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The techniques of microwave quantum optics are applied to collective spin excitations in a 
macroscopic sphere of a ferromagnetic insulator. We demonstrate, in the single-magnon 
limit, strong coupling between a magnetostatic mode in the sphere and a microwave 
cavity mode. Moreover, we introduce a superconducting qubit in the cavity and couple 
the qubit with the magnon excitation via the virtual photon excitation. We observe the 
magnon–vacuum-induced Rabi splitting. The hybrid quantum system enables generation 
and characterization of non-classical quantum states of magnons.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous appliquons les techniques de l’optique quantique micro-onde aux excitations collecti-
ves des spins d’une sphère macroscopique d’un isolant ferromagnétique. Nous mettons en 
évidence, dans la limite d’une unique excitation magnonique, le couplage fort entre un 
mode magnétostatique de la sphère et un mode d’une cavité micro-onde. En outre, nous 
avons ajouté un bit quantique supraconducteur à la cavité, ce qui permet de coupler ce bit 
quantique au mode de magnon, via l’échange virtuel d’un photon. Nous observons ainsi un 
anticroisement des fréquences de résonance du magnon et de la cavité. Cette plateforme 
hybride permet la création et la caratérisation d’états non classiques de magnons.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The successful development of superconducting qubits and related circuits has brought wide opportunities in quantum 
control and measurement in the microwave domain [1–6]. In circuit quantum electrodynamics and microwave quantum 
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Fig. 1. Relation between magnon number and z-component of total spin. The number of bosons corresponds to the reduction of the total spin.

optics, the bosonic excitations of the electromagnetic modes, i.e. “photons”, are handled with high accuracy [7–10].1 There-
fore, it is natural to extend the targets to other quantum mechanical degrees of freedom. The examples are found in recent 
reports on hybrid quantum systems based on superconducting circuits: for example, paramagnetic spin ensembles [11,12], 
nanomechanical oscillators [13,14], and surface acoustic waves in a piezoelectric substrate [15] have been coherently con-
trolled via a coupling with a superconducting qubit.

Our goal here is to apply the techniques of microwave quantum optics to collective spin excitations in a ferromagnet. 
In a similar way to the case of superconductivity, ferromagnetism has a rigidity in its order parameter. The lowest energy 
excitations are long-wavelength collective spin precessions. We couple the quantum of the collective mode, a magnon, with 
a microwave cavity as well as a superconducting qubit to reveal its coherent properties in the quantum limit [16,17].

This paper is structured as follows: Sec. 2 reviews the basics of magnons in ferromagnet. In Sec. 3, the hybridization 
of a magnon and a photon in a microwave cavity is demonstrated. Finally, in Sec. 4, we demonstrate the strong coupling 
between a superconducting qubit and a magnetostatic mode in a ferromagnetic crystal. The magnon vacuum induces Rabi 
splitting in the qubit excitation. Summary and outlook are presented in Sec. 5.

2. Magnons in a ferromagnet

2.1. Spin waves

In order to describe spin waves, or collective excitations in ferromagnetic materials, we begin with a simple Hamiltonian:

Ĥ = −gμB Bz

∑
i

Ŝ z
i − 2 J

∑
〈i, j〉

Ŝi · Ŝ j (1)

where the first term represents the Zeeman energy and the second one is the nearest-neighbor exchange interaction. The 
sum in the second term is taken over the pairs of the neighboring spins. Ŝi is the Heisenberg spin operator for the i-th 
site, g is the g-factor, μB is the Bohr magneton, Bz is the static magnetic field along the z axis, and J is the exchange 
integral. J takes positive values for ferromagnetic materials, leading to the ferromagnetic ground state, where all the spins 
are aligned along the z axis.

We can express the Heisenberg operators in terms of the bosonic operators ĉi, ĉ
†
i by using the Holstein–Primakoff trans-

formation [18]:

Ŝ+
i = Ŝx

i + i Ŝ y
i = √

2s

(
1 − ĉ†

i ĉi

2s

)1/2

ĉi (2)

Ŝ−
i = Ŝx

i − i Ŝ y
i = √

2s ĉ†
i

(
1 − ĉ†

i ĉi

2s

)1/2

(3)

Ŝ z
i = s − ĉ†

i ĉi (4)

where s is the total spin on each site. The meaning of this transformation is illustrated in Fig. 1. We find from Eq. (4) that 
the number of the bosons corresponds to the reduction of the z-component of the total spin.

1 To be more precise, we may say that surface plasmon polaritons, i.e., quanta of the hybridized modes of the surface charge density waves on the 
electrodes and the electromagnetic waves in the vacuum, are manipulated in the circuits.
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The bosonic operators defined on each lattice point are related to the spin–wave operators by the Fourier transformation:

ĉi = 1√
N

∑
k

e−ik·ri ĉk (5)

ĉ†
i = 1√

N

∑
k

eik·ri ĉ†
k (6)

where N is the number of the atoms with spin s, and ĉk and ĉ†
k correspond to the annihilation and to the creation of a 

magnon in the plain-wave mode, respectively. Substituting these operators into the Hamiltonian [Eq. (1)] and truncating it 
to the second order, we obtain the spin–wave Hamiltonian:

Ĥ =
∑

k

h̄ωkĉ†
kĉk (7)

with the dispersion relation:

h̄ωk = 2sZ J (1 − γk) + gμB Bz (8)

where Z is the coordination number of each site. In the case of a simple cubic lattice (Z = 6) with the lattice constant a0, 
γk becomes

γk = 1

3
(cos kxa0 + cos kya0 + cos kza0) (9)

which gives the quadratic dispersion relation in the long wavelength limit:

h̄ωk = 2s Ja2
0|k|2 + gμB Bz (10)

As indicated in the first term, the rigidity of the ordered spin system lifts the degeneracy of the spin excitations, which is 
in stark contrast with the case in paramagnetic spin ensembles.

2.2. Magnetostatic modes

While we assumed infinite lattices in Sec. 2.1, we actually need to consider finite samples coupling with the surrounding 
electromagnetic field. Especially when the wavelength of magnons is comparable to the sample size, the effect of the 
dipolar field generated by the spins becomes dominant, and thus the boundary conditions at the sample surface are of great 
importance. Relatively, the contribution of the exchange interactions (∝ |k|2) becomes negligible. We then determine the 
magnetization oscillation modes from classical electrodynamics.

Suppose the magnetization in the sample is forced to oscillate by a time-dependent magnetic field heiωt perpendicular 
to the static magnetic field, where h = (hx, hy, 0). Then the oscillating part meiωt = (mx, my, 0)eiωt of the magnetization 
obeys the Landau–Lifshitz equation:

iωmx

γ
= my Bz − μ0Mshy (11)

iωmy

γ
= −mx Bz + μ0Mshx (12)

where Ms is the saturation magnetization, μ0 is the vacuum permeability, and γ ≡ gμB/h̄ is the electron gyromagnetic 
ratio. Note that we have linearized these equations assuming that the amplitudes of m and h are small compared to Ms
and Bz/μ0, respectively. Solving Eqs. (11) and (12) for mx and my yield the following results:

mx = μ0Ms

B2
z − (ω/γ )2

(
Bzhx − i

ω

γ
hy

)
≡ κ

∂ψ

∂x
− iν

∂ψ

∂ y
(13)

my = μ0Ms

B2
z − (ω/γ )2

(
i
ω

γ
hx + Bzhy

)
≡ iν

∂ψ

∂x
+ κ

∂ψ

∂ y
(14)

κ = μ0Ms Bz

B2
z − (ω/γ )2

, ν = μ0Msω/γ

B2
z − (ω/γ )2

where ψ is the scalar potential of h (∇ψ ≡ μ0h). Substituting Eqs. (13), (14) into the Maxwell equations:

∇2ψ = μ0 div h = −div m (15)

we obtain the differential equation for ψ inside the sample:
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Fig. 2. Geometries of the transverse magnetization m in a) the Kittel [(1,1,0)] mode and b) the (4,3,0) mode.[
(1 + κ)

(
∂2

∂x2
+ ∂2

∂ y2

)
+ ∂2

∂z2

]
ψ = 0 (16)

Outside the sample, ∇2ψ = 0. The boundary conditions are the continuities of ψ and the normal component of 
h + m/μ0. Walker solved these equations for spheroidal samples and found for each eigenmode the mode shape and 
the Bz-dependence of the eigenfrequency [19–21]. These modes, bunched in a frequency range and characterized by three 
integer indices, are called magnetostatic or the Walker modes. The simplest is the (1, 1, 0) mode, or the so-called Kittel 
mode, where all the spins in the sample precess in phase and with the same amplitude. The geometries of the transverse 
magnetization m in the Kittel mode and one of its degenerate modes [(4, 3, 0)] are shown in Fig. 2.

2.3. Magnon linewidth

Here we only consider magnons in insulating ferromagnets. Metallic ones suffer from strong damping of magnons due 
to scattering by the conduction electrons.

A number of magnon relaxation mechanisms are known in ferromagnetic insulators [22,23]. At high temperatures around 
room temperature, magnon–magnon and magnon–phonon inelastic scatterings are dominant because of the large number 
of thermally excited magnons and phonons. The intrinsic magnon–magnon scattering is caused by the nonlinearity in the 
Holstein–Primakoff transformation [Eqs. (2)–(4)], while the latter is caused by spin–lattice coupling [24]. However, both 
mechanisms are negligible at low temperatures we are interested in.

At lower temperatures, extrinsic relaxation mechanisms become dominant. They are induced by the defects and impuri-
ties inside the crystals as well as by the macroscopic pores and roughness at the surfaces. In the intermediate temperature 
range, typically between 10–100 K, the linewidth often shows a large peak in the temperature dependence. The peak height 
strongly depends on the amount of the defects such as rare-earth impurities and oxygen vacancies. It is known that the 
so-called slow-relaxation mechanism caused by the magnetic impurities is responsible for broadening [25]. The effect of 
such a mechanism also diminishes at lower temperatures.

A few relaxation mechanisms remain even at the zero-temperature limit. For instance, van Vleck’s theory [26] assumes an 
interaction of magnons with an ensemble of two-level systems (TLSs) that have the same excitation frequency as magnons. 
The relaxation rate is predicted to be proportional to tanh(h̄ωm/2kBT ), where kB is the Boltzmann constant. The characteris-
tic temperature dependence is derived from the fact that the TLSs are saturated as temperature increases. To the best of our 
knowledge, however, there has not been any observation of such temperature dependence in the ferromagnetic resonance 
linewidth.

Another relaxation mechanism independent of the temperature is the elastic scattering of the Kittel-mode magnons due 
to the surface roughness of the samples [27]. The surface roughness causes intermode coupling between the Kittel mode 
and other magnetostatic and spin–wave modes.

3. Hybridization with a microwave cavity mode

In this section, we consider a sphere of ferromagnetic insulator embedded in a microwave cavity resonator. Related 
experiments have been reported recently by a few other groups [28–30]. We study the coupling between the Kittel mode 
and a single discretized microwave mode in a cavity in the quantum limit.

3.1. Theory

The coupling between linear-polarized microwave photons and the spin ensemble via the Zeeman effect is described by 
the Hamiltonian:

Ĥint = gμB

∑
i

Ŝi · B0(ri) (â + â†) (17)

= gμB
√

2s
∑∑

sn(ri)
ĉn + ĉ†

n

2
· B0(ri) (â + â†) (18)
i n
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Fig. 3. Microwave cavity and YIG sphere. a) Photograph of a half of the microwave rectangular cavity made of oxygen-free copper. The cavity has dimensions 
of 22 × 18 × 3 mm and has the fundamental TE101-mode frequency of 10.565 GHz. An YIG sphere is mounted in the cavity with a support rod made of 
aluminum oxide. The sphere is glued to the rod oriented parallel to the crystal axis 〈110〉. b) Numerical simulation of the microwave magnetic-field 
distribution of the TE101 mode. The YIG sphere is located at the field maximum.

where B0(ri) is the linear-polarized microwave magnetic field in the cavity mode at the single photon level at the position 
ri of each spin. In the second line, we replace the Heisenberg operator Ŝi with the sum of magnon operators multiplied by 
their orthonormal mode functions sn(ri). Here, n is an index of the modes.

We then replace the sum over the spins with a volume integral and apply the rotating wave approximation, finally 
obtaining

Ĥint = gμB

2

√
2s

∑
n

∫
V

dr sn(r) · B0(r)
(

â†ĉn + âĉ†
n

)
(19)

where V is the sample volume. For a cavity field spatially uniform within the sphere, we see from the symmetry that the 
only mode with a finite coupling strength is the Kittel mode, which has a spatially uniform function. In this case, we obtain 
for B0 ⊥ z

Ĥint = h̄geff (â
†ĉ + âĉ†) (20)

geff ≡ gμB B0

2h̄

√
2sN = γ B0

2

√
2sN (21)

where ĉ = (1/
√

2sN) 
∑

i Ŝ+
i is the annihilation operators of the Kittel mode, and B0 = |B0(r)|.

3.2. Yttrium iron garnet (YIG)

In the following experiments, we use a single crystalline sphere of yttrium iron garnet (Y3Fe5O12; YIG) as a ferromagnetic 
sample. YIG is a celebrated ferromagnetic insulator [31], used for various microwave devices including filters and oscillators. 
The absence of conduction electrons leads to its small spin–wave relaxation rate, which also makes YIG very attractive in 
spintronics applications [32–34]. Strictly speaking, YIG is a ferrimagnetic material, but all the spins in a unit cell practically 
precess in phase in the low-energy limit, enabling us to treat it as ferromagnet. The net spin density 2sN/V in YIG is 
2.1 × 1022μB cm−3, orders of magnitude higher than the typical numbers, 1016–1018μB cm−3, in the paramagnetic spin 
ensembles used in quantum memory experiments. Thus, we expect a strong interaction of the spin excitations with an 
electromagnetic field.

3.3. Experiment

To accommodate an YIG sphere in the confined space, where only a single electromagnetic mode exists in a certain fre-
quency range, we use a three-dimensional microwave cavity shown in Fig. 3a. The picture shows a half cut of the cavity, and 
two pieces of them make a cavity hollow. The microwave magnetic-field distribution of the fundamental mode (rectangular 
TE101) is simulated by COMSOL Multiphysics® (Fig. 3b). A 0.5-mm-diameter YIG sphere is placed near the maximum of the 
magnetic field in order to obtain the largest coupling strength and the uniformity of the field.

We apply a static magnetic field of around 0.3 T by using a pair of neodymium permanent magnets and a 104-turn 
superconducting coil. They are connected in series using a magnetic yoke made of pure iron (Japanese Industrial Standard 
SUY-1). The static field is oriented to the 〈100〉 crystal axis of the YIG sphere. The cavity has two SMA connectors for trans-
mission spectroscopy. The center pins of the connectors are protruding into the cavity, such that their coupling strengths, 
κin/2π and κout/2π , are about 0.5 MHz. We use a weak probe microwave power of −123 dBm, which corresponds to 
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Fig. 4. Normal-mode splitting between the Kittel mode and the cavity mode TE101. a) Amplitude of the transmission Re(S21) through the cavity as a function 
of the probe microwave frequency and the static magnetic field represented in the current I through the superconducting coil. The current I is defined to 
be zero at the anticrossing. The horizontal and diagonal dashed lines show the TE101-mode and the Kittel-mode frequencies both obtained from the fitting. 
b) Cross sections at the static magnetic field corresponding to I = −3.5, −2.3, −1.1, and 0 mA. Solid curves are experimental data, and the dashed white 
lines are fitting curves based on the input–output theory. For clarity, the individual curves are offset vertically by 0.4 from bottom to top. c) Linewidth of 
the Kittel mode as a function of temperature. The red dots show the linewidth obtained by fitting S21(ω) measured at each temperature. The dashed line 
is the fitting curve to the temperature dependence below 1 K. The dashed blue line depicts the temperature-independent component of the fit.
Reprinted figure with permission from Y. Tabuchi, et al., Phys. Rev. Lett. 113 (2014) 083603.
© 2014 American Physical Society

the photon occupancy of 0.9 in the cavity mode. All the measurements are done in a dilution refrigerator: the ambient 
temperature at the sample stage is 10 mK and the thermal photon/magnon occupancy at around 10 GHz is negligible.

We measure the transmission coefficient S21(ω) of the cavity as a function of the probe frequency and the static 
magnetic field tuned by the bias current I in the coil (Fig. 4a). A large normal-mode splitting is observed, manifesting 
strong coupling between the Kittel mode and the cavity mode. Cross sections of the intensity plot are shown in Fig. 4b. At 
the degeneracy point where the Kittel mode frequency coincides with the cavity frequency, we see two largely-separated 
peaks. The peaks indicate the hybridization of a Kittel-mode magnon and a cavity photon, i.e. the formation of “magnon–
polaritons”. Their decay rates are apparently much smaller than the coupling energy.

We quantify the coupling strength gm, the cavity-mode decay rates κin + κout + κint, and the Kittel-mode decay rate 
γm based on the model Hamiltonian in Eq. (21). Here, κin, κout, and κint are the cavity decay rates through the input 
and output ports and the internal loss channel, respectively. Using the input–output theory, we derive the transmission 
coefficient S21(ω) as:

S21(ω) =
√

κinκout

i(ω − ωc) − κin+κout+κint
2 + |gm|2

i(ω−ωm)−γm

(22)

The fitting curves, shown as the white dashed lines in Fig. 4b, reproduce well the experimental data. From the fitting, we 
obtain gm/2π = 47 MHz, (κin + κout + κint)/2π = 2.7 MHz, and γm/2π = 1.1 MHz. We find our magnon–cavity hybrid 
system deep in the strong coupling regime, gm 
 κ, γ , even in the quantum limit where the average photon/magnon 
number is less than one.

3.4. Coupling strength

The obtained coupling strength gm/2π of 47 MHz results from the 
√

N-enhancement according to Eq. (21). Given that 
the 0.5-mm-diameter sphere contains 1.4 × 1018 net spins, the single spin coupling strength is estimated to be 40 mHz.

In designing coupling strengths for various applications, it is worth estimating the strength with numerical simulation. 
Fig. 3b shows the magnetic field distribution B0 at the single photon level of the TE101 mode. The coupling strength can 
be easily calculated by the relation g0 = γ B0/2. The simulated value of B0 = 5.5 pT/photon at the sample gives g0/2π =
38.5 mHz, which agrees well with the experiment.

3.5. Magnon linewidth

Little has been known about the linewidth of the Kittel mode in the temperature range attainable in a dilution refrig-
erator. We measure the temperature dependence of the resonance linewidth below 1 K (Fig. 4c) and observe a peculiar 
behavior below 1 K; the linewidth is broadened as temperature decreases.
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Fig. 5. Qubit–cavity–YIG hybrid system. a) Photographs of an YIG sphere and a superconducting qubit mounted in an extended cavity resonator. The YIG 
sphere is mounted in one side of the cavity. On the other side, the superconducting transmon qubit fabricated on a silicon chip is seen in the deep cavity 
trench. The cavity with dimensions of 25 × 3 × 53 mm supports the lowest-frequency (TE101, TE102, and TE103) modes with the frequencies of 6.987 GHz, 
8.488 GHz, and 10.461 GHz, respectively. b) Numerical simulation of the TE102 mode. Intensities of the microwave electric and magnetic fields are shown, 
respectively; the blue arrows indicate the directions of the fields. The qubit chip is placed near the electric field antinode. The qubit with a millimeter-sized 
dipole antenna strongly couples with the electric field. The YIG crystal is placed where the magnetic field is large. The color scales indicate field intensities 
at the single-photon level. c) Schematic energy diagram of the qubit–cavity–YIG hybrid system. The left shows unperturbed (bare) frequencies of the qubit, 
the cavity and the Kittel modes. The cavity and the Kittel modes are subject to frequency shifts due to the coupling with the qubit, as indicated in the 
middle of the diagram. The cavity modes induce the Lamb shift of the qubit, as depicted on the right-hand side.

The fitting curve based on the TLS model, as indicated with the green dashed line in Fig. 4c, agrees well with the experi-
mental data below 1 K. Note that the Kittel-mode frequency ωm is used as a fixed parameter in the temperature-dependent 
term proportional to tanh(h̄ωm/2kBT ). We also assume the presence of a temperature-independent contribution to the 
fitting. The parameters obtained imply that among the linewidth at the lowest temperature a fraction of 0.63 MHz is at-
tributed to TLSs, and the other 0.39 MHz to surface scattering. The microscopic origin of the TLSs remains to be understood. 
The linewidth broadening above 1 K is ascribed to the slow-relaxation mechanism caused by the magnetic impurities [25].

An additional signature of the effect of the TLSs is found in the power dependence of the linewidth. Strong microwave 
drive saturates the TLSs coupled with the Kittel mode, resulting in the narrowing of the linewidth. Similar phenomena have 
been observed in superconducting microwave resonators interacting with TLSs [35,36]. We confirmed experimentally that 
the Kittel-mode linewidth indeed became narrower at higher power of the drive. The power level causing the narrowing 
should be related with the dipole strengths and the relaxation rates of the TLSs. Comprehensive and systematic analyses of 
the linewidth with respect to the diameter and the quality of the spheres, the crystal orientations to the static field, and 
the Kittel mode frequency are also awaited.

4. Coupling with a superconducting qubit

In the previous section, we demonstrated a coherent coupling of magnons with the cavity mode and investigated the 
linewidth in the quantum limit. However, that was a linear coupling between two harmonic oscillator modes. Although we 
observed normal-mode splitting at the quantum limit near the ground state, there was no significant difference from the 
one we see in the classical limit, e.g., at room temperature and with a much stronger probe microwave. The correspondence 
principle makes it difficult to distinguish quantum and classical behaviors in such a linear system. Nonlinearity, or ahar-
monicity, is required for a clear demonstration of the quantum behavior. Thus, in this section, we move one step further by 
introducing a well-controllable two-level system, i.e. a superconducting qubit.

4.1. Theory

In order to implement a coupling between a superconducting qubit and a magnon in YIG, we exploit the cavity quan-
tum electrodynamics architecture. In the scheme illustrated below, two heterogeneous systems—the qubit and the Kittel 
mode—are linked through electromagnetic fields in a microwave cavity resonator.

We use an elongated cavity shown in Fig. 5a, which simultaneously accommodates a qubit and an YIG sphere. The 
5-cm-long cavity has eigenmodes of TE10p (p = 1, 2, · · · ) as the lowest-frequency modes. The resonant frequencies ω10p are 
determined by the width W and length L of the cavity, and denoted as:
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ω10p = π

2
c0

√(
1

W

)2

+
( p

L

)2
(23)

where c0 is the speed of light. In Fig. 5b the simulated electric and magnetic field distributions of the TE102 mode are 
shown.

We use a transmon qubit which has two aluminum pads and a Josephson junction bridging them. The qubit chip is 
embedded in the cavity as seen in the bottom picture of Fig. 5a. The submillimeter-sized dipole antenna consisting of the 
two pads electrically couples with the microwave field in the cavity. The qubit is placed where the electric field is close to 
the maximum. On the other hand, the Kittel mode of the YIG sphere magnetically couples with the same cavity mode. The 
corresponding system Hamiltonian is written as:

Ĥsys/h̄ =
∑

p

ω10p â†
pâp +

[
(ωq − α/2) b̂†b̂ + (α/2) (b̂†b̂)2

]
+ ωm ĉ†ĉ (24)

where ω10p is the resonant frequency of TE10p , ωq and ωm are the qubit and the Kittel mode frequencies, and âp , b̂ ≡∑
l≥0

√
l + 1 |l〉qq〈l +1| and ĉ are annihilation operators for the cavity mode, the qubit, and the Kittel mode, respectively. The 

transmon qubit is represented as an anharmonic oscillator with an anharmonicity of α < 0. The lowering operator for the 
qubit subspace is defined as σ− = [σ+]† = P̂ b̂, where P̂ = |0〉〈0| + |1〉〈1| is a projection operator. The annihilation operator 
of the Kittel mode ĉ = (1/

√
2sN) 

∑
i Ŝ+

i stems from the Holstein–Primakoff transformation. The interaction Hamiltonian is 
written as:

Ĥint/h̄ =
(∑

p

gq,10p b̂†âp + h.c.

)
+

(∑
p

gm,10p ĉ†âp + h.c.

)
(25)

where gq,10p and gm,10p are the coupling strengths of the cavity TE10p mode with the qubit and the Kittel mode, respec-
tively. Note that the direct interaction between the qubit and the Kittel mode is negligible. In the large detuning regime 
where gq,10p, gm,10p < |ωq − ωm| � |ω10p − ωq|, |ω10p − ωm|, the interaction Hamiltonian can be rewritten in the rotating 
frame of the system Hamiltonian under a perturbative treatment up to the first order [37], and expressed as:

H̃int/h̄ =
∑

p

g2
m,10p

ω10p − ωm
â†

pâp −
∑

p

∑
l>0

λ
(l)
10p |l〉qq〈l| −

∑
p

g2
m,10p

ω10p − ωm
ĉ†ĉ

+
∑

p

(
χ10p|0〉qq〈0| +

∑
l>0

χ
(l)
10p|l〉qq〈l|

)
â†

10pâ10p −
∑

p

1

N

2g2
m,10p

ω10p − ωm
â†

10pâ10p ĉ†ĉ (26)

where χ10p = |gq,10p|2/(ω10p − ωq), λ(l)
10p = l |gq,10p|2/[ω10p − ωq − (l − 1)α], χ(l)

10p = |gq,10p|2[(l + 1)/(ω10p − ωq − l α) −
l/(ω10p − ωq − (l − 1) α)]. The first and the third terms are dispersive shifts due to the coupling between the cavity modes 
and the Kittel mode. The second term indicates the Lamb shift of the qubit frequency arising from the coupling with the 
cavity mode. The Lamb shift for the first excited states λ(1)

10p coincides with χ10p . The fourth term shows the qubit-state-
dependent cavity frequency shift or the photon-number-dependent qubit frequency shift. It is worth noting that the last 
term indicates the static interaction between the cavity modes and the Kittel mode, which originates from the fact that 
the spin ensemble is not a perfect bosonic system. Because of the factor 1/N , however, for large N such an effect is not 
observable with usual experimental parameters. The major energy shifts are summarized in Fig. 5c. In the regime where 
gq,10p gm,10p/

√|ω10p − ωq| |ω10p − ωm| < |ωq −ωm| � |ω10p −ωq|, |ω10p −ωm|, there is a qubit-state-dependent frequency 
shift ξ of the Kittel mode [17]. Although it appears only in the third-order perturbative treatment, the shift is still observ-
able when the Kittel-mode and the qubit frequencies are close enough to meet the frequency condition. Such a coupling is 
usable for counting the magnon number in the Kittel mode via a Ramsey interferometry using the qubit, for example.

The coupling between the qubit and the Kittel mode is mediated by the cavity modes TE10p when the qubit and the 
Kittel-mode frequencies are degenerate with each other and detuned from the cavity so that |ωq − ωm| � gq,10p, gm,10p �
|ω10p − ωq| 
 |ω10p − ωm| [38]. We rewrite the interaction Hamiltonian in Eq. (25) in the corresponding rotating frame by 
adiabatically eliminating the cavity modes:

H̃int/h̄ = gq−m σ̂−ĉ† + h.c. (27)

where gq−m = ∑
p gm,10p gq,10p/(ω10p − ωq). It is interpreted as that the qubit and the Kittel mode exchange their energy 

quanta, i.e., the qubit excitation and a magnon, through the virtual excitation of the cavity mode TE10p .

4.2. Experiment

Here we focus on the roles played by the cavity modes TE102 and TE103 (Fig. 6a). The cavity mode TE102 is utilized 
for mediating the virtual-photon interaction between the qubit and the Kittel mode, while the cavity mode TE103 is used 
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Fig. 6. Magnon–qubit hybridization. a) Energy level diagram illustrating the coupling scheme. The superconducting transmon qubit is detuned from the 
TE102 cavity mode by −178 MHz, and the Kittel mode is almost degenerate with the qubit. The couplings of the TE102 mode with the qubit and the Kittel 
mode induce their interaction via the virtual-photon excitation; the qubit–magnon degeneracy is lifted by 2gq−m. The TE103 cavity mode is dispersively 
coupled with the qubit so that its resonant frequency depends on the qubit state. b) Magnon–vacuum-induced Rabi splitting. The change in the real part 
of the reflection coefficient at the TE103 frequency, Re(�r), is plotted as a function of the qubit excitation frequency and the static magnetic field that 
is locally applied to the YIG sphere. The static field is represented in the coil current I , which is defined to be zero at the anticrossing. The white solid 
curve shows the cross section at I = 0 mA. The powers used for probing the TE103 mode and for exciting the qubit and the Kittel mode are −135 dBm 
and −130 dBm, respectively. Note that the measurement here was done with the same sample set as in Ref. [17]. By readjusting the alignment of the YIG 
sphere, we were able to remove the effect of other magnetostatic modes previously observed.

for the qubit measurement. Although the Kittel mode also couples with the TE103 mode, we can perform a selective qubit 
measurement via the mode because the magnon-number-dependent shift of the last term in Eq. (26) is sufficiently small and 
safely ignored. We introduce probe and excitation microwaves into the cavity through an SMA port. The external coupling 
strengths and internal losses of each cavity mode are κ103/2π = 2.75 MHz, κ103,int/2π = 1.26 MHz, κ102/2π = 0.55 MHz, 
and κ103,int/2π = 1.73 MHz, respectively.

A 0.5-mm-diameter YIG sphere is placed where the microwave magnetic field of the cavity mode TE102 is substantial, as 
indicated in Fig. 5b. The field is parallel to the 〈110〉 crystal axis of the YIG sphere. We also apply a static magnetic field lo-
cally to the sphere in parallel with its 〈100〉 crystal axis. A doubly-layered magnetic shield protects a superconducting qubit 
from the stray magnetic field which is approximately a few tens of gauss at the qubit position. The coupling strength gm,102
of the Kittel mode with the cavity mode TE102 and the decay rate γm of the Kittel mode are obtained from the anticrossing 
spectrum in the reflection measurement: gm,102/2π = 21 MHz and γm/2π = 1.8 MHz. The transmon qubit has the dressed 
resonant frequency ω̃q/2π = (ωq − ∑

q χ10p)/2π of 8.158 GHz and the anharmonicity α/2π of −158 MHz. A separate 
time-domain measurement shows that the energy relaxation time T1 = 273 ns of the qubit is almost at the Purcell limit 
where 1/T1 = ∑

p χ10p(κ10p + κ10p,int)/(ω10p − ωq). We deduce the Lamb shift λ(1)
10p = χ10p from the frequency difference 

between the bare- and the dressed-cavity frequencies, which is accurate up to the first-order perturbative treatment; they 
are evaluated to be χ102/2π = 75 MHz and χ103/2π = 9 MHz. The coupling strengths of the qubit with the cavity modes 
are gq,102/2π = 117 MHz and gq,103/2π = 141 MHz. The qubit-state-dependent cavity shift (χ(1)

103 − χ103)/2π of 1.2 MHz 
is used for the qubit spectroscopy. The qubit linewidth γq/2π is 2.0 MHz.

Fig. 6a illustrates the measurement scheme of the hybridized qubit–magnon modes. At the degeneracy point where the 
Kittel-mode frequency coincides with the qubit frequency, the virtual excitation of the cavity mode TE102 mediates the 
interaction between them as expressed in Eq. (27), so that the qubit frequency splits into two branches. When we apply a 
resonant microwave to the branches, they are excited and detected as a phase shift in the reflection coefficient of the cavity 
probe microwave at the TE103 frequency, given that each branch has a fraction of the qubit wave function. In this scheme, 
which keeps the cavity mode TE102 empty, unwanted dephasing caused by photon number fluctuations in the “coupler” 
mode can be avoided.

4.3. Result and discussion

Fig. 6b shows the reflection coefficient at the TE103 frequency as a function of the excitation frequency and the coil 
current. The pronounced splitting of the qubit frequency at the degeneracy point manifests magnon–vacuum-induced 
Rabi splitting, which indicates coherent coupling between the qubit and the Kittel mode. The obtained coupling strength 
gq−m/2π is 11.4 MHz, which is much larger than the qubit decay rate γq and the Kittel-mode decay rate γm. Thus the 
hybridized qubit–magnon system also stands deep in the strong coupling regime, where gq−m 
 γq, γm.
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By using Eq. (27), we estimate the coupling strength for a detuning ω102 − ωq = ω102 − ω̃q − ∑
p=1,2,3 λ

(1)
10p = 183 MHz

and obtain 13.4 MHz. The discrepancy of 17% between the calculated and the measured strengths is ascribed to the first-
order approximation of the Hamiltonian; the value |gq,102/(ω102 −ωq)| ∼ 0.6 should be far less than unity for a convergence 
of the series. Another possible factor is the estimation error in the bare qubit frequency ωq. Because all the cavity modes 
contribute to the Lamb shift of the qubit, it is not straightforward to accurately estimate the shift in a multi-mode cavity, 
especially when the modes are crowded.

5. Conclusions and outlook

We demonstrated coherent coupling between a single magnon excitation in a ferromagnet and a microwave photon in 
a cavity as well as a superconducting qubit. It was proven that the uniform spin precession mode, i.e., the Kittel mode, of 
a millimeter-scale ferromagnetic sphere behaves quantum mechanically: the qubit showed a Rabi splitting induced by the 
vacuum fluctuations of the Kittel mode.

The technique developed here exploits the advanced circuit-QED and microwave quantum optics technologies based 
on superconducting qubits. It enables the generation and the characterization of non-classical states of magnons and thus 
opens a new field of quantum magnonics. It is also considered to be the ultimate limit of spintronics. We expect that further 
studies will reveal the dissipation mechanisms in the single-magnon regime.

The coherent transfer of the qubit state to the magnon mode suggests a possible link to quantum information networks in 
optics. In contrast to superconducting circuits, spins in insulating crystals can interact coherently with light, as demonstrated 
in quantum memory experiments in the optical domain [39,40]. In those experiments, paramagnetic spin ensembles have 
been used. It is of great interest to look into coherent coupling between magnons in ferromagnet and light.
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