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In this review, we discuss recent experiments that investigate how the quantum sate of a 
superconducting qubit evolves during measurement. We provide a pedagogical overview 
of the measurement process, when the qubit is dispersively coupled to a microwave 
frequency cavity, and the qubit state is encoded in the phase of a microwave tone that 
probes the cavity. A continuous measurement record is used to reconstruct the individual 
quantum trajectories of the qubit state, and quantum state tomography is performed to 
verify that the state has been tracked accurately. Furthermore, we discuss ensembles of 
trajectories, time-symmetric evolution, two-qubit trajectories, and potential applications in 
measurement-based quantum error correction.
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r é s u m é

Dans ce compte rendu, nous présentons des expériences récentes permettant d’observer 
l’évolution d’un qubit supraconducteur pendant une mesure. Nous couvrons de manière 
pégagogique le processus de mesure dans le cas où le qubit est couplé dispersivement 
à une cavité micro-ondes de manière à ce que son état soit encodé dans la phase d’un 
ton micro-onde sondant la cavité. Un enregistrement étalé dans le temps est utilisé pour 
reconstruire les trajectoires quantiques individuelles de l’état du qubit, et la précision de 
ces trajectoires est vérifiée par une tomographie d’état quantique. De plus, nous discutons 
les ensembles de trajectoires, l’évolution symmétrique par renversement du temps, les 
trajectoires à deux qubits et les applications potentielles en correction d’erreur quantique 
basée sur la mesure.
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1. Introduction

The standard description of quantum mechanics considers the time-evolution of isolated quantum systems whose uni-
tary dynamics are governed by the Schrödinger equation. Measurement is treated as an instantaneous non-unitary process 
through which a quantum system is projected into an eigenstate of the measured observable with a probability given by 
Born’s rule. In reality, no system is completely isolated from its environment, and measurements are never truly instanta-
neous, but occur over some finite timescale determined by the details of the interaction between the measured system and 
its environment. The theory of quantum trajectories [1,2] considers measurement as a continuous process in time, describing 
how the state of the quantum system evolves during measurement.

Due to the intrinsic quantum fluctuations of the environment, measurement is an inherently stochastic process. If a 
quantum system starts in a known quantum state |ψ(0)〉, then by accurately monitoring the fluctuations of its environment 
it is possible to reconstruct single quantum trajectories |ψ(t)〉, which describe the evolution of the quantum state in an 
individual experimental iteration.

The concept of quantum trajectories was first developed in the early 1990s as a theoretical tool to model continuously 
monitored quantum emitters [1,3,4]. For the next decade, quantum trajectories were used primarily in the quantum optics 
community, as a theoretical tool for numerical simulations of the ensemble behavior of open quantum systems [3,5]. Typi-
cally, the master equation of an open quantum system cannot be solved analytically, and thus numerical solutions are often 
necessary. For a Hilbert space of dimension N , the density matrix ρ consists of N2 real numbers, and the computational 
time required to solve for its time evolution through the master equation scales as N4 [6]. In contrast, the pure quantum 
state |ψ(t)〉 of an individual quantum trajectory can be described by N complex numbers. Therefore, it is often advantageous 
to simulate an ensemble of stochastic quantum trajectories, which can be averaged together to recover the evolution of the 
density matrix, ρ(t). Although the formalism of quantum trajectories is constructed from standard quantum mechanics [7], 
it can provide insight into foundational questions such as the quantum measurement problem [8–10] and bears a close 
resemblance to the consistent histories interpretation of quantum mechanics [11].

Despite widespread theoretical use, quantum trajectories have only been investigated in a handful of experiments, due 
in part to the difficulty of performing highly efficient continuous quantum measurements. The earliest experiments to 
continuously monitor individual quantum systems were in the regime of strong measurement, where the system is quickly 
projected into an eigenstate of measurement, destroying any information about the phase of a coherent superposition. In 
such experiments, it is possible to track the ‘quantum jumps’ between eigenstates [12–15]. Cavity quantum electrodynamics 
(CQED) experiments with Rydberg atoms have explored the weak measurement regime, tracking the quantum trajectories 
of a cavity field as it collapses from a coherent state into a photon number eigenstate [16]. Other CQED experiments have 
used a cavity probe to continuously track the position of individual Cesium atoms [17]. Quantum trajectories were first 
considered for solid state systems in the context of a quantum dot qubit monitored in real time by a quantum point contact 
charge sensor [18,19]. In 2007, the conditional measurement dynamics of a quantum dot were investigated experimentally 
[20]. More recently, quantum trajectory theory has been used to solve for the conditional evolution of a continuously 
monitored superconducting qubit [21,22]. These results, when combined with recent advances in nearly-quantum-limited 
parametric amplifiers, which can be used to achieve highly efficient qubit readout, have enabled a detailed investigation of 
measurement backaction [23,24].

In this article, we review recent experiments [25–28] which, by weakly probing the field of a microwave frequency cavity 
containing a superconducting qubit, track the individual quantum trajectories of the system. These are the first experiments, 
on any system, which use quantum state tomography at discrete times along the trajectory to verify that the qubit state has 
been faithfully tracked. From the perspective of quantum information technology, these experiments demonstrate the great 
extent to which the process of measurement is understood in this system, and may inform future efforts in measurement-
based feedback [29–32] for state stabilization [33] and error correction.

The review is organized as follows. In section 2, we present a physical picture for continuous quantum measurement 
of superconducting qubits. In section 3, we demonstrate how to use a measurement result to reconstruct the conditional 
qubit state after measurement. In section 4, we explain how to reconstruct and tomographically verify individual quantum 
trajectories. Then, in section 5, we examine ensembles of quantum trajectories to gain insight into qubit state dynamics 
under measurement. In section 6, we discuss time-symmetric evolution under quantum measurement, and in section 7
we demonstrate quantum trajectories of a two-qubit system. Finally, in section 8 we explore potential applications in 
measurement-based feedback control and continuous quantum error correction.

2. Continuous measurement of superconducting qubits

The experiments discussed in this review use artificial atoms formed from superconducting circuits. We focus in par-
ticular on the transmon circuit [34] (Fig. 1A) which is composed of the non-linear inductance of a Josephson junction 
and a parallel shunting capacitance C� . This circuit is characterized by the Josephson energy scale E J ≡ h̄ I0/2e and the 
capacitive energy scale EC ≡ e2/2C� , where I0 is the junction critical current and e is the elementary charge. A typi-
cal transmon circuit, with E J/h ∼ 20 GHz and EC/h ∼ 200 MHz, has several bound eigenstates (Fig. 1B) with energies Em , 
where m is a whole number that indexes the states. The lowest two levels form a qubit subspace, with transition frequency 
ω01/2π ≡ (E1 − E0)/h ∼ 5 GHz, and the difference in frequency between transitions to successively higher levels is given 
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Fig. 1. Dispersive measurements of a superconducting qubit. (A) A transmon qubit couples dispersively to a microwave frequency cavity. Input signals 
that reflect off the cavity are amplified by a nearly quantum-limited lumped-element Josephson parametric amplifier. (B) Schematic representation of 
the transmon potential and corresponding energy levels. The two lowest energy levels form the qubit subspace. (C) Phase of the reflected signal as a 
function of probe frequency. The resonance frequency is shifted by 2χ depending on whether the qubit is prepared in the |0〉 or |1〉 state. (D, E) The 
cavity is probed with a coherent microwave tone at a frequency ωm , initially aligned along the X1 quadrature. After leaving the cavity, the tone acquires a 
quit-state-dependent phase shift. (F) Phase-sensitive amplification along the X2 (top) and the X1 (bottom) quadratures.

by the anharmonicity α ≈ EC. Due to the large E J/EC ratio, the transmon qubit is insensitive to charge noise, which, when 
combined with low-loss materials [35,36] and designs that minimize the participation of surface dielectric loss [37], has 
allowed for planar qubits with coherence times of many tens of microseconds.

In order to control the qubit’s interaction with its external environment, it is coupled to the fundamental mode of a three 
dimensional waveguide cavity of frequency ωc at a rate g , realizing a cavity quantum electrodynamics (CQED) architecture. 
In the dispersive regime, where the qubit-cavity detuning ωq − ωr is large compared to g , the system is described by the 
Hamiltonian [26,38] H = H0 + H int + HR, where

H int = −h̄χa†aσz (1)

HR = h̄



2
σy (2)

Here H0 describes the uncoupled qubit and cavity energies and decay terms, h̄ is the reduced Plank’s constant, χ is the 
dispersive coupling rate, a† and a are the creation and annihilation operators for the cavity mode, and σz is the qubit Pauli 
operator that acts on the qubit state in its energy eigenbasis. H int is an interaction term which equivalently describes a 
qubit-state-dependent frequency shift of the cavity of −χσz (with the |0〉 state defined as σz = +1) and a qubit frequency 
that depends on the intracavity photon number n̂ = a†a (an a.c. Stark shift). HR describes the effect of an optional microwave 
drive at the qubit frequency which causes the qubit state to rotate about the y axis of the Bloch sphere at the Rabi 
frequency 
.

Because H int commutes with σz , the qubit-state-dependent phase shift can be used to perform continuous quantum 
non-demolition (QND) measurement of the qubit state in its energy eigenbasis [38,39]. Fig. 1C illustrates the phase of the 
reflected signal as a function of frequency. If we choose to measure at a frequency ωm = (ω|0〉 +ω|1〉)/2, where ω|0〉 and ω|1〉
are the cavity frequencies when the qubit is in the ground and excited states, respectively, then the phase difference in the 
internal cavity field for the two qubit states is given by �θ = 4|χ |/κ , where κ is the cavity decay rate. In the experiments 
presented here, we work in the small phase shift limit, with |χ |/κ ∼ 0.05.

We probe the cavity by applying a measurement tone at frequency ωm initially aligned along the X1 quadrature (Fig. 1D). 
Due to the vacuum fluctuations of the electromagnetic field, the quadrature amplitudes X1 and X2 of this field will fluc-
tuate in time. The circle in Fig. 1D represents the Gaussian variance of the input signal time-averaged for a time �t . The 
area of the circle is inversely proportional to �t . After reflecting off the cavity, the measurement signal acquires a qubit-
state-dependent phase shift, as depicted in Fig. 1E. In the small |χ |/κ limit, the X2 quadrature of the reflected signal 
contains information about the cavity phase, which is proportional to the qubit state. Likewise, the X1 quadrature contains 
information about the amplitude of the cavity field and thus the fluctuating intracavity photon number.

In order to track the qubit state through an individual measurement, we need to accurately monitor the quantum fluctu-
ations of the measurement signal, which are typically much smaller than the thermal fluctuations of the room temperature 
electronics that are needed to record the measurement result. Therefore, we must first amplify the signal above this noise 
floor. State-of-the-art commercial low-noise amplifiers, which are based on high electron mobility transistors (HEMTs) and 
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Fig. 2. Continuous quantum measurement. Illustrative measurement histograms for a single time-step (A, D) along with simulated measurement records 
(B, E) and corresponding quantum trajectories (C, F). In the top panels, �t = 200 ns, τ = 50 ns, and 
/2π = 8 MHz, illustrating the quantum jumps regime. 
In the bottom panels, �t = 20 ns, τ = 150 ns, and 
 = 0, illustrating the diffusive regime.

can be operated at 4 K, add tens of photons of noise to the measurement signal. Therefore, a more sensitive pre-amplifier 
is needed in order to overcome the added noise of the HEMT amplifier.

Over the past few years, Josephson junction based superconducting parametric amplifiers have emerged as an effective 
tool for realizing nearly-quantum-limited amplification. Phase-preserving amplifiers such as the Josephson parametric con-
verter [40] amplify both quadrature amplitudes evenly by a factor of 

√
G , where G is the power gain of the phase-preserving 

amplifier, and add at least a half photon of noise [41] to the signal. Here, we focus instead on phase-sensitive amplification 
from a lumped-element Josephson parametric amplifier [42], where one quadrature is amplified by a factor of 2

√
G and the 

other quadrature is de-amplified by the same factor.
When we apply a coherent measurement tone, characterized by an average intracavity photon number n̄, its quantum 

fluctuations will cause the phase coherence of a qubit superposition state to decay at the ensemble dephasing rate � =
8χ2n̄/κ . The ensemble dephasing rate will be the same regardless of how we choose to process the measurement signal 
after it leaves the cavity. However, the backaction of an individual measurement will depend significantly on our choice of 
detection scheme.

As depicted in Fig. 1F, a measurement tone initially aligned along the X1 quadrature is reflected off the cavity and ac-
quires a qubit-state-dependent phase shift. It is then displaced to the origin of the X1–X2 plane by a coherent tone. Let us 
consider two detection schemes: we amplify either the X2 quadrature (top panel in Fig. 1F), which contains qubit-state infor-
mation or the X1 quadrature (bottom panel), which contains information about the fluctuating intracavity photon number. 
Consider a qubit initially prepared in an equal superposition of σz eigenstates, say σx = +1. If we perform ideal phase-
sensitive amplification of X2, we also de-amplify the photon number information, and the measurement backaction drives 
the qubit state along a meridian of the Bloch sphere toward one of the poles. We refer to this case as a z-measurement, 
because we acquire information about the qubit state in the σz basis. If instead we amplify X1, we also de-amplify the 
qubit-state information, and measurement backaction drives the qubit state along the equator of the Bloch sphere. We refer 
to this case as a φ-measurement, because we can track the phase of a qubit superposition state over the course of an 
individual measurement. For phase-preserving amplification both types of backaction occur simultaneously.

We first focus on the case of the z-measurement. After the measurement tone leaves the parametric amplifier and passes 
through further stages of amplification we demodulate the signal and record the X2 quadrature amplitude as a digitizer 
voltage V (t). For a measurement of duration �t , the measurement outcome Vm is given by the time-average of V (t). 
Depending on whether the qubit is initially prepared in the ground of the excited state, the Gaussian distribution describing 
the probability attaining a particular measurement outcome will be shifted by a voltage �V ∝ �θ . In this review, we define 
a dimensionless measurement outcome r = 2Vm/�V , such that the ground and excited state distributions are centered 
about r = ±1, respectively, as illustrated in Fig. 2A, D. From these distributions, we define the dimensionless measurement 
strength S ≡ (2/a)2, where a is the standard deviation of the dimensionless measurement distributions, which scales as 
(�t)−1/2. We also define the characteristic timescale τ over which the qubit state is projected as the amount of time 
required for the measurement histograms to be separated by twice their standard deviation, τ ≡ 4�t/S . When S is large 
(�t 	 τ ), the ground and excited state histograms are well separated (Fig. 2A), and it is possible to determine the qubit 
state with high fidelity in an individual measurement. The measurement projects the qubit into an energy eigenstate, where 
it will remain after measurement. Instead, if S is small (�t � τ ), the ground and excited state histograms overlap (Fig. 2D), 
and an individual measurement only partially projects the qubit state.
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Formally, general quantum measurements (partial or projective) are described by Kraus operators {
m}, which yield the 
probability P (m) = Tr(
m ρ 


†
m) for obtaining an outcome m, and the associated back action on the quantum state, ρ →


m ρ 

†
m/P (m). The operators 
m obey 

∑
m 


†
m
m = Î . For example, for the projective measurements 
±z = ( Î ± σz)/2, 

the probability of a measurement yielding the qubit in the +z state is P (+z) = Tr(
+zρ
+z) = (1 + 〈σz〉)/2. The partial 
measurements discussed in this review are described by the Kraus operators [6,43],


r =
(

2πa2
)−1/4

e(−(r−σz)
2/4a2) (3)

where 1/4a2 = �t/4τ . The σz term in 
r causes the back action on the qubit degree of freedom, ρ → 
rρ

†
r , due to the 

readout of the measurement result r, resulting in the measurement dynamics discussed in this review.
Our ability to reconstruct the qubit state after an individual partial measurement is determined by the measurement 

quantum efficiency ηm. We have established that the noisy measurement tone contains information about the qubit state 
and cause an ensemble dephasing rate of �. In general, only a fraction, ηm of this information is experimentally accessible, 
and the remainder is lost to environmental degrees of freedom. The measurement efficiency can be reduced from its ideal 
value of ηm = 1 by losses between the cavity and the parametric amplifier, described by the collection efficiency ηcol and by 
added noise in the amplification chain, described by the amplification efficiency ηamp. In the experiments presented here, 
ηm = ηcolηamp ∼ 0.4. The measurement strength depends linearly on ηm, and for dispersive measurements in the small 
phase shift limit is given by S = 64χ2n̄ηm�t/κ .

We now turn our attention to continuous quantum measurement. In Fig. 2, we illustrate quantum trajectories in the 
limiting cases of strong and weak measurement. We consider a sequence of n measurements occurring at times {tk =
k�t} for k = 0, 1, . . . , n − 1, which result in a set of dimensionless measurement results {rk} = {r0, r1, . . . , rn−1}. If the 
qubit is prepared in a known initial state, then we can use the measurement results to track the qubit state as it evolves 
under measurement, computing the set of conditional qubit states {qk} = {q0, q1, . . . , qn−1} corresponding to an individual 
measurement record {rk}. Here the Bloch vector q = (x, y, z) describes a general mixed single-qubit state in terms of the 
components x ≡ tr[ρσ̂x], y ≡ tr[ρσ̂y], and z ≡ tr[ρσ̂z], where ρ is the qubit density matrix. In the limit where τ � �t , 
each time step constitutes a (nearly) projective measurement. In the absence of any non-measurement dynamics, after 
the first time-step subsequent measurements will continue to project the qubit into the eigenstate corresponding to the 
initial measurement result. However, any additional dynamics, such as energy relaxation or Rabi driving, which occur on a 
timescale faster than �t will result in discontinuous jumps in the measurement record corresponding to quantum jumps 
[15] of the qubit state (Fig. 2B, C).

In the opposite limit, where �t � τ , each measurement will only slightly perturb the qubit state. However, by perform-
ing a sequence of repeated partial measurements such that tn−1 	 τ , we can realize a projective measurement. In this case, 
the noisy detector signal can be used to reconstruct the diffusive trajectory of the qubit state as it is gradually projected 
toward a measurement eigenstate (Fig. 2E, F).

3. Reconstructing the conditional quantum state

In this section, we discuss in detail how to reconstruct the qubit state conditioned on an individual measurement out-
come. One approach, taken in references [27,28] is to solve a stochastic master equation for conditional qubit state. Here, 
we instead describe phenomenological approach based on a Bayesian statistics [22], which provides a particularly simple 
approach to single-qubit trajectories and was used in references [25] and [26]. As recently demonstrated in reference [28], 
for the a single qubit under weak measurement and weak Rabi driving, both approaches yield similar results.

Consider a qubit prepared in the initial state ρ(t = 0), which is weakly measured for a time �t , yielding a measurement 
result r. Here, we show how to apply Bayes rule of conditional probabilities to update our knowledge of the qubit state 
after the measurement. We first focus on the case of a z-measurement, with 
 = 0. From Bayes rule, we have

P (i|r) = P (r|i)P (i)

P (r)
(4)

where i describes the basis states {|0〉, |1〉}. Here, the initial probabilities for finding the qubit in the ground or excited 
states are given by P (0) = ρ00(t = 0) and P (1) = ρ11(t = 0). By expressing the measurement distributions P (r|i) explicitly 
and taking the ratio of the conditional probabilities in equation (4) for both basis states, we find that

ρ11(�t)

ρ00(�t)
= ρ11(0)

ρ00(0)

exp[−(r + 1)2/2a2]
exp[−(r − 1)2/2a2] (5)

For a qubit initially prepared in the state qI = (1, 0, 0) we find that

zz = tanh

(
r�t

τ

)
(6)

where the superscript ‘z’ denotes a z-measurement.
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Fig. 3. Reconstructing the conditional quantum state. (A, B) The conditional quantum state after a measurement result r for a qubit initially prepared 
in the state (1, 0, 0), with �t = 400 ns, τ = 600 ns, and γ = 1.3 · 106 s−1. Panel A depicts a z-measurement, and panel B depicts a φ measurement. 
(C) Experimental sequence for reconstructing the x component of the conditional quantum state. (D) To perform quantum state tomography conditioned 
on the measurement result r = 1.7, we average together the projective measurement outcomes for the sub-ensemble of measurement outcomes where 
r = 1.7 ± ε .

Note that thus far we have used a classical rule of conditional probabilities to determine how the qubit populations 
evolve under measurement. Following reference [22], we account for the qubit coherence through the phenomenological 
assumption that

xz =
√

1 − (zz)2 e−γ �t (7)

Here the first term enforces normalization and the second term reflects our imperfect knowledge of the environment and 
leads to qubit dephasing characterized by the rate γ = � − 1/2τ , where � = � + 1/T ∗

2 is the ensemble dephasing rate and 
T ∗

2 ∼ 20 μs is the characteristic timescale for extra environmental dephasing.
For the case of a φ-measurement, z remains zero, and x and y are periodic in the accumulated qubit phase shift, and 

are given by [22]

xφ = cos

(
r�t

τ

)
e−γ �t (8)

yφ = −sin

(
r�t

τ

)
e−γ �t (9)

where the superscript ‘φ’ denotes a φ-measurement. Fig. 3 illustrates the conditional quantum state as a function r for a 
z-measurement (panel A) and a φ-measurement (panel B), with τ = 600 ns and �t = 400 ns. Note that the dephasing rate 
γ due to the unaccessible part of the measurement signal is the same regardless of our choice of amplification axis. In both 
cases, a measurement outcome of r = 0 will leave y and z unchanged, but x is reduced by a factor of Exp[−γ�t].

A useful feature of dispersive CQED measurements is the ability to rapidly tune the measurement strength by changing 
the amplitude of the measurement tone. Therefore, it is straightforward to implement experimental sequences which com-
bine partial and projective measurement. The sequence shown in Fig. 3C is used to implement conditional quantum state 
tomography to verify that we can accurately account for the backaction of an individual measurement. The qubit is pre-
pared in the initial state (1, 0, 0), and weakly measured for a time �t . Then, we perform an optional qubit rotation (of π/2
about the ŷ axis to reconstruct x, π/2 about −x̂ to reconstruct y, and no pulse to reconstruct z) followed by a projective 
measurement. For a given measurement outcome r, we perform a tomographic state reconstruction on the sub-ensemble of 
experimental iterations with similar measurement outcomes, in the range r ± ε , where ε � 1. For superconducting qubits, 
this technique was first introduced in reference [23], which considers the case of phase-preserving amplification. Shortly 
thereafter, this technique was demonstrated for phase-sensitive amplification [25].

4. Tracking individual quantum trajectories

Consider a qubit initially prepared in a known state qI , which undergoes a sequence of n partial measurements with 
outcomes {rk}, as described in section 2. In the limit where the duration �t of each measurement approaches zero, the 
set of conditional states {qk} describes a quantum trajectory q(t). For simplicity, from here on we restrict our discussion 
to the case of a z-measurement. When ω = 0, we can calculate the conditional quantum state at each time-step tk = k�t
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Fig. 4. Reconstructing individual quantum trajectories. Here, τ = 1.28 μs, γ = 2.7 × 10−7 s−1, and 
/2π = 0 (A, C) and 0.4 MHz (B, D). Panels A and 
B depict the ensemble average evolution. Panels C and D display simulated individual quantum trajectories ending at tn = 2 μs, with the x, y, and z
components depicted in blue, red, and black, respectively. The orange regions represent a matching window of ε = 0.05 at t = 0.66 μs (C) and 1.48 μs (D). 
Sample trajectories that end within the matching window are shown in other colors.

from equations (6) and (7) using only the initial state and the time-averaged measurement signal r̄ = 1/k 
∑k−1

k=0 rk . However, 
when 
 > 0 the measurement dynamics do not commute with the Rabi drive, and therefore the order of the measurement 
outcomes matters, and r̄ no longer contains sufficient information to reconstruct the quantum trajectory. Instead, if �t �

 we can perform a sequential two-step state update procedure introduced in reference [26]. For each time-step tk , we 
calculate qk by first applying a Bayesian update to the state qk−1 to account for the measurement result rk , and then by 
applying a unitary rotation to account for the Rabi drive during the time �t . Example quantum trajectories are shown 
in Fig. 4A, B for 
/2π = 0 and 0.4 MHz, respectively, and τ = 1.28 μs. The corresponding ensemble average evolution is 
shown in panels C and D.

While previous experiments in other systems have reconstructed individual diffusive quantum trajectories [16], reference 
[25] was the first to use conditional quantum state tomography to verify that the trajectories were reconstructed accurately. 
Here, we present a brief outline of the tomographic validation procedure. We perform a large number of experimental 
iterations ending at different times tf , which are followed by a qubit rotation and a projective measurement. We use a 
single full-length experimental iteration (with tf = (n − 1)�t) to generate a target trajectory, denoted q̃(t) ≡ (x̃(t), ỹ(t), ̃z(t)). 
Then, for each experimental sequence of total measurement duration tk (and a given orientation of tomography pulse), we 
compute the quantum trajectory q(t). We perform conditional quantum state tomography separately at each time tk using 
the subset of experimental iterations with x(tk) = x̃(tk) ± ε and z(tk) = z̃(tk) ± ε where ε � 1, and we have assumed that 
y = 0. The orange shaded regions in panels C and D of Fig. 4 represent matching windows at tk = 0.66 μs and 1.28 μs, 
respectively. Trajectories which fall within the matching window at tk are used in the tomographic reconstruction of q(tk).

5. Distributions of trajectories

By tomographically reconstructing individual quantum trajectories, as discussed above and initially demonstrated in ref-
erence [25], we have proven that we can accurately track the qubit state over the course of any individual measurement. In 
this section, we consider how quantum trajectory experiments are useful for building an intuition for how the qubit state 
is most likely to evolve under measurement. As discussed in reference [26], distributions of quantum trajectories offer a 
convenient qualitative tool for visualizing the interplay between measurement dynamics and unitary evolution.

The greyscale histograms in panels A and B of Fig. 5 display the simulated distribution of quantum trajectories for τ =
1.28 μs, γ = 2.7 × 10−7 s−1, and 
/2π = 0.4 MHz. Note that due to the Rabi drive, the measurement initially projects the 
qubit preferentially toward the excited state (z = −1). At intermediate times a wide range of qubit states are possible, and 
after half a Rabi period the qubit is preferentially projected toward the ground state. In experiments with superconducting 
qubits, τ and 
 can be readily tuned, and distributions of quantum trajectories are experimentally accessible for a wide 
range of parameters.

It is also possible to consider the conditional quantum dynamics of the sub-ensemble of trajectories which end in a 
particular quantum state, or post-selection. Panels C and D of Fig. 5 display the distribution of trajectories which end in 
the final state xF = 0.1 ± 0.08, zF = 0.55 ± 0.08. By analyzing the statistical properties of such distributions, it is possible 
to answer questions of broad interest in the field of quantum control. The experiments of reference [26] focus on one such 
question: what is the most probable path through quantum state space connecting an initial state |ψi〉 and a final state |ψf〉
in a given time T ?
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Fig. 5. Greyscale histograms of quantum trajectories based on 5 × 104 simulated trajectories. Here, τ = 1.28 μs, γ = 2.7 × 10−7 s−1, and 
/2π = 0.4 MHz. 
Histograms are normalized such that the most frequent value at each time point is 1. Panels A and B depict the full distribution of x (A) and y (B) 
trajectories. Panels C and D display the sub-ensemble of trajectories which end in the final state xF = 0.1 ± 0.08, zF = 0.55 ± 0.08.

One straightforward theoretical approach to this problem would be to solve the stochastic master equation (SME) nu-
merically for a large ensemble of repetitions, and then to perform statistical analysis on the sub-ensemble of trajectories 
which end in |ψf〉 at time T . An alternative approach based on an action principle for continuous quantum measurement 
was developed in reference [44]. The action principle naturally incorporates post-selection and yields a set of ordinary (non-
stochastic) differential equations for the most probable path which are simpler to solve numerically than the full SME. In 
the limit of no post-selection, this approach is consistent with SME formulation. The results of reference [26] experimentally 
verify the predictions of this action principle for the case of a single qubit under simultaneous measurement and Rabi drive. 
However, the action principle is a general theory which can be applied to a wide variety of quantum systems and may 
prove useful in designing optimal quantum control protocols.

6. Time-symmetric state estimation

We have so far focused on the use of the quantum state as a predictive tool; the quantum trajectories presented in 
the previous sections describe the evolution of expected average outcome of observables σx , σy , σz , which relate in a 
straightforward way to the probability of obtaining a certain outcome in subsequent projective tomography measurements. 
However, it is also possible to follow the qubit state evolution backward in time to predict an unknown measurement result 
from the past.

Consider the following guessing game: Two experimenters can perform measurements on the same quantum system. 
At a time t the first experimenter makes a measurement of some observable 
m and hides the result. The second exper-
imenter then must guess the outcome m that the first experimenter received. If the second experimenter only has access 
to the quantum system’s state before the first experimenter’s measurement, then the theory of generalized measurements 
provides the second experimenter with probability for each outcome m and the ability to make the best possible guess. 
However, if the second experimenter is allowed to probe the quantum system after the first experimenter has conducted 
her measurements, can he make a better prediction for the hidden result? Indeed, since more information about the system 
is available at a later time the second experimenter can make more confident predictions. It can be shown [45,46] that the 
probability of the outcome m is given by

Pp(m) = Tr(
mρt

†
m Et)∑

m Tr(
mρt

†
m Et)

(10)

where ρt is the system density matrix at time t , conditioned on previous measurement outcomes and propagated forward 
in time until time t , while Et is a matrix which is propagated backwards in time in a similar manner and accounts for the 
time evolution and measurements obtained after time t . The subscript “p” denotes “past”, and in [46] it was proposed that, 
if t is in the past, the pair of matrices (ρt , Et), rather than only ρt , is the appropriate object to associate with the state of 
a quantum system at time t . It is worth noting that information from before the first experiment’s measurement, which is 
encoded in ρt , and information after this measurement (encoded in Et ) play a formally equivalent role in the prediction for 
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Fig. 6. Two-qubit trajectories (A) Schematic of the measurement setup. (B) The cascaded cavities are probed with a coherent microwave tone, initially 
aligned along the X1 quadrature. After probing both cavities, the tone can acquire three different phase shifts: +�θ , −�θ and 0 corresponding to the 
states |11〉, |00〉 and |01〉/|10〉 respectively. (C) Conditional quantum state after a measurement result r of length tk = k�t = 0.8 μs, for both quits initially 
prepared in the maximally superposed state ((|0〉 + |1〉)/√(2) ⊗ (|0〉 + |1〉)/√(2)) and τ = 0.75 μs. (D) Single quantum trajectory of the cascaded two-qubit 
system. The color code is similar to the one used in panel C. The inset shows the corresponding concurrence.

the experimenter’s result. It is natural that full measurement records would contain more information about the system and 
several precision probing theories [47–51] have incorporated full measurement records.

Recent experiments have applied Eq. (10) to systems with Rydberg atoms [52] and superconducting qubits [28], confirm-
ing how full measurement records allow more confident predictions for measurements performed in the past. This applies 
to both projective and weak (weak value) measurements and in the case of weak measurements the experiments reveal 
how the orthogonality of initial (ρt ) and final (Et ) states leads to the occurrence of anomalous weak values [28].

7. Two-qubit trajectories

To this point, we have focused on the trajectories of a single-qubit system. However, the trajectory formalism is readily 
extensible for studying the dynamics of a multiple-qubit system. Such systems are of interest because they allow us to 
directly observe and study the generation of entanglement on a single-shot basis [53]. In particular, we study a cascaded 
CQED system comprised of two superconducting qubits housed in two separate cavities that are sequentially probed in 
reflection by a single coherent state (Fig. 6). The quantum trajectory formalism for such a system was first developed in 
1993 [1], and was observed experimentally in 2014 [27].

The Hamiltonian for this cascaded quantum system is given by

H = H0 + χ1a†aσ 1
z + χ2b†bσ 2

z − i
√

κ1κ2ηloss

2
(a†b − b†a) (11)

where H0 comprises the uncoupled Hamiltonians for the two cavities and qubits; χi are the dispersive shifts; a (b) and 
a† (b†) are the creation and annihilation operators for the first (second) cavity; κi are the decay rates of the cavities; and 
ηloss ≈ 0.8 represents the transmission efficiency between the two cavities.

In the multiple-qubit regime, it is more convenient to work in the measurement basis (|00〉, |01〉, |10〉 and |11〉) rather 
than the Pauli basis set (σi ⊗ σ j), since the measurement in the multi-qubit case does not project along a single-qubit 
Pauli operator. In the experiments described in reference [27], the sequential measurement realizes a half-parity operation 
(Fig. 5A, B): the measurement tone acquires distinct phase shifts of ±�θ for the even-parity states |00〉 and |11〉, and an 
identical (null) phase shift in the odd-parity subspace (|01〉 and |10〉).

In cascaded quantum systems, the effect of the losses between the systems is of primary importance and need to be 
fully taken into account when a quantitative description is needed [27]. However in this review, we make the choice to set 
ηloss = 1 (zero losses) for the sake of simplicity. In addition, we make the assumption that the dispersive shifts are equal for 
the two cavities (χ1 = χ2 = χ ) as well as the decay rates (κ1 = κ2 = κ ).

Similarly to the single-qubit case, we can define the measurement outcome Vk as the time-average of the X2 quadrature 
voltage: Vk = 1/(k�t) 

∫ k�t V X2 (t) dt . The dimensionless measurement outcome is thus given by rk = 2Vk/�V , where �V ∝
0
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�θ is defined as the distance between the measured Gaussian histogram centers for |00〉 and |01〉/|10〉. The measurement 
realizes a projection on a timescale τ ≡ 4�t/S with the dimensionless measurement strength S = 64χ2n̄ηm�t/κ .

The formalism for generating a joint qubit trajectory is quite similar to that of the single qubit case. We collect a series of 
measurements {rk} at times {tk}, and use these measurements to calculate the conditional density matrices {ρ i j,lm

k }, where 
{i j, lm} index the computational states. The diagonal density matrix elements can be calculated using a Bayes’ rule, for 
example:

ρ00,00
k

ρ11,11
k

= ρ00,00
0 (0)e

[−(rk+2)2/2σ 2
]

ρ11,11
0 (0)e

[−(rk−2)2/2σ 2
] (12)

Here, σ is the width of the Gaussian histograms, which decreases as 1/
√

�t . The off-diagonal density matrix elements 
can also be calculated within the same Bayesian formalism. Neglecting internal losses in the cavity and T1 relaxation, the 
off-diagonal density matrix terms ρ01,10

k are given by

|ρ i j,lm
k | = |ρ i j,lm

0 |
√

ρ
i j,i j
k ρlm,lm

k√
ρ

i j,i j
0 ρlm,lm

0

e−γi j,lmk�t × exp

[
−k�t

2
(1 − ηm) |V ij

k − V lm
k |2

]
(13)

where V i, j
k is the average voltage corresponding to the qubits prepared in the states i, j. Here, the first term represents 

the Bayesian update and includes intrinsic T ∗
2 dephasing of the matrix element γi j,lm; the second term accounts for partial 

dephasing due to uncollected measurement photons. Notice that in the case where V 01
k = V 10

k , there is no dephasing of the 
ρ01,10 off-diagonal term due to nonunity ηm: the odd-parity subspace becomes protected with respect to added noise, and 
we expect the measurement to probabilistically generate entanglement in the odd-parity subspace.

Equations (12) and (13) provide a mapping {rk} �→ {ρk} at each measurement time tk = k�t . We can also reconstruct the 
trajectories experimentally using conditional tomography, as described in Section 3 and elaborated in reference [27]. Fig. 4C 
shows such a Baeysian mapping. However, as mentioned earlier, the losses between the cavities need to be accounted 
for. Thus we used a more refined formalism as explained in reference [27]. From this mapping, one can reconstruct the 
trajectory of a single iteration of the experiment.

As mentioned before, the main advantage of this cascaded system is its ability to generate entanglement between remote 
qubits. To quantify this entanglement, we can reconstruct the quantum trajectory of the concurrence, which is a monotone 
of entanglement. A simplified definition is given by

Ck = 2 max(0, |ρ01,10
k | −

√
ρ00,00

k ρ11,11
k ) (14)

Concurrence reaches a maximum value of 1 for a maximally-entangled Bell state, and is zero for joint qubit states that 
cannot be distinguished from separable or from classically mixed states. An exemplar quantum trajectory of the joint qubit 
state, and of the concurrence, are shown in Fig. 4D. We see an initial transient during which C is zero, followed by a 
non-monotonic increase in the C as the joint qubit state stochastically projects towards the entangled manifold, reaching an 
eventual concurrence of C ∼ 0.55, indicating a highly nonclassical state.

8. Outlook

The experiments presented in this review demonstrate precise control and a detailed understanding of the process of 
continuous quantum measurement of a superconducting qubit. This knowledge may benefit a wide range of future research 
directions in quantum control and multi-qubit state estimation [54,55]. In this final section we highlight one such research 
direction: measurement-based quantum feedback.

A continuous measurement record, which contains information about how the qubit state evolves in real time, can be in-
corporated into a feedback loop for a number of applications including state preparation, state stabilization, and continuous 
quantum error correction. Without feedback, a combination of projective measurement and unitary rotation can be used 
to probabilistically prepare an arbitrary qubit state [56]. Using feedback, the measurement result can be used to control 
a subsequent qubit rotation, allowing for deterministic state-reset protocols [57,58] which can be repeated on a timescale 
much faster than T1.

In the case of weak measurement, it is possible to prepare arbitrary states by measurement alone, without applying any 
subsequent qubit rotations. Without feedback, state preparation is probabilistic: one simply post-selects an ensemble of tra-
jectories which end up in the desired state. With feedback, it is possible to prepare an arbitrary qubit state deterministically 
through adaptive measurement, as recently demonstrated using nitrogen vacancy centers [33].

In addition to state preparation, quantum feedback can also be used to stabilize a qubit state or trajectory. In refer-
ence [30], we used weak measurements and continuous quantum feedback to stabilize Rabi oscillations of a superconducting 
qubit. Reference [58] demonstrated that stroboscopic projective measurements and feedback can be used to stabilize an ar-
bitrary trajectory, such as Rabi or Ramsey oscillations. Furthermore, with the two-qubit setup from reference [27] it should 
be possible to use feedback to stabilize an entangled state.
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Looking forward, proposals for fault tolerant quantum computing rely on quantum error correction (QEC) protocols in 
which a single logical qubit is composed of many physical qubits. While many QEC schemes such as surface codes rely 
on discrete projective measurements of syndrome qubits [59–61], a wide body of QEC proposals are based instead on 
continuous measurement-based quantum feedback [6]. In these techniques, a single logical qubit is encoded in several 
physical qubits, and an error syndrome is detected by processing (or ‘filtering’) a continuous measurement signal. The error 
signal is used to generate a suitable feedback Hamiltonian which corrects for errors in real time.

By tomographically validating individual quantum trajectories, the experiments presented in this review have demon-
strated the ability to correctly ‘filter’ a measurement signal for one and two qubit systems. A sensible next step is to build a 
system of several qubits and attempt to correctly filter an error syndrome. Then, the following step would be to feed-back 
on this error syndrome to realize a single logical qubit whose lifetime exceeds that of its constituent physical qubits. Re-
alizing this goal will require a robust multi-qubit architecture and improvements in the measurement quantum efficiency. 
Recent experiments [61,62] have demonstrated that it is possible to individually measure and control 5–9 qubits in a pla-
nar cQED architecture, and efforts to improve the measurement quantum efficiency are currently underway in a number 
of different research groups. Although there are still formidable challenges to overcome, and while the ultimate utility of 
measurement based QEC in comparison to other methods remains an open question, it seems that an initial demonstration 
of measurement based QEC may lie on the horizon.
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