∣∣ρ ˜| f ′〉, under the 

assumption �ω = ω f ′, f̃ ′ − ω f , f̃ 
 0, as explained in Sec. 2.3:

B.1. Calculation of the ã†
i ρai + a†

i ρãi contribution

〈
f ′∣∣ ã†

i | f 〉 〈 f |ρ ˜| f 〉 ˜〈 f |ai ˜| f ′〉 + 〈 f ′∣∣a†
i | f 〉 〈 f |ρ ˜| f 〉 ˜〈 f |ãi ˜| f ′〉

= 〈 f ′∣∣a†
i | f 〉 〈 f |ρ ˜| f 〉 ˜〈 f |ai ˜| f ′〉

(
�pump/2

−i(ωat − ω f ′, f ) + �pump/2
+ �pump/2

i(ωat − ω f̃ ′, f̃ ) + �pump/2

)
(85)

Considering that under the approximation �ω 
 0, we have that �pump/2
−i(ωat−ω f ′, f )+�pump/2 
 �pump/2

−i(ωat−ω f̃ ′, f̃ )+�pump/2 , we obtain thus 
the following contribution:〈

f ′∣∣ ã†
i | f 〉 〈 f |ρ ˜| f 〉 ˜〈 f |ai ˜| f ′〉 + 〈 f ′∣∣a†

i | f 〉 〈 f |ρ ˜| f 〉 ˜〈 f |ãi ˜| f ′〉

 〈 f ′∣∣a†

i | f 〉 �pump/2√
(ωat − ω f ′, f )

2 + (�pump/2)2
〈 f |ρ ˜| f 〉 �pump/2√

(ωat − ω f̃ ′, f̃ )
2 + (�pump/2)2

˜〈 f |ai ˜| f ′〉

= 〈 f ′∣∣ ā†
i | f 〉 〈 f |ρ ˜| f 〉 ˜〈 f |āi ˜| f ′〉 (86)

with āi defined in Eq. (19). We see that the “imaginary” contribution cancels out, and that the “real” contribution has been 
divided in two multiplicative contributions on the left- and the right-hand sides of the density matrix.

B.2. Calculation of the aiã
†
i ρ + ρãia

†
i contribution

Let us calculate the left product:〈
f ′∣∣ai

∣∣ f ′′〉 〈 f ′′∣∣ ã†
i | f 〉 〈 f |ρ ˜| f 〉 = 〈 f ′∣∣ai

∣∣ f ′′〉 �pump/2

−i(ωat − ω f ′′, f ) + �pump/2

〈
f ′′∣∣a†

i | f 〉 〈 f |ρ ˜| f 〉

= 〈 f ′∣∣ai
∣∣ f ′′〉 [ (�pump/2)2

(ωat − ω f ′′, f )
2 + (�pump/2)2

− i
(ω f ′′, f − ωat)�pump/2

(ωat − ω f ′′, f )
2 + (�pump/2)2

] 〈
f ′′∣∣a†

i | f 〉 〈 f |ρ ˜| f 〉 (87)

Considering that under the approximation ω f ′, f 
 0, we have that ω f ′′, f 
 ω f ′′, f ′ , and so:

(ω f ′′, f − ωat)�pump/2

(ωat − ω f ′′, f )
2 + (�pump/2)2


 1

2

[
(ω f ′′, f − ωat)�pump/2

(ωat − ω f ′′, f )
2 + (�pump/2)2

+ (ω f ′′, f ′ − ωat)�pump/2

(ωat − ω f ′′, f ′)2 + (�pump/2)2

]
, (88)

(�pump/2)2

(ωat − ω f ′′, f )
2 + (�pump/2)2


 (�pump/2)2√
(ωat − ω f ′′, f )

2 + (�pump/2)2
√

(ωat − ω f ′′, f ′)2 + (�pump/2)2
(89)

As a consequence:〈
f ′∣∣ai

∣∣ f ′′〉〈 f ′′∣∣ã†
i | f 〉〈 f |ρ ˜| f 〉


 − i

2

〈
f ′∣∣ai

∣∣ f ′′〉( (ω f ′′, f − ωat)�pump/2

(ωat − ω f ′′, f )
2 + (�pump/2)2

+ (ω f ′′, f ′ − ωat)�pump/2

(ωat − ω f ′′, f ′)2 + (�pump/2)2

)〈
f ′′∣∣a†

i | f 〉〈 f |ρ ˜| f 〉

+ 〈 f ′∣∣āi
∣∣ f ′′〉〈 f ′′∣∣ā†| f 〉〈 f |ρ ˜| f 〉. (90)
i
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Finally, let us calculate the right product:

〈 f |ρ ˜| f 〉 ˜〈 f |ãi ˜| f ′′〉 ˜〈 f ′′|a†
i

˜| f ′〉 = 〈 f |ρ ˜| f 〉 �pump/2

i(ωat − ω f̃ ′′, f̃ ) + �pump/2
˜〈 f |ãi ˜| f ′′〉 ˜〈 f ′′|a†

i
˜| f ′〉

= 〈 f |ρ ˜| f 〉
[

(�pump/2)2

(ωat − ω f̃ ′′, f̃ )
2 + (�pump/2)2

+ i
(ω f ′′, f − ωat)�pump/2

(ωat − ω f̃ ′′, f̃ )
2 + (�pump/2)2

]
˜〈 f |ãi ˜| f ′′〉 ˜〈 f ′′|a†

i
˜| f ′〉 (91)

As before, ω f̃ ′′, f̃ 
 ω f̃ ′′, f̃ ′ , so:

(�pump/2)2

(ωat − ω f̃ ′′, f̃ )
2 + (�pump/2)2


 (�pump/2)2√
(ωat − ω f̃ ′′, f̃ )

2 + (�pump/2)2
√

(ωat − ω f̃ ′′, f̃ ′)2 + (�pump/2)2
, (92)

(ω f̃ ′′, f̃ − ωat)�pump/2

(ωat − ω f̃ ′′, f̃ )
2 + (�pump/2)2


 1

2

(
(ω f̃ ′′, f̃ − ωat)�pump/2

(ωat − ω f̃ ′′, f̃ )
2 + (�pump/2)2

+
(ω f̃ ′′, f̃ ′ − ωat)�pump/2

(ωat − ω f̃ ′′, f̃ ′)2 + (�pump/2)2

)
,

and thus

〈 f |ρ ˜| f 〉 ˜〈 f |ãi ˜| f ′′〉 ˜〈 f ′′|a†
i

˜| f ′〉 
 〈 f |ρ ˜| f 〉 ˜〈 f |āi ˜| f ′′〉 ˜〈 f ′′|ā†
i

˜| f ′〉

+ i

2
〈 f |ρ ˜| f 〉 ˜〈 f |ai ˜| f ′′〉

(
(ω f̃ ′′, f̃ − ωat)�pump/2

(ωat − ω f̃ ′′, f̃ )
2 + (�pump/2)2

+
(

(ω f̃ ′′, f̃ ′ − ωat)�pump/2

(ωat − ω f̃ ′′, f̃ ′)2 + (�pump/2)2

)
˜〈 f ′′|a†

i
˜| f ′〉. (93)

Here again, the real part has been divided into two multiplicative contributions, and the imaginary part has been swiped 
to the creation operator on the right. So, whether we consider the contribution acting on the left- or on the right-hand 
side of the density matrix, the imaginary contribution is always carried by the creation operator, so the density matrix is 
multiplied by the same operator on the right and on the left up to a minus sign, which gives an anticommutator and thus 
an Hamiltonian contribution due to the Lamb shift.

B.3. Sum of the various contributions

To summarize, keeping only relevant transitions we can consider that the emission dynamics is equivalent to a contribu-
tion −i 

[∑
i H lamb,i,ρph

]+ L̄em in the master equation, with

L̄em = �em

2

k∑
i=1

[
2ā†

i ρphāi − āiā
†
i ρph − ρphāiā

†
i

]
(94)

〈
f ′∣∣ ā†

i | f 〉 = �pump/2√
(ωat − ω f ′, f )

2 + (�pump/2
)2 〈 f ′∣∣a†

i | f 〉 (95)

〈
f ′∣∣Hlamb,i| f 〉 = 1

2

∑
f ′′

〈
f ′∣∣ai

∣∣ f ′′〉( (ω f ′′, f − ωat)�pump/2

(ωat − ω f ′′, f )
2 + (�pump/2)2

+ (ω f ′′, f ′ − ωat)�pump/2

(ωat − ω f ′′, f ′)2 + (�pump/2)2

)〈
f ′′∣∣a†

i | f 〉. (96)

which demonstrates the statements of Sec. 2.3.

Appendix C. Exact stationary solution for the Markovian case

In this Appendix, we present a proof of our statements in Sec. 4.1. We are looking for the steady state for the Markovian 
quantum dynamical process:

∂tρ = −i [H,ρ(t)] +Lloss +Lem (97)

with standard Lindblad operators:

Lloss = �loss

2

k∑
i=1

[
2aiρa†

i − a†
i aiρ − ρa†

i ai

]
(98)

Lem = �em

2

k∑[
2a†

i ρai − aia
†
i ρ − ρaia

†
i

]
(99)
i=1
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We want to demonstrate that the following density matrix is an exact steady state:

ρ∞ =
∑

N

πN IN (100)

with

πN = A

(
�em

�loss

)N

(101)

First, since the Hamiltonian preserves the total photon number, and that the density matrix is equal to the identity 
on each sub-space with a defined photon number, we get that [H,ρ∞] = 0. Second, for the Lindblad operators the non-
hermitian Hamiltonian terms have a simple action on the density matrix:

ρ∞
∑

i

a†
i ai = ρ∞N̂ = N̂ρ∞ =

∑
i

a†
i aiρ∞ (102)

ρ∞
∑

i

aia
†
i︸︷︷︸

=a†
i ai+1

= ρ∞(N̂ + k)︸ ︷︷ ︸
=(N̂+k)ρ∞

=
∑

i

aia
†
i ρ∞ (103)

where k is the number of cavities. We are left with the special terms of the form a†ρa and aρa†, for which we find that:∑
i

a†
i ρ∞ai =

∑
i

∑
N

∑
f , f̃ (N)

f ′ f̃ ′ (N − 1)

˜| f 〉 〈 f | · ˜〈 f |a†
i

˜| f ′〉 ˜〈 f ′|ρ∞
∣∣ f ′〉︸ ︷︷ ︸

πeq(N−1)δ f̃ ′, f ′

〈
f ′∣∣ai | f 〉

=
∑

i

∑
N

∑
f , f̃ (N)

f ′ (N − 1)

˜| f 〉 〈 f | · πN−1 ˜〈 f |a†
i

∣∣ f ′〉 〈 f ′∣∣ai | f 〉

=
∑

N

∑
f , f̃ (N)

˜| f 〉 〈 f | · πN−1 ˜〈 f |
∑

i

a†
i ai | f 〉

︸ ︷︷ ︸
=N f δ f , f ′

=
∑

N

∑
f (N)

NπN−1 | f 〉 〈 f | (104)

and ∑
i

aiρ∞a†
i =
∑

N

∑
f (N)

(N + 1 + k)πN+1 | f 〉 〈 f | (105)

If we sum all contributions together, it is immediate to see that we get a total zero contribution:

Lloss(ρ∞) +Lem(ρ∞) =

=
∑

N

∑
f (N)

| f 〉 〈 f |
⎛
⎜⎝N�emπN−1 − N�lossπN︸ ︷︷ ︸

=0

+ (N + k)�lossπN+1 − (N + k)�emπN︸ ︷︷ ︸
=0

⎞
⎟⎠= 0 (106)

which proves our statement.

Appendix D. Perturbative corrections to the coherences in the weakly non-Markovian regime

In this Appendix, we show that the lowest-order correction to the coherences between eigenstates (null in the Grand 
Canonical ensemble of Sec. 4.2) are quadratic in the inverse pumping rate �−1

pump and not linear as a naive pertubative 
expansion would suggest. To this purpose, we calculate the first-order contributions to the coherences of the operator δM
[defined in eqs. (51) and (54)] applied to the grand canonic density matrix and show them to be 0. Let us calculate first the 
contribution of the first two terms:∑

i

〈 f | δa†
i ρ∞ai

∣∣ f ′〉= ∑
i, f̃ , f̃ ′

〈 f | δa†
i

˜| f 〉 ˜〈 f ′|ai
∣∣ f ′〉 × ˜〈 f |ρ∞ ˜| f ′〉︸ ︷︷ ︸

= ˜〈 f |ρ∞ ˜| f 〉δ ˜ ˜ ′

=
∑
i, f̃

〈 f | δa†
i

˜| f 〉 ˜〈 f |ai
∣∣ f ′〉 ˜〈 f |ρ∞ ˜| f 〉 (107)
f , f



858 J. Lebreuilly et al. / C. R. Physique 17 (2016) 836–860
Fig. 7. Comparison of the analytical prediction of the photonic theory (solid black line) to the numerical solution to the full atom–cavity master equation 
(open red points). Stationary value of the average number of photons as a function of the photon loss rate �loss (left) and of the atom–cavity coupling �R

(right). Parameters: 2U/�pump = 2, 2�R/�pump = 0.02 [left panel (a)]; 2U/�pump = 0.6, 2�loss/�pump = 0.02 [right panel (b)]. In all panels, 2δ/�pump = 8.

In the same way:∑
i

〈 f |a†
i ρ∞δai

∣∣ f ′〉=∑
i, f̃

〈 f |a†
i

˜| f 〉 ˜〈 f |δai
∣∣ f ′〉 ˜〈 f |ρ∞ ˜| f 〉 (108)

Then we know that

〈 f | δa†
i

˜| f 〉 = −
i(ω f f̃ − ωat)

�pump
〈 f |a†

i
˜| f 〉 +O

(
1

�pump

)2

(109)

Let us choose a reference state | f0〉 with the same photon number as ˜| f 〉. Then ˜〈 f |ρ∞ ˜| f 〉 = 〈 f0|ρ∞ | f0〉 + O(�−1
pump). All 

these additional terms give second-order contributions, and we do not consider them. Thus, to the first order:

∑
i

〈 f | δa†
i ρ∞ai + a†

i ρ∞δai
∣∣ f ′〉=∑

i, f̃

〈 f |a†
i

˜| f 〉 ˜〈 f |ai
∣∣ f ′〉 〈 f0|ρ∞ | f0〉

−i(ω f f̃ − ω f ′ f̃ )

�pump

= A
−iω f f ′

�pump

∑
i, f̃

〈 f |a†
i

˜| f 〉 ˜〈 f |ai
∣∣ f ′〉

= A
−iω f f ′

�pump

∑
i

〈 f |a†
i ai
∣∣ f ′〉

= A
−iω f f ′

�pump
〈 f | N

∣∣ f ′〉︸ ︷︷ ︸
=N f δ f f ′

= A
−iω f f ′

�pump
N f δ f f ′

= 0 (110)

A similar reasoning allows us to show that∑
i

〈 f |aiδa†
i ρ∞ + ρ∞δaia

†
i

∣∣ f ′〉= 0 (111)

which completes our proof.
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Fig. 8. Comparison of the analytical prediction of the photonic theory (solid black line) to the numerical solution to the full atom–cavity master equation 
(open red points) for a two-cavity system. Stationary value of the average number of photons in the first cavity as a function of the photon loss rate �loss
(left) and of the atom–cavity coupling �R (right). Parameters: 2U/�pump = 7, 2�R/�pump = 0.02, (left a) panel); 2U/�pump = 28, 2�loss/�pump = 0.002
(right b) panel). In all panels, 2 J/�pump = 4 and δ = 0.

Appendix E. Further numerical validation of the photonic master equation

E.1. One cavity case

Here we compare the analytical prediction for the stationary state of the atom–cavity system discussed in Sec. 3 to a 
numerical solution to the full master equation (4). For example, in the left panel of Fig. 7, the stationary value for the 
average photon number is plotted as a function of the photon loss rate �loss . As expected, the purely photonic approach 
based on the projective method gives very accurate results as long as the pump rate �pump (i.e. the inverse autocorrelation 
time of the atomic bath) is much faster than the loss rate �loss .

A similar plot of the average photon number as a function of the atom–cavity coupling �R is shown in the right-hand-
side panel. Outside the small �R regime, the photonic theory tends to overestimate the photon number. This deviation 
can be explained as the theory assumes the atoms to be always in their excited state ready for emission and neglects the 
possibility of an atom reabsorbing the emitted photon before being repumped to the excited state.

E.2. Two-cavity case

Here we give further validation to the purely photonic description used in Sec. 4 by comparing its predictions with 
the numerical results for the full atom–cavity master equation in a two-cavity case. An example is shown in Fig. 8: as in 
the single-cavity case, the agreement is excellent at large �pump and gets deteriorated when �pump is decreased to values 
comparable to �loss [panel (a)]. The situation is even more favourable in panel (b), where the deviations that are expected 
for larger �R are suppressed by the strong nonlinearity. These numerical results offer a further validation of the analytical 
approximations underlying our photonic approach.
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