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We review salient structural and electronic features associated with the concomitant
Peierls-charge density wave (CDW) instabilities observed in most one-dimensional (1D)
inorganic and organic electronic conductors. First of all, the genesis of these concepts is
placed in an historical perspective. We then present basic experimental facts supporting
the general description of these 1D electron-phonon coupled systems developed in the
1970s. In this framework we shall consider in particular the role of 1D fluctuations on
both lattice and electronic degrees of freedom, and of the inter-chain Coulomb coupling
between CDWs in stabilizing in 3D the Peierls transition at finite temperature. We also
clarify, in relation with experimental findings, the various conditions of adiabaticity of
the electron-phonon coupling. Finally we illustrate by recent structural measurements the
pioneering work of Jacques Friedel on CDW elasticity and plasticity and CDW pinning to
defects through the appearance of Friedel oscillations.
© 2015 The Author. Published by Elsevier Masson SAS on behalf of Académie des
sciences. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

RESUME

Nous passons en revue les principaux aspects structuraux et électroniques de I'instabilité
Peierls-onde de densité de charge (ODC) observée dans la plupart des conducteurs
inorganiques et organiques a une dimension (1D). Nous commengons par replacer la
genése de ces concepts dans une perspective historique. Puis nous présentons les faits
expérimentaux a la base de la description générale de ces systémes 1D couplés électron—
phonon développée a partir des années 1970. Dans ce cadre, nous considérerons en
particulier I'effet des fluctuations 1D sur les degrés de liberté structuraux et électroniques
et le role du couplage coulombien inter-chaine dans le mécanisme de stabilisation 3D
de la transition de Peierls a température finie. Nous clarifions aussi, en relation avec les
données expérimentales, les différentes conditions d’adiabaticité du couplage électron-
phonon. Finalement, nous illustrons avec des mesures structurales récentes les travaux

* Corresponding author. Tel.: +33 169156046; fax: +33 169156936.

E-mail address: jean-paul.pouget@u-psud.fr.

http://dx.doi.org/10.1016/j.crhy.2015.11.008

1631-0705/© 2015 The Author. Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://dx.doi.org/10.1016/j.crhy.2015.11.008
http://www.ScienceDirect.com/
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jean-paul.pouget@u-psud.fr
http://dx.doi.org/10.1016/j.crhy.2015.11.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crhy.2015.11.008&domain=pdf

J.-P. Pouget / C. R. Physique 17 (2016) 332-356 333

pionniers de Jacques Friedel sur I'élasticité et la plasticité des ODC et leur accrochage aux
défauts via la formation d’oscillations de Friedel.
© 2015 The Author. Published by Elsevier Masson SAS on behalf of Académie des
sciences. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Historical perspective

The framework used nowadays to describe the metal-insulator (M-I) transition occurring in 1D conductors by the setting
of a 2kg periodic lattice distortion (PLD) was established by Peierls [1] and Fréhlich [2] in the mid-1950s (kg is the Fermi
wave vector of the 1D electron gas, which amounts in reciprocal chain unit, d*, to one quarter of the charge p per site).
However, as pointed out by Friedel [3], the physics underlying these works had already emerged in the beginning of the
1930s when Jones [4] showed that superstructures can be stabilized in normal metals and alloys when the Fermi sphere
touches a maximum number of Brillouin zone boundaries issued from the superstructure reciprocal lattice periodicities.
More precisely, Peierls calculated in 1930 [5] the energy spectrum of a free electron gas submitted to an external sinusoidal
potential. He found that the effect of a periodic potential of wave number ¢ is to open an energy gap (2A) in the band
structure at wave vectors +q/2. For a 1D electronic structure, there is a full gap opening at the Fermi level for +kf if the
potential wave number amounts to g = 2kg (see Fig. 1). In addition if, as considered by Peierls and Frohlich in the 1950s, the
potential is set by a 2kp PLD, the lattice modulation trigs an insulating ground state. However, Peierls first demonstrated that
the gap opening is stable whatever the magnitude of the 2kg PLD and, for this reason, the metal-insulator (M-I) transition
that results is now called a Peierls transition (the argument of Peierls was given for an half-filled band where, with p =1,
2kp =d*/2 is commensurate, but the result can be easily generalized whatever p). Independently of Peierls’ work, Frohlich
[2] then Kuiper [6] developed the thermodynamics of the M-I transition due to the setting of a 2krg PLD. Interestingly,
their (mean-field) theory gave at T =0 K a (half) energy gap Amr, Which exponentially depends on the inverse of the
dimensionless electron-phonon coupling constant A (expression (2.53) in Ref. [2]):

Awr ~ Epe” !/ (1)

In addition, Apr was found to be proportional to the (mean-field) critical temperature of the M-I transition, T}}’IF (expression
(3.1) in Ref. [6]):

Anr = 1.75kg THF (2)

A and TI'}"F will be more precisely defined by relations (22) and (23) below in section 2.3. Relations (1) and (2) are similar to
expressions obtained later in 1957 for the superconducting gap and critical temperature in the BCS theory of superconduc-
tivity (in the BCS theory, the Debye phonon energy replaces the Fermi energy, Eg, in expression (1)). However the analogy
between the Peierls-Frohlich and BCS theories was only noticed a few years later [7], but not really commented in the
literature at that time. Then the pioneering works of Peierls, Frohlich and Kuiper were forgotten and the thermodynamics
of the Peierls transition was re-derived (using a more transparent formalism) independently several times during the 1970s
[8,9] when the study of the M-I phase transition became a major subject of research.

In addition, Fréhlich showed that because of the electron-phonon coupling, the PLD induces a 2kg periodic charge den-
sity wave (CDW) modulation of the electronic density whose charge can couple with an external electric field, E. In this
framework, the main purpose of Fréhlich’s work [2] was to provide an explanation for the zero-resistance state of super-
conductors by showing, using a 1D model, that the (incommensurate) 2k CDW could collectively slide under the action of
E and thus behaves as a superfluid. In this respect, Frohlich was the first to introduce in 1954 the concept of CDW as the
counterpart of the PLD and to notice that the two modulations should stabilize each other. Later, Overhauser proposed [10]
the formation of pure electronic CDWs in a simple metal. However, Friedel provided physical arguments [3] suggesting that
it is unlikely that an electronic CDW could be stabilized in the absence of a PLD.

The 2kg PLD/CDW instability driving the Peierls transition was first observed in 1973 in the framework of an X-ray
diffuse scattering investigation of the 1D conductor KyPt(CN)4Brg3-3H,0 (KCP) [11]. Note that at the same time, electron
diffraction studies provided evidence of a PLD/CDW modulation in layered metallic transition-metal di-chalcogenides MXj.
However, if the Peierls mechanism provides a clear explanation of most of the M-I transition observed in 1D conductors,
the microscopic origin of the PLD/CDW instability of MX, compounds is still debated. Then in the following years, the
2kg PLD/CDW Peierls transition was observed in charge-transfer organic salts such as TTF-TCNQ (TTF, TCNQ and the other
organic molecules quoted in the text are defined in the chemical index at the end of the paper), in the blue bronze Ky3Mo03
and in the transition-metal tri-chalcogenide NbSe3 (see section 2). Finally, the Frohlich type of collective sliding of a 2kg
CDW under the action of large enough external electric fields was observed in the Peierls ground state of NbSe; [12] and
1(0_31\/[003 []3].

It is also interesting to remark that before the work of Peierls, Frohlich and Kuiper, Slater proposed in 1951 [14] that
the staggered exchange potential due to anti-ferromagnetic (AF) order could similarly drive a M-I transition in a half-filled
(o =1) 1D electronic system because the magnetic periodicity of wave number d*/2 amounts to twice the Fermi wave
vector of the 1D band, 2kg. Then it was shown later that more general 2kr Fermi surface (FS) nesting processes could
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Fig. 1. 1D Electron dispersion together with an electron-hole fiwy(q) excitation process. The Peierls gap 2A that develops below Tp is expressed as a
function of the creation (Cl:rsz) and annihilation (cy) electron operators involved in the q = 2kg excitation process.

stabilize either a spiral [15] or an oscillating [16] 2kr spin density wave (SDW). Although SDWs stabilized by the FS nesting
mechanism are known since more than half a century in 3D metals such as Cr [17], the type of M-I transition predicted
by Slater was only observed in the 1980s in the Bechgaard salt (TMTSF),PFs [18]. However, recent diffraction experiments
provide evidence that the insulating ground state of (TMTSF),PFg is in fact a mixture of 2kg SDW and 2kg CDW modulations
[19]. Such a composite 2kr modulated state was previously considered by Overhauser [20].

The organic salt TTF-TCNQ not only undergoes a 2kg PLD/CDW Peierls instability (on the TCNQ stack), but also an
additional instability (on the TTF stack) at twice the 2kr wave vector [21]. Since the 4k wave vector amounts to pd*, the
associated PLD can be viewed as the lattice fingerprint of a Wigner charge localization (or 4k CDW) achieving a charge
periodicity of 1/p in chain direction [22,23]. In the limit of infinite intra-site repulsion U, the 4k instability is analogous to
the 2k§L Peierls instability in a 1D spin-less electron gas. Note that the spin-less denomination is due to the fact that when
U is infinite, a site is at most occupied by one fermion whose spin degree of freedom is thus irrelevant. Note that if kg (in
d* units) remains defined for the 1D free electron gas by o /4, one has kEL = 2kg. Thus, in the presence of electron-phonon
coupling, the 1D pseudo-fermion gas should develop a Peierls instability at the 2k§L = 4k critical wave vector.

The 4kg Wigner charge localization induces a spin-charge decoupling. Thus below the 4kg PLD/CDW transition, the spins
S =1/2, generally coupled in an AF manner, remain available for an additional magnetic instability towards either S =1/2
AF or S = 0 spin-Peierls (SP) ground states. In the latter case, in the presence of strong enough magneto-elastic coupling, the
pairing of neighboring S = 1/2 into a singlet is achieved via a dimerization of the 4kg 1D superstructure. This spin-lattice
coupled instability, which is analogous to the electron-lattice coupled Peierls instability in a half-filled band, is called SP
instability. More precisely, if spins 1/2 are coupled by transverse (XY) AF exchange interaction, the mechanism of the SP
transition is formally equivalent to the mechanism of the Peierls transition in a half-filled band of spin-less fermions [24].
In the case of AF exchange Heisenberg coupling, the theory of the SP transition is more elaborate because the longitudinal
exchange component introduces attractive interaction between the 1D pseudo-fermions [25]. In the SP ground state, the
singlet spin pairing is stabilized by the dimerization of the 4kg super-structure of localized S = 1/2. The superstructure
of double periodicity that results implies the 2kg critical wave number as for the Peierls transition. This means, when
Coulomb repulsions progressively increase, that one passes continuously from the 2k Peierls instability to the SP instability.
SP ground states have been detected both in organic (TTF-CuBDT, MEM-(TCNQ), and Fabre (TMTTF),PFg salts) and inorganic
(V1-xCrx0,, CuGeO3) magnetic chain compounds.

2. The Peierls instability

1D organic and inorganic conductors generally crystallize in anisotropic structure made of relatively well decoupled
stacks of molecules (see Fig. 13a below) or atomic clusters (see Fig. 14 below). Due to the segregated chain structure and
the anisotropic overlap of p; (d) orbitals in organic (inorganic) compounds, there is a weak inter-chain transfer integral ¢ .
If t; is negligible, the 1D band structure of dispersion (k) is filled from —kg to +kr and the FS is composed of two points
at +kg in the chain’s direction (Fig. 1). The longitudinal wave vector 2kg perfectly nests the 1D FS. Below we shall consider
the situation where the transverse warping of the FS, due to t, is less than the thermal broadening of the FS above the 3D
Peierls critical temperature Tp. Thus precisely for t; < mkgTp, the one-electron Hamiltonian contains only 1D interactions:

Hip = Ze(i)n,- + Zt(i) (ciFcipr +he) %

In this Hamiltonian, €(i) and t(i) are respectively the energy of site i and the near-neighbor i + 1 intra-chain transfer
integral.

The simplest excitation, of energy hwy(q) = €(k + q) — €(k), of the electronic structure create an hole in k together with
an electron in k + q (see Fig. 1). It consists of the formation of an electron-hole pair of wave vector q. The energy hwy(q)
is involved in the denominator of the electron-hole polarizability of the free electron gas (also called Lindhard response
function), which is expressed by [18]:

2 fek) — fletk+q)
X@ @, T)_ZXk:s(k+q)—8(k)—hw+ihn 4)




J.-P. Pouget / C. R. Physique 17 (2016) 332-356 335

Fig. 2. 7t/2 phase shift between the BOW u(x) and the CDW §p(x). Note that the internal site deformation d(x;) behaves spatially as the CDW.

In expression (4), f(e(k)) is the Fermi-Dirac function, L is the chain length and n — 0% is a small quantity due to adia-
batic continuity in the response process. For the FS nesting wave vector ¢ = 2kg and a 1D linearized electron dispersion,
expression (A.3) of the Appendix gives the analytical expression of yx (2kg, w, T). The static (w = 0) electron-hole response
function diverges in temperature as:

2
X 2k, @ =0, T) = N(E) 1n< VE‘) (5)
TIZkBT

In (5), &c is a cut-off energy of the order of the Fermi energy Er and 2y /m ~ 1.13. The logarithmic thermal divergence of
expression (5) for ¢ = 2kg drives the Peierls instability.

The Peierls gap 2A (Fig. 1) that opens at the Fermi level due to the 2kr electron-hole instability is stabilized by the
formation of a 2kg PLD. In most of the cases, the PLD consists of a modulation of the bond distances. This forms a 2kg
bond order wave (BOW). The modulation of bond distances leads to a concomitant 2kr modulation of the charge density or
CDW as illustrated in Fig. 2. The CDW corresponds to a macroscopic condensate of 2kr electron-hole pairs involved in the
hwy(q = 2kg) excitation process; each of them is expressed as a function of creation (CI:LZI(F) and annihilation (cg) electron
operators (see Fig. 1). Thus the amplitude of the CDW modulation is given by the k average of all the hwy(q = 2kF) excitation
processes:

kaF = (C]j:’,zkl: Ck’>k (6&)

and its spatial dependence is expressed by:

8p(X) = Pake COS(2KEX + @) (6b)
The amplitude of the CDW oy, is proportional to the Peierls gap:
N(EF)
Pt = — = )

The PLD is achieved by the coupling of the Hamiltonian (3) to phonons. Fig. 2 shows that the BOW that modulates the
inter-site distance, u(x), is in quadrature with the charge modulation (CDW) where §p(x) o« —du(x)/dx. The modulation of
the charge on the site i formed by a molecule or an atomic cluster, p + §0(x;), should be accompanied by an intramolecu-
lar/cluster bond deformation in phase with the CDW: d(x;) o< §0(x;) (see Fig. 2). Both u(x) or d(x;), which are in quadrature,
stand for the PLD introduced in section 1. The BOW u(x) is basically achieved by electron-phonon coupling with acous-
tic phonons that, via a change of the inter-site distances, modulate the transfer integral t(i) in expression (3). The site
deformation d(x;) is achieved by electron-phonon coupling with internal (optical) phonons that, via a change of the intra-
molecular/cluster distances, modulate the site energy ¢(i) in expression (3). For a free-electron system, the Peierls gap A is
proportional to the amplitude of the PLD. Rigorously, one should introduce two Peierls gaps linearly related via the “bond”
and “site” electron-phonon coupling constants, “g”, to each component u(x) and d(x) of the PLD. In this case, the total
Peierls gap is the sum in quadrature of the “bond” and “site” Peierls gaps.

2.1. Structural fluctuations

The Peierls instability is announced by the development below T1p of 2kg PLD fluctuations accompanied by a fluctuating
CDW condensate of electron-hole pairs (expression (6a)). The PLD/CDW fluctuations are correlated in chain direction on
&1(T). &(T) increases upon cooling below Tqp (see Fig. 5 below). Diffraction by 1D PLD fluctuations gives rise to diffuse
sheets centered at the +2kr wave vector in reciprocal space (Fig. 3). The detection of such diffuse sheets, through the
formation of +2kr diffuse lines on X-ray patterns, provided the first observation of the Peierls instability in KCP [11]. Since
this pioneering work, X-ray diffuse scattering methods have been widely used to detect PLD fluctuations (mostly by their
BOW component) pre-transitional at the Peierls transition in many families of inorganic and organic 1D conductor. For
example, Fig. 4 presents X-ray patterns exhibiting this 2kr diffuse scattering at room temperature (RT) in Ko3MoOs3 (left
part) and NbSes (right part).

In the absence of fluctuation, the isolated Peierls chain should undergo a phase transition at the mean-field critical tem-
perature TQ"F defined by expression (23) below. However, 1D thermal fluctuations prevent the establishment of a long-range
PLD/CDW order at finite temperature. The observation of a 3D Peierls transition at finite temperature, Tp, which is generally
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Fig. 3. Diffraction (in reciprocal space - left side) by the 2kg PLD, represented in direct space on the right side, in the 1D fluctuation regime (below T1p),
in the inter-chain short range coupling regime (between Tco and Tp) and in the 3D Peierls ground state (below Tp).
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Fig. 4. X-ray patterns from Kp3MoOs3 (left) and NbSes (right) at RT showing different sets of 2kg diffuse scattering (adapted respectively from Refs. [26]
and [27]). Note that the 2kf diffuse segments (black arrows) of Kog3MoO3 perpendicular to the chain direction b are located in broad diffuse lines (white
arrows) perpendicular to the a + 2c¢ direction and whose origin is commented in the text. In NbSes black-and-white arrows show two sets of diffuse lines
perpendicular to the chain direction b, which respectively correspond to 2kg fluctuations on type-I and type-IIl chains defined in Fig. 14b.

Table 1

Bare phonon frequency (£2,.) and nature of the critical phonon mode, mean field (TII,VIF) and Peierls (Tp) transition temperatures, Fermi (vg) and electron-
hole pair excitation (ven) velocities, electron-hole pair coherence length (&,), dimensionless product §2y; Ten (see section 2.3) and type of the Kohn anomaly
observed in several families of 1D conductors. TI'Y[F is calculated from the Peierls gap using the “BCS” relationship (2). TI'Y[F corresponds also to the tem-
perature Tip at which the 2kr PLD begins to be detected. &, is obtained either from the curvature of the Kohn anomaly (a) or from the high-temperature
value of the CDW correlation length & (b).

1D conductor Qo4 TMF/Tp Vg Ve & (A) Qo4 Ten Kohn anomaly Ref.
(meV) (K) (10° m/s)

K2Pt(CN)4Bro3-3H,0 7 (LA) 650/~100 10 v Large 0.04 Giant [33]

(507)2

Ko.3Mo03 7 (mode 500/180 5.5/1.7 (VE) 182b 0.04 Phonon softening at Tp [34]
mixture) (2 bands)

TTF-TCNQ (2k) 5 (TA) 150/54 18 Vg/7 620 017 Incomplete phonon softening at Tp [35]

TTE-TCNQ (4kr) 8.5 (LA) 600/49 09 vp/8 12> 14 No Kohn anomaly 136]

NbSes (k) 8 (TA/LA)  700/145 24 ? 13b ? No Kohn anomaly [37]

BaVvss 5.8 (?) 170/70 49 Vg/10 7° 013 Incomplete phonon softening at Tp [38]

a sizeable fraction of TILV[F (see Table 1), is due to the presence of the inter-chain coupling. The inter-chain coupling manifests
below a cross-over temperature Tcp, generally close to Tp, by correlating near-neighbor 1D CDW fluctuations on a trans-
verse length &, . As illustrated in Fig. 3, the anisotropy of these different fluctuations regimes can be clearly distinguished
through X-ray diffuse scattering measurements. In the weak electron-phonon coupling limit (A < 1), 1D fluctuations begin
to be detected around T)F when & amounts to the 2kr PLD wave length.
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There are three principal mechanisms of inter-chain coupling:

- the Coulomb coupling between CDW, which will be considered in section 3;

- the transverse nesting of the warped FS due to t,. This mechanism is relevant in the temperature range T < T* =
t; /kgw where the thermal broadening of the FS is smaller than ;. In that case, the transverse component of the
FS nesting wave vector fixes the inter-chain CDW periodicity in the Peierls ground state. Such a mechanism plays a
role in the SDW transition of (TMTST),PFs, where Tp =12 K < T* ~ 100 K. However, in most of the CDW compounds
considered in Table 1 where Tp > T*, the transverse FS nesting process is not relevant.

- the anisotropic dispersion /12 of the bare phonon branch bearing the 2kr Kohn anomaly for transverse wave vectors q; .
In that case the minimum of phonon frequency along q; should stabilize the inter-chain PLD periodicity in the Peierls
ground state. This effect should be relevant in Ko3Mo00O3 where the Kohn anomaly develops in a pre-existing valley of
soft phonons due to ferroelectric-like fluctuations along the Mo40,1 segment direction shown by red arrows in Fig. 14a
(these low frequency phonon modes manifest by the broad X-ray diffuse scattering shown by white arrows in Fig. 4a).

Dynamics of PLD fluctuations is controlled by the bare frequency of the phonon mode 25, which, when coupled with
the electron degrees of freedom of Hamiltonian (3), drives the structural instability of the Peierls transition through the
logarithmic divergence of the electron-hole response function x (2kr,w =0, T) - see expression (5). £, given in Table 1
is estimated from either the frequency of the critical phonon mode extrapolated at 2kg from frequencies taken outside
the dip of the Kohn anomaly (in the adiabatic regime) or from the 2kg phonon frequency when the Kohn anomaly is not
really developed above Tlll’": or not formed at all (in the anti-adiabatic regime) - see section 2.3. The nature of the regime
of PLD/CDW fluctuations depends on the relative value of the bare phonon energy h$2y, with respect to the mean-field
Peierls gap Awmr given by (1) [28].

In the classical (adiabatic) regime, when f$2;,. < Awmr, electron-hole pairs are induced by the “quasi-static” 2k short
ranged potential originating from the PLD. When below TIQ/IF the PLD correlates on & a local Peierls condensate is formed.
The increase of &(T) upon cooling leads to the progressive development of a pseudo-gap in the one-electron density
of states around the Fermi level (see section 2.2). In this case, the pseudo-gap reduces the number of carriers available
for charge transport, but also the number of states contributing to the Pauli spin susceptibility. In short, the pseudo-gap
achieves a progressive freezing of both charge and spin degrees of freedom.

In the quantum (anti-adiabatic) regime, when h$2;,, > AwF, electronic interactions mediated by high-frequency 2kg
phonons become non-retarded and attractive. Quantum fluctuations significantly reduce the T = OK PLD and Peierls gap
2A [28]. However, the Peierls instability remains present whatever the value of the electron-phonon coupling [29], showing
the generality of the Peierls’ result. Note that quantum fluctuations have more drastic effect on the Peierls instability in a
spin-less electron gas [28,29] and by consequence on the SP instability. In this case, which will be considered in section 2.2,
quantum fluctuations can completely destroy the SP gap.

The classical-quantum crossover of the Peierls chain occurs for h2y, ~ Amr. Experimental Peierls systems are located
in the classical/adiabatic regime where, with a soft lattice dynamics, one has 2, < kBT}Q"F (see Table 1). Note that the
non-observation of a Peierls ground state in the C nanotubes, which are hard materials with 72y, ~0.15 eV > TQ"F ~15K
[30], could be due to the wipe out of A by quantum fluctuations. The classical-quantum crossover can be well studied in
SP systems (see Fig. 7 below).

For an incommensurate 2kg modulation, the structural order parameter u(x), in quadrature with §p(x) expressed by (6b)
is given by:

u(x) = ug sin(2kgx + @) (8)

At finite temperature, the Peierls long-range order of 1D systems is destroyed by thermal fluctuations. These fluctuations are
those of the phase ¢ of the order parameter at low temperature and of its amplitude 1 at high temperature (see Fig. 5). Due
to fluctuations, there is only a short-range order on the correlation length &(T) on which the 1D order parameter develops.
Below we shall label this short-range order parameter by the complex quantity ii(x). In the adiabatic limit previously
defined, the thermodynamics of the 1D fluctuating Peierls chain can be well approximated from the exact solution [31] of
the Landau-Ginzburg free-energy functional:

Flu] = / dx[ala(0)|” +blaeo|* +c[aico/ox[] ©)

with = a'(T — TMF)/T)¥; a(@’), b and ¢ can be calculated by the microscopic theory of the Peierls transition [18]. Note
that the use of a 1D functional assumes that lattice fluctuations associated with the critical phonon mode coupled with
fluctuating electron-hole pairs are 1D. This 1D fluctuation regime is assessed by the observation by X-ray diffuse scattering
between T¢, and Tip ~ TMF of 2k diffuse sheets (see Fig. 3).

The thermodynamics of the chain only depends on the extent of the reduced critical region Atip defined from the
parameters of the functional (9) by:

Atip = (bksTMF)? /(@' c173) (10)
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charge-transfer salts. The continuous line gives the numerical solution of the fluctuating Peierls chain functional (9). The thermal dependence of &~! for
amplitude and phase fluctuations, respectively relevant at high and low temperatures, is separately shown (adapted from Ref. [32]).
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Fig. 6. Thermal dependence of the magnetic susceptibility of TTF-[Ni(dmit),], (adapted from Ref. [41]). The partial decrease of spin susceptibility corre-
sponds to the complete development of a pseudo-gap in the LUMO conduction band structure of the Ni(dmit), stack. The continuous line reports the LRA
calculation [39].

For the Peierls chain, one gets Atip =~ 0.8 in unit of TQ"F [18]. Fig. 5 shows that the reduced correlation length &y/&;(T),
measured in several organic charge-transfer salts from the half width at half maximum of the 2kr X-ray diffuse sheets [32],
follows relatively well the exact solution of the 1D functional (9). In Fig. 5, §(T) is normalized to the electron-hole thermal
coherence length taken at TMF:

Eo =Nven/kpTp" (11)

where vy, is the velocity of the electron-hole pair excitations considered in section 2.3.
2.2. The pseudo-gap

Fig. 5 shows that the intra-chain correlation length & of 1D fluctuations of a classical system diverges at 0 K. At this
temperature, a true 1D Peierls gap opens at ~ 2 Ay (quantum fluctuations are weak in the adiabatic limit). At T finite when
& is finite, the Peierls gap transforms into a pseudo-gap in the density of states whose magnitude and energy dependence
is fixed by the length & (T) on which the local Peierls order is established [39]. Upon cooling from ~ T’Q"F, the increase in
&(T) leads to a progressive vanishing of the density of states at the Fermi level, N(Ef). Such a vanishing, which involves
also the spin degrees of freedom in a free electron gas, can be probed by the decrease of the Pauli spin susceptibility
Xp- This effect was nicely followed by an earlier investigation of KCP using 195pt Knight shift measurements [40]. Fig. 6
reports a recent measurement of the magnetic susceptibility of TTF-[Ni(dmit);], [41], which for the first time shows the
complete development from TI'Y[F ~ 300 K to Tp ~ 57 K of a pseudo-gap in the LUMO (lower unoccupied molecular orbital)
conduction band of the Ni(dmit), stack. Also the thermal dependence of x, quantitatively follows on this temperature range
the thermal behavior calculated by Lee, Rice, Anderson (LRA) more than forty years ago [39]. Thus Fig. 6 provides the first
complete verification of the LRA theory.
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Fig. 7. Nature of the ground state in function of the mean-field SP gap, A%’,‘,F, and of the critical phonon frequency $2sp for the SP Heisenberg chain [44],
together with the location of typical SP compounds (adapted from Ref. [45]).
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Fig. 8. Thermal dependence of the spin susceptibility of (BCPTTF),AsFg (left) [48] and of the reduced ESR susceptibility of MEM-(TCNQ); (right) [49]. The
continuous line gives the “exact” thermal dependence of the spin susceptibility of S = 1/2 chain with a near-neighbor AF exchange ] that is indicated in
each figure. Tsp is the 30 K/16.5 K 3D SP transition temperature below which a singlet-triple gap of 133 K/-40 K opens in (BCPTTF),AsFs/MEM-(TCNQ);.
Note that in (BCPTTF),AsFg the pseudo-gap opens at the onset, T1p, of 1D SP structural fluctuations.

In Heisenberg (XY) AF exchange coupled SP systems the mean-field gap, A’S"II,F is related to the mean-field temperature
TMF of the SP transition by the correspondence law:

AY ~2.47kg TS (1.78kp TSR ) (12)

Using expression (12) for the Heisenberg AF exchange coupling AIS\’II,F can estimated from the temperature T1p ~ Té\f',F below
which 1D SP structural fluctuations start to develop. Because of the importance of zero-point quantum fluctuations, the
singlet-triplet gap measured in the SP ground state is significantly smaller than Ag’l[f. Also the obtaining of ASNII,F values
comparable to the energy of the SP critical phonon 2sp [42] offers the possibility to study the classical-quantum crossover
in the SP phase diagrams established for XY [43] or Heisenberg [44] AF chains. Fig. 7 locates different SP compounds [45]
in the phase diagram established for the SP Heisenberg chain [44].

The organic compounds (BCPTTF);AsFs and PFg are well inside the classical (adiabatic) phase while MEM—-(TCNQ), and
TTF-CuBDT are in the quantum (anti-adiabatic) phase close to the classical-quantum crossover line A%F ~ 2h$2sp. The
organic compounds Per,Pt(mnt), is well inside the quantum phase, while the inorganic compound CuGeOs is close to
the boundary, ASMPF ~ h&2sp/2, at which the SP gap vanishes. The SP vanishes when the energy of zero-point quantum
fluctuations of the critical phonon exceeds the mean-field SP gap.

In the adiabatic limit, SP structural fluctuations lead to the formation of local spin singlets that induce a pseudo-gap
in the continuum of excitation of the S = 1/2 AF Heisenberg chain. The calculation of the pseudo-gap in the SP Heisen-
berg chain is however more elaborated than the LRA calculation in the Peierls chain because SP structural fluctuations
are magneto-elastically coupled with a spin-less interacting pseudo-fermion gas [46]. The left part of Fig. 8 shows more
explicitly that when & (SP) develops below Tip in (BCPTTF);AsFs the growth of a pseudo-gap manifests by a progressive
deviation of the experimental spin susceptibility from the one calculated for the uniform S = 1/2 chain with a near-neighbor
AF exchange J. In the anti-adiabatic limit, SP structural fluctuations does not give rise a pseudo-gap in the continuum of
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Fig. 9. Left part (a): electron-phonon coupled Peierls chain: the modulation of atomic position (in red), by ug, leads via the electron-phonon coupling
potential Vep(q) to a modulation p(x) of the electronic density. x(q, T) is the static electron-hole response function of the 1D electron gas. Figures (b)
and (c) in the right part give a schematic illustration of the effective potential experienced by the atom (in red) undergoing a PLD with respect to its
surrounding (in blue); (b) corresponds to the displacive (adiabatic) limit and (c) to the order-disorder (anti-adiabatic) limit. The characteristic frequencies
introduced in the text are also indicated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

excitation. Thus the spin susceptibility of MEM-(TCNQ), follows the thermal dependence of the uniform S =1/2 AF chain
until the SP transition (right-hand side of Fig. 8). Well inside the quantum phase, the high-frequency critical phonon mode
renormalizes the near-neighbor exchange interaction J and adds next near-neighbor exchange components [47] as observed
in CuGeOs.

2.3. The Kohn anomaly

While Peierls transitions occur in the classical regime defined by £, < Amr, the various compounds quoted in Table 1
exhibit quite different pre-transitional critical lattice dynamics. This requires the need to define a second adiabatic condition
for the formation of a Kohn anomaly. To account for different critical dynamics, we derive in the Appendix the mean-field
(RPA) phonon dynamics for a free electron gas weakly coupled with the lattice (A < 1).

To introduce the notations let us re-derive the critical phonon dynamics in the adiabatic limit for a weak electron-
phonon coupling. One considers, as illustrated in Fig. 9a, an harmonic chain of atoms of mass M linked by the spring
constant Ky and coupled with the 1D electron gas by the electron-phonon coupling potential Vep(q).

When one ignores the coupling with the electron gas, the q Fourier component ug of the atomic displacements follows
the harmonic oscillator equation:

Mug + Kqug =0 (13)

The mode g corresponds to atomic oscillations with the bare phonon frequency:

M
.Qq:\/g (14)

Due to the electron-phonon coupling, the atomic displacements submit the electron gas at an “external” potential Vep(q).
For a PLD of small amplitude ug (typically ug ~ 0.025-0.06 A for most Peierls systems), the Peierls chain can be treated in
the weak electron-phonon coupling limit. In this case Vep(q) can be taken proportional to ug:

Vep(q) = guq (15)

In (15) g is the electron-phonon coupling constant that we shall take for simplicity to be independent of q. The conduction
electrons respond to this external potential by modulating their density. For small Vep(q) in the framework of the linear
response theory, the q Fourier component of the charge modulation o4 is given by:

Pg = Xx(q, T)Vep(q) (16)

where we use, for £2; much smaller than the characteristic frequencies of the dynamics of the electron-hole pairs, the static
limit w = 0 of the electron-hole response function.
The Hamiltonian of coupling between the charge modulation and the electron-phonon potential can be expressed by:

Hep=)_ p—qVep(q) (17)
q
This Hamiltonian gives rise to a “force” Fg:

_ 9Hep

=
ou_g
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which must be added to the elastic force Kjuq in the equation of movement (13). The harmonic oscillator equation thus
becomes:

. 5 2g2
g+ £24 1_7X(Q’T) ug=0 (19)
q
In (19) the electron-phonon coupling renormalizes the bare phonon frequency §24, which thus becomes:
2g2
w@?=2;|1-=-x@.T) (20)
Kq
For the critical 2k wave vector one obtains using expression (5):
2ye TMF
2 -2 — ) =02 P
W2k (T)” = $25, [1 Mn(nkﬂ)] =A%, ln( T (21)
where we have introduced the reduced electron-phonon coupling constant:
2 2
A= iN (Ep) (22)
Kok

The weak electron-phonon coupling limit stands for A < 1.
The third member of expression (21) involves the mean-field Peierls transition temperature:

2ye
kpTMF = V5172 (23)
T

T}}"F is the temperature at which the frequency of the Kohn anomaly given by expression (21) in the RPA approximation
vanishes. TQ"F is, in absence of thermal fluctuations, the critical temperature of the Peierls transition calculated in the 1950s
(see expressions (1) and (2)).

When £24 is not negligible with respect to characteristic frequencies of the dynamics of the electron-hole pairs, the
w-dependence of the electron-hole response function must be kept. The equation of movement (19) becomes an explicit
equation in w. In that case, the calculation of the dynamics of the Peierls transition is more elaborated. It is performed in
the Appendix using a simplified analytical expression of the electron-hole response function. This calculation allows us to
clarify the condition of adiabaticity for the dynamics of the Peierls transition and for the formation of a Kohn anomaly. This
condition that controls the nature of the critical phonon dynamics of the Peierls transition relies on a comparison between
the frequency of fluctuation of the amplitude of the order parameter, wa = ﬁQZkF entering in expression (21) and the
lifetime 7.y, of the electron-hole pairs at TI'Q"F, which will be considered below.

The lifetime of the fluctuating electron-hole pairs can be expressed by:

Teh =&0/Veh (24)

In expression (24), & is the electron-hole coherence length and v, is the velocity of the electron-hole pair excitations.

& given in Table 1 is obtained either from the curvature of the Kohn anomaly if it exists (42) or from the high-
temperature (~T3"F) value of the CDW correlation length & (42, 32). vep, obtained from expression (11), is expressed
in Table 1 in fraction of the Fermi velocity vg, this latter quantity being obtained either from ab-initio band calculations or
from ARPES measurements.

In the absence of defects, only thermal fluctuations limit the electron-hole pair lifetime. In a free electron gas, one
obtains with ven = vp in the thermal coherence length &y given by (11):

Teh = ﬁV]:/TEkBTl];AF = \/E‘CTIIYIF. (25)

The quantity 77 is used in the Appendix.

In the presence of a potential of defect interrupting the 1D conducting path by introducing a backscattering diffusion
process of individual particles, the defects break the pairing (see section 4.3), which reduces the life time tep.

In the case of strong (electron-electron or electron-phonon) coupling that tends to localize the electrons, te, should be
longer than the thermal life time given by expression (25). This is because, due to the carrier localization, the velocity of the
electron-hole pair excitations ven should be smaller than the Fermi velocity v, since electrons and holes, dressed by strong
electron-electron repulsions or strong (polaron-like) electron-phonon coupling, acquire an enhanced effective mass meg. If
one assumes that vy, is comparable to the effective velocity of each component of the electron-hole pair one should have:

MeffVeh ~ MVE = RkF (26)

Table 1 reports the product £2y.Ten estimated at T'Q"F in various families of 1D conductors. As shown in the Appendix,
this product governs the nature of the phonon dynamics at the Peierls transition. A well-defined Kohn anomaly is only
observed when £y, Ten < 1.
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Fig. 10. Mean-field thermal dependence of the 2kg critical phonon frequency, wy,, as a function of the dimensionless quantity waTen (see Appendix A).
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Fig. 11. Imaginary part of the retarded 2kr phonon propagator Im D (2kg, w, T) defined by expression (A.9) of the Appendix for kBTPMF/hQZkF =0.2 (left)
and 0.05 (right) as a function of the reduced frequency w/$2s, [51]. This response is represented between TM" and 2TMF by steps of 0.2TMF.

If waTen < 1, the electron-hole pairs fluctuate so rapidly during the phonon oscillation period that they are able to screen
the coupling constant K, between the atoms. The screening is thus determined by the quasi-static electron-hole response
X (2kg, w = 0, T) which enters in the equation of movement (19). The enhanced q dependence of the response function
for q = 2kg leads to the formation of a Kohn anomaly. At q = 2k, the phonon frequency woy,(T), which thus follows the
divergence of the electron-hole response function given by expression (5), critically softens upon cooling (see Fig. 10 and
the left part of Fig. 11). Upon cooling, the enhanced screening leads to a progressive flattening of the potential, in which
the atoms oscillate (Fig. 9b). This drives a lattice instability of displacive type where the deviation of atomic position with
respect to their high temperature position, u(x), takes a continuum of values. This generally stabilizes a sinusoidal PLD u(x)
in the Peierls ground state. A giant 2kr Kohn anomaly is already formed at RT in the acoustic mode polarized in chain
direction of KCP [33]. In the blue bronze Kg3Mo0s3, the 2kr Kohn anomaly, which progressively softens upon cooling [34],
is located in a preexisting soft phonon branch. This branch corresponds to Einstein-like pre-existing soft phonons due to an
incipient ferroelectric instability of individual Mo40,1 segments of a 4-corner-sharing octahedron that form the repeat unit
of 1D chains (see Fig. 13a). Similar underlying ferroelectric instabilities are found in several others families of 2D metallic
oxides and bronzes that are subject to 2kg Peierls-like instabilities [50] (see also the end of this section).

If waTen > 1, the 2kg phonon fluctuates too rapidly during the living time of the electron-hole pairs so that the phonon
mode cannot efficiently couple with the electron-hole condensate. There is no screening and thus no critical softening of
$251 when the Peierls transition is approached (Fig. 10). The long-living electron-hole condensate induces via the electron-
phonon coupling a quasi-static local 2kg PLD of amplitude ug quite well decoupled from the 2kg “critical” phonon. This gives
rise above the Peierls transition to a quasi-elastic response in inelastic scattering processes (right-hand part of Fig. 11). The
long-time-living structural fluctuations exhibit a Lorentzian-like relaxation (expression (A.13) in the Appendix) whose asso-
ciated dynamics is typical of an order-disorder transition. Such a dynamics connects, through a double-well potential shown
in Fig. 9c, two local atomic deformations +ug or two PLD/CDW cluster configurations, each deformation or configuration
achieving a Peierls distortion on a local scale. The change in the conformation of the individual PLD/CDW cluster requires
a jump above the potential barrier separating the Fuo ground states. This jump process controls the life-time Ty (T) of
individual clusters. The long-range static order stabilized below the Peierls transition is achieved by the critical slowing
down of Ty, (T) (together with the divergence of the cluster size &(T)). The slowing down of the dynamics gives rise to
a “divergence” of the damping constant I, (T), defined by expression (A.14), which enters the Lorentzian response (A.13)
calculated in the Appendix. The non-detection of a Kohn anomaly associated with the 2k Peierls instability of NbSes [37]
and the 4kg instability of TTF-TCNQ [36] suggests the presence of such a relaxation dynamics, which remains to be studied.

Between these previous regimes, one has, by continuity, when watey ~ 1, an incomplete softening of the frequency of
the Kohn anomaly at the Peierls transition (Fig. 10). Such a dynamics is observed in TTF-TCNQ [35] and BaVSs [38]. In
TTF-TCNQ, a weak 2kr Kohn anomaly develops below about 150 K (T1p) in an acoustic branch polarized transversally with
respect to the stack direction [35].
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In the case of the free electron gas where tey is given by (25) and for typical dimensionless electron-phonon coupling
constants A ~ 0.2-0.4, one founds that the adiabatic-anti-adiabatic crossover condition waTen = 1 occurs (see expression
(A12) of Appendix) for:

(ks TN /A S22k,) =

>
;.]\
N

~0.1-0.14 or (Amp/hS2,)c ~0.2-0.25 (27)

This condition agrees with the numerical calculations shown in Fig. 11. Note that the adiabatic condition for the formation
of a Kohn anomaly is more restrictive that the one, Amr/fi$2y, & 1, obtained in section 2.2.

KCP and Kp3MoOs, which both exhibit a well-defined Kohn anomaly, are in the adiabatic limit. Consistently, their
kBTI'}"F/hQZkF ratio is above the critical condition (27). However, for the other 1D conductors quoted in Table 1, whose
Peierls dynamics exhibits either the incomplete softening of a Kohn anomaly or a relaxation dynamics, one still obtain a
kBTQ"F/ﬁ.QZkF ratio that remains above the condition (27). This means that the quantity t.;, to compare with wa should be
longer than the thermal life time 71 obtained for free electrons in the weak electron-phonon coupling limit. Following our
previous discussion on the electron-hole life time, this means that the velocity of the electron-hole pair excitations vep
should be smaller than the Fermi velocity vg. ven < vp imply that the electron gas coupled with the lattice is somewhat
localized; the localization being due either to strong electron-electron repulsions (case of TTF-TCNQ and BaVSs) or to strong
electron-phonon coupling (case of NbSes).

From the quantitative analysis of the 2kp/4kg critical X-ray diffuse scattering, vy estimated in Table 1 for the donor [52]
and acceptor [32] stacks of TTF-TCNQ and for BaVSs [53] are significantly reduced with respect to vg [54]. The strong reduc-
tion of vep with respect to v leads to a waTen product closer to 1. This can qualitatively explain why only a weak softening
is observed for the 2kg Kohn anomaly (on the TCNQ stack) of TTF-TCNQ and of V chain of BaVSs. Also the non-adiabatic
dynamics (i.e. absence of Kohn anomaly) of the 4kr CDW instability of TTF-TCNQ is consistent with the observation of a 4kg
Wigner-PLD instability on the TTF stack [21,22] of TTF-TCNQ. Note that the presence of sizeable electron-electron repulsions
in TTF-TCNQ is assessed by the detection of a pseudo-gap of correlation in infrared conductivity [55].

The dynamics of the Peierls transition calculated in the strong-electron-phonon coupling limit does not exhibit a Kohn
anomaly, but a 2kp quasi-static lattice response [56]. The PLD instability consists of the formation of atomic clusters where
the displaced atoms form quite well-defined local chemical bonds with their surroundings. In consequence, there is a large
gain in energy to achieve the +ug lattice displacement and any deviation of u(x) with respect to these optimal bond distance
costs energy. This is consistent with the double-well potential representation shown in Fig. 9c. In each cluster, the atomic
displacement +ug should be a sizeable fraction of the interatomic distances. Then the CDW consists of a modulation of the
electron occupancy of these well-defined bonds so that the excess or defect of charge of the density wave must be trapped
in local atomic clusters. Because of the formation of such atomic clusters, the PLD should be non-sinusoidal. The overall
energy gain due to cluster formation relies on a well-defined phasing of the atomic displacements with respect to their
surroundings. Thus the PLD, which could incorporate a succession of clusters differing by their relative phase shift, generally
forms long-period superstructures. Fluctuations among such trapped configurations are controlled by an order-disorder or
relaxation dynamics. Such a dynamics exhibits a critical slowing down of the cluster inverse life time when the Peierls
transition is approached from above.

Good examples of such “2kg” PLD and long-period superstructures can be found for m > 7 in the family of (PO3)4(WO3 )om
tungsten bronzes built with a segment of a m-corner-sharing WOg octahedron [57]. For example, in the “Peierls” super-
structure of the m = 10 member, the amplitude of the modulation amounts to ug ~ 0.2 A, which represents one tenth of
a typical W-0 bond distance! [58]. In this superstructure, clusters exhibiting maxima of PLD are made with correlated W
displacements principally aligned (i) in a ferroelectric manner in the direction of the segment of the m-octahedron, and
(ii) in the opposite (i.e. anti-ferroelectric) manner between neighboring segments. This displacement pattern realizes a good
compromise between the “2kg” PLD/CDW instability of the metallic bronze related to its quasi-1D electronic structure and
the incipient anti-ferroelectric lattice distortion of the insulating oxide WOs3, which represents the limit of this series when
m— oo.

3. Inter-chain Coulomb coupling between CDWs

As the 2kr PLD modulates the charge density in chain direction, the basic inter-chain coupling mechanism between
CDWs is of Coulomb origin. Coulomb coupling of the Madelung type has been calculated by Saub, Barisi¢ and Friedel (SBF)
assuming a linear charge modulation [59]. In the SBF model, the coupling between two CDWs, expressed by (6b), located
on chains i and j distant of R;;, and whose origin is shifted by &b, is given by:

30idp;
Wi (2ke. Rij. i) = p'bpf 3 cos(i—j — Geb)Ko(Rijl2ke + GI) (28)
GeRR

In expression (28) §0; and §p; are the amplitude of the ith and jth CDWs and ¢;_; is their relative phase shift. G is a
vector of the reciprocal lattice (RR) of the chain of period b. Ko(x) is the modified zeroth-order Bessel function, which
rapidly decays with R;j (x below) as:

Ko(x) ~ e //x (29)
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Fig. 12. Coulomb couplings between (a) linear and (b) dipolar CDWs.
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Fig. 13. (a) Structure of TMA-TCNQ-I projected along the stack direction b and transverse phase shift between CDWs located on zigzag-type TCNQ stacks.
This figure gives the location of the dominant Coulomb interaction W4 between CDWs (b) 3D Peierls transition temperature Tp in function of Wy calculated
in Ref. [60] for the whole Y-TCNQ-I series. The size of the YT cation controls the diagonal coupling Wy through the variation of the lattice parameter c.
The continuous line gives T, calculated in the fluctuation regime of the amplitude of the Peierls order parameter (see expression (30) and Fig. 15).

The exponential spatial decay means that the phase shift ¢;_; between CDWs is basically fixed by first-neighbor inter-
actions |i — j| = 1. Assuming ¢ =0, W;_j =1 is minimum for a phase shift of = between first-neighbor chains. This brings
an excess of charge, +§p, in regard of a defect of charge, —3,0 as shown in Fig. 12a. This CDW’s phase shift is observed in
the two transverse directions of the Peierls ground state structure of KCP.

In chains made of atomic clusters or of molecules, the CDW is spread on these entities and thus has a lateral extension.
Thus one has to go beyond the SBF approximation of a linear charge modulation to calculate the Coulomb coupling. However
in many cases, simple arguments based on electrostatic coupling between first-neighbor charged entities can account for
the optimal phase shift ¢;_;.

In molecular compounds where the CDW modulates the electron occupancy of the LUMO (lower unoccupied molecular
orbital) or the hole occupancy of the HOMO (higher occupied molecular orbital) between successive molecules in acceptor
or donor stacks respectively, the optimal CDW phase shift results from the minimization of Coulomb interactions between
the closest charge distributions in inter-chain directions. This is illustrated by Fig. 13a, giving the optimal phasing in the
CDW ground state of the organic TMA-TCNQ-I salt. Here the dominant CDW Coulomb interaction W4 occurs between the
cyano groups of neighboring zigzag stacks of TCNQ in regard along the a/2 + ¢ diagonal direction (note that in this direction
the zig-zag TCNQ stacks are shifted by ¢b).

In inorganic compounds such as the blue bronze, where the 2kg CDW modulates the amplitude of polarization of each
linear segment of 4-corner-sharing MoOg octahedra forming the chain repeat unit, the inter-chain coupling occurs between
the 2kr modulated electric dipoles of the segments. The anisotropy of the electrostatic coupling between polar CDWs in
the dipole direction (~ a + 2c¢) and in the perpendicular direction c¢*, shown in Fig. 12b, explains respectively the uniform
and staggered CDW transverse orders (Fig. 14a) found in the Peierls ground state of Kg3MoOs. Coupling between dipolar
CDW can also account for the CDW transverse orders observed in NbSes (Fig. 14b; see also Ref. [61] for a more complete
discussion). In this compound, the dipolar CDWs originate from pairs of strongly coupled type-I or type-Ill chains in which
the individual CDWs primarily order with a 7 phase shift.

The Ginzburg-Landau formalism introduced in section 2.1 can be generalized to include the inter-chain coupling W.
The treatment of the inter-chain coupling term in the mean-field approximation leads a 3D Peierls transition at finite
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Fig. 14. Structures of Ko3MoOs3 (a) and NbSes(b) projected along the stack direction b. Lateral phasing between the dipolar CDWs in (a) Ko3MoOs3 (red
arrows) and (b) NbSes (red and blue arrows represent dipoles located on pairs of type-I and type-III chains, respectively). The anisotropy of the inter-chain
couplings W given in the figure is obtained from the square of the anisotropy of the transverse correlation lengths &, . (Fig. 14b is adapted from Ref. [61].)
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Variation of Tp scaled to Tl'l’[F as a function of the inter-chain coupling W for the amplitude and phase (n = 2)/domain wall (n = 1) fluctuation
regimes relevant for complex (n = 2)/real Ising-type (n = 1) order parameters. The variation of Tp with W in the amplitude fluctuation regime is the same
for complex- and real-order parameters.

temperature Tp. Tp is an increasing function of the amplitude and correlation length of the 1D fluctuations and of the
magnitude of W. The variation of Tp with W, shown in Fig. 15, depends on whether the 3D Peierls transition occurs in the
regime of fluctuation of the amplitude or of the phase of the 1D order parameter (see Fig. 5). In the regime of (Gaussian)
amplitude fluctuations, one gets [62]:

Tp = TMFe=C/VW (30)

Fig. 13b shows that Tp calculated using expression (30) with W being the dominant Wy inter-chain Coulomb coupling
nicely accounts for the variation of the experimental Tp in the Y-TCNQ-I series [60]. As for the Y-TCNQ-I series, Table 1
shows that the Tp of Peierls compounds remains a sizeable fraction of TQ’[F.

4. Elasticity, plasticity and pinning of CDW

Below Tp, collective excitations of the 3D PLD sublattice are those of the amplitude and of the phase of the modula-
tion u(x) expressed by (8). The dynamics of the amplitude and of the phase modes of the PLD of Ky3MoO3; have been
measured by neutron [34] and X-ray [63] inelastic scatterings, Raman [64] and femtosecond [65] spectroscopies. Phase and
amplitude excitations are relatively well decoupled in energy: the amplitude mode is optic-like, while phase excitations
are acoustic-like. When 2kg is incommensurate, the vanishing of this acoustic dispersion for q = 2kg corresponds to the
degree of freedom of collective sliding of the phase of the PLD first considered by Frohlich. For low-energy deformations,
the variation of the amplitude of the order parameter can be neglected. In this case, CDW deformations are described by an
elastic medium involving continuous long-range deformations of the phase of the PLD for q close to 2kg. This assumption is
however not valid when large stresses break phase continuity. In that case, plastic deformations nucleate dislocation loops.
Also the variation of the amplitude of the order parameter cannot be neglected when large strains, induced for example by
strong pinning centers, lead to the formation of Friedel oscillations (FOs).
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Fig. 16. Two types of deformation of CDWs: (a) compression (dilatation) involves the longitudinal strain eyx and (b) shear involves the strain ey, (adapted
from Ref. [66]). The vertical and curved continuous lines in (a) and (b) respectively are surfaces of constant argument @.

This section is built on the works by Feinberg and Friedel (F&F), who have first introduced phase elasticity and plasticity
of the CDW [66]. They also considered the deformation of the PLD in the presence of various imperfections using local
models [67]. Their pioneering work will be illustrated by recent experimental findings.

4.1. CDW phase elasticity

Low-energy deformations are those of the phase ¢(r) of the PLD modulation defined by expression (8). By analogy with
conventional elasticity, F&F have introduced in Refs. [66,67] the elasticity of the phase ¢(r) of the PLD. Fig. 16 introduces
the basic ingredients of the phase elasticity in the case of (a) a compression/dilatation deformation of the PLD and (b) a
shear deformation of the PLD.

The compression/dilatation of the phase in the chain direction corresponds to a local change of 2kg. Since there are two
electrons per 2t CDW period, a phase variation along x induces a modulation of the electronic charge of:

146
3009 = 00

The charge modulation §0(x) (= (8p)x = poexx in Fig. 16a) caused by the deformation along x induces Coulomb forces.
If Coulomb forces are dynamically screened by normal carriers excited through the Peierls gap, the compression/dilatation
mode is acoustic. In the regime of perfect screening, the acoustic dispersion is governed by the longitudinal elastic constant:

(31)

ﬁVF
K* = —
¢ 2n

If the dynamical screening is not efficient, the longitudinal deformation of the phase induces an optical response. This
response corresponds to a plasma frequency +/3/2wp due to the rigid displacement of the CDW with respect to the ionic
background. Such a regime where the CDW becomes extremely rigid occurs in Kp3MoO3; below ~40 K. Upon cooling
Ko3MoOs3 from Tp to ~40 K, the reduction in the number of carriers thermally excited through the Peierls gap reduces
the screening effect of Coulomb forces induced by the longitudinal phase variation. This causes a sizeable enhancement
of the longitudinal elastic constant from the perfectly screened value K{; given by expression (32). This effect has been
observed in Kg3MoOs3 [68,63].

The shear deformation of the phase along y does not induce any charge redistribution, (§0,)y = 0, because 2kr remains
unchanged. Thus the dispersion of shear modes, which involves the transverse elastic constant K(% and Ké, remain acous-

(32)

tic whatever the temperature. The elastic constant, Kfp, is proportional to the square of the phason acoustic velocity v!
measured in the i direction. Their anisotropy follows also the square of the anisotropy of CDW coherence length &;. The
anisotropy of shear deformation elastic constants amounts also to the anisotropy of the inter-chain coupling energy W;:

2 2
Ko _ (Vo) (&) Wy (33)
kg — \v§ & W,
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Fig. 17. (a) Elastic longitudinal compression (exx > 0)/dilatation (exx < 0) of the phase ¢(x) of the CDW submitted to an electric field created by a difference
of potential between the electrodes placed on the left and right sides of the sample (x is the chain direction). The continuous lines in the top panel are
surfaces of constant argument @. The drift velocity, Vp, of sliding CDWs for E > Et is indicated (adapted from Ref. [66]). (b) Difference of 2kg(x) wave
vector under the application of opposite I continuous (dc) and pulse (pc) currents larger than It in NbSes. Note that 2kg(x) varies linearly in the central
part of the sample where 0.5 mm < x <2 mm. Below x ~ 0.5 mm, near the current contact located in x =0, it is observed that 2kr decays exponentially
with x (this effect is due to the +I free-carrier charge conversion into the condensed moving CDW by adding or removing phase wave-fronts). (Adapted
from Ref. [71].)

Phason velocities véo have been measured below Tp along the three principal lattice directions of Ky3MoOs3 by inelastic
neutron scattering [68]. As expected, their anisotropy follows the anisotropy of the CDW coherence lengths &; of the pre-
transitional CDW fluctuations measured above Tp.

An electric field (E) applied in chain direction couples with the local phase ¢ of the CDW or to the CDW “displacement
uy” defined in Fig. 16. This coupling induces the Frohlich-type collective sliding of the phase of the electronic CDW accom-
panied by an oscillating movement of the atomic positions of the PLD. In real systems where the CDW is locally pinned
to lattice defects (see section 4.3 below), the collective sliding is only observed when E exceeds a threshold field Et, as
demonstrated in NbSes [12] and Kg3MoOs [13]. In the presence of pinning defects, the competition between elasticity and
disorder leads to a generic phase diagram including three dynamical regimes (see for example [69]):

e the creep regime at small electric fields (E < Et), where the CDW is polarized through local phase displacements uy,
e the CDW de-pinning regime around Er,
o the collective flow regime for E > Et when the CDW moves as a whole with a finite velocity Vp.

Figs. 17a and 18 give, in the presence of boundary pinning effects, two illustrations of the CDW elastic response to an
external stress caused by the application of a longitudinal electric field E. In these figures, CDW pinning at the electrodes
or on sample surface induces respectively a compression/dilatation or a shear deformation of the phase of the CDW.

Fig. 17a illustrates the effect of longitudinal compression (exx > 0) and dilatation (exx < 0) of the phase ¢(x) resulting
from the coupling of CDW with an electric field applied in the chain direction x. The CDW-strain that results has been
directly observed using spatially resolved X-ray diffraction measurement of 2kg(x) for sliding CDW in NbSes [70,71]. Far
from the contact currents, 2kr(x), proportional to d¢/dx, varies linearly with x, as predicted by a simple elastic theory; ¢(x)
shown in Fig. 17a has a parabolic dependence on x and vanishes at the electrode positions in x =0 and L. However, this
simple picture has to be modified in the blue bronze where it has been surprisingly observed that, above Et, the 2kg sliding
CDW develops an extra-long period modulation in the chain direction, which could be due to the formation of a soliton
lattice [72].

Fig. 18 shows that surface pinning leads to a shear deformation of the CDW coupled with an electric field applied in
chain direction x. The shear deformation induces a bending of CDW fronts accompanied by a tilt of the 2kr modulation
wave vector along y. A shear deformation of the moving CDW along the 2a*-c* weakest inter-layer coupling direction of
Ko3MoOs3 (W in Fig. 14a) was first reported more than 30 years ago [73]. Sizeable shear deformations and rotations of
the CDW wave vector have been imaged above Et by monochromatic X-ray topography in ribbon-like NbSe; presenting
pinning surface steps in the chain direction [74]. Recent coherent X-ray diffraction experiments [75] performed below Et
in the creep regime of NbSej3 reveal local shear deformations of the polarized CDW, probably nucleated by domain walls
delimiting the more strongly pinned domains where the CDW phase does not move under E. These local shear deformations
break the lateral coherence of the CDW sub-lattice.

4.2. CDW dislocation
When the bending angle 6 of the shear deformation represented in Fig. 18 exceeds a critical value, the continuity of CDW

wave fronts should be broken by nucleation of mixed loop dislocations [66]. For a sliding CDW, the transformation of free
carriers into CDW condensed carriers at the electrode implies the creation of new CDW phase wave-fronts. This occurs via a
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Surface pinning

Fig. 18. Shear deformation of a sliding CDW pinned on a surface containing the chain direction. The interrupted curved lines are surfaces of constant
argument &. The local wave vector qcpw(y), perpendicular to the bent CDW surface fronts, induces a tilt of 2kr along the transverse direction y. (Adapted

from Ref. [67].)

Counts

Fig. 19. Regular PLD modulation (left-hand side) and PLD phase dislocation (right-hand side) in Ko3MoOs3. The top of the figure gives a representation of
the PLD in direct space and the bottom of the figure shows the corresponding diffracted speckle spectra. Because of the tilting of the CDW wave vector
qcpw With respect to chain direction, b, the dislocation mixes edge and screw wave front deformations (from Ref. [77]).

so-called phase slippage phenomenon, which is probably achieved by nucleation and growth of edge loop dislocations [67].
However, it was only recently that an isolated CDW dislocation has been directly imaged using coherent X-ray diffraction
in Ko3MoOs3 [76] (Fig. 19). The introduction of an abrupt w phase shift in the regular PLD sub-lattice by a dislocation leads
to a negative interference term that manifests in the speckle spectra (right side of Fig. 19) by a vanishing of the diffracted
intensity at the Bragg position of the regular PLD (left side of Fig. 19). The recent observation of a well-defined multi-peak
speckle spectrum in transverse reciprocal direction in the creep regime of NbSe3 [75] shows that the loss of transverse
coherence in the CDW sublattice polarized under the application of an electric field should be accompanied by nucleation
of CDW dislocations that cause abrupt CDW phase shifts.

4.3. CDW pinning

Non-linear CDW and SDW conductivity phenomena that are observed for E > Et in the density-wave ground state
(T < Tp) of 1D inorganic and organic conductors such as NbSes, Kg3Mo0Os3, TTF-TCNQ and (TMTSF),PFg are now well docu-
mented [78]. However, the detailed understanding of these electronic phenomena requires a microscopic description of the
textured 3D PLD pattern in the presence of pinning centers, a question that is still incompletely settled. The present section
reviews the more recent “structural” aspects of this topic.

The delicate question of CDW pinning by randomness begins to be addressed in the 1970s (for a recent review, see [79]).
Earlier theories assumed, when the CDW is well developed below Tp, that the main effect of the potential defect is to
interact with the phase of the PLD/CDW. The most important effect occurs when defects, located on the conducting path,
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Fig. 20. CDW patterns for strong impurity pinning (a), weak impurity pinning (b) and weak pinning between strongly pinned CDW domains (c). In (a), the
arrows show local shears of the CDW lattice due to individual phase adjustments on impurities. In (a) and (b), the dots represent local impurities and in
(c) the boxes materialize strongly pinned domains. Parts (a) and (b) are from Ref. [82] and part (c) is from Ref. [84].

strongly perturb the 1D electronic motion. Along a 1D conducting path, the impurity potential induces two scattering pro-
cesses of the incoming kg wave function corresponding to the g ~ 2kg backward scattering process (kg — —kg reflection of
the wave function on the potential barrier; U term below) and to the g ~ 0 forward scattering process (kg — kg transmis-
sion of the wave function through the potential barrier; term V below). With the long-range elastic energy term previously
considered in section 4.1, the interaction between the phase of the CDW, given by (6b), and disorder potentials (located in
m) is described by the Hamiltonian:

1 ap ap ap
Hyogis. = = | dr| K} K KZ
van=3 | [ <8x> i “’(w) i <8z>

+Z[Ucos(2kFx+<p(r))5(r—rm)+ V(r—rm)—z—fﬂ (34)

The term U describes the interaction between the impurity and the 2kp oscillating part of the electronic density. The
backscattering process causes the individual pinning of 2kg CDW, since the minimization of the cosinus term tends to
impose a well-defined phase of the CDW on each impurity site. Such “phase-locking” terms, also present for the PLD, give
rise to an asymmetry of intensity between pairs of +2kr and —2kg satellite reflections in the diffraction pattern [80]. The
backscattering process breaks also the 2kg electron-hole pairing and thus limits the condensate lifetime (see section 2.3).
The term V describes the interaction between the impurity and the g ~ 0 long-wave-length oscillation of the electronic
density given by expression (31). The phase shift that results from the forward scattering process elongates or compresses
locally the phase of the CDW (see Fig. 22a below). Concomitant local variations of the phase of the PLD induce an asymmetry
of profile of individual 2kg satellite reflections [81].

The U term alone was considered in earlier theories with the effect to pin the phase of the PLD/CDW. As a function of
the relative values of the pinning energy gain and of the elastic energy cost, two extreme situations are found:

- when the individual pinning energy gain dominates, the phase of the CDW is adjusted on each impurity site (Fig. 20a).
The coherence of the CDW pattern is broken by the randomness of the impurity distribution along both chain and
transverse directions (the phase adjustment on impurities induces local shear deformations of the CDW sub-lattice,
which also break the optimal inter-chain phasing due to W). In the situation of strong pinning, each CDW coherent
domain contains few impurities;

- when the elastic energy cost dominates, there is collective adjustment of the phase of the CDW on the impurity distri-
bution (Fig. 20b). The CDW pattern remains coherent in large domains containing a sizeable number of impurities. In
this case the possibility to obtain a Bragg glass with a quasi-long-range CDW order has been considered [83].

The real texture of the pinned CDW pattern is more subtle than those of these two extreme descriptions. In particular,
it was suggested on the basis of earlier structural studies of irradiated organic salts [84] that the CDW pattern could be the
superimposition of weakly pinned regions, where the phase fluctuates slowly, and strongly pinned domains where the phase
is locked (Fig. 20c). In this situation the domain walls play the role of pinning surface as a source of shear deformation of
the CDW (see Fig. 18).

The phase of the CDW pinned on an impurity site can be probed by the so-called “white line” effect [80] illustrated
in Fig. 21. Such a “white line” effect is revealed by an asymmetry of intensity between pairs of +2kg and —2kg satellite
reflections in the diffraction pattern from the PLD. This effect, analogous to holography in optics, is due to interference (Ia
term) between diffracted beams by impurities (Igy,) and by the PLD modulation (Ig4;s) [82]. The “white line” effect observed
in solid solutions of organic conductors as well as in substituted inorganic conductor allows one to probe size and/or charge
effects of impurities in the pinning process [85]. Using this effect, it has been possible to follow upon heating the thermal
de-pinning of the phase of the CDW by thermally excited phasons in doped Ky3Mo0O3 [86].

Earlier pinning theories ignored local variations of the phase (Fig. 22a) and of the amplitude (Fig. 22b) of the CDW/PLD
around impurities. A local variation of the phase, §¢(x), generally occurs when non-isoelectronic impurities induce a local
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Fig. 21. Schematic representation of the so-called “white line” effect in diffraction and its analogy with holography in optics. (From Ref. [82].)
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Fig. 22. Local variations of the phase A¢ (a) and of the amplitude u;(2kg) (b) of the CDW around impurity centers (dots). Part (b) represents more
specifically the induced 1D FO’s of amplitude, u;(2k), in response to the impurity potential Vipp.

variation of the charge of the CDW, §p(x); these two quantities being connected through expression (31). Local variation
of the amplitude of the CDW, u;(2kf), is expected in response to an impurity potential Vi, via the 1D divergent x(q, T)
electron-hole response function - see Fig. 22b [87]. Both charge screening of non-isoelectronic impurities by a phase shift
(not yet considered in the literature until recently [88]) and amplitude [87] variation in response to an impurity potential are
the two basic components of Friedel oscillations (FOs). With the same critical 2kr wave vector, 1D FOs should superimpose
above Tp to regular 1D 2kg CDW fluctuations and below Tp to the 3D CDW modulation pattern, with however a delicate
problem of phase matching between the FOs and the regular CDW that will be considered below.

In response to strong lattice defects, such as those created by X-ray irradiation, 1D FOs can be induced well above Tp.
The intensity diffracted by the FOs, which is proportional to the square of the induced PLD u;(2kg), defined in Fig. 22b,
superimposes on the intensity diffracted by the regular 2kg CDW fluctuations (Igjs in Fig. 21). As |u;(2kg)|? is proportional
to the square of x(q,T), the intensity diffracted by the FOs strongly varies as a function of temperature. This thermal
dependence has been measured above Tp in irradiated TMTSF-DMTCNQ [89] and TTF-TCNQ [32] and analyzed in this
framework.

Below Tp, the right-hand part of Fig. 23 represents the FOs induced in the vicinity of a V defect in Ky3Mo03 and gives
its matching with the regular PLD present at larger distance from the impurity. The structure of the FOs is obtained by a
detailed analysis of the high-resolution profile of +2kr satellite reflections shown in the left-hand part of Fig. 22 [88,86].
A V defect induces both an oscillation of amplitude of the 2kr modulation on few near neighbor Mo sites (254 ~ 16 A,
where &4 = hivg/2A is the damping length in presence of the Peierls gap [87]) and a phase shift 2n = —7 on the V site
able to screen a difference of charge of one electron (Z = —1) with the Mo [90a]. The phase shift is directly related to Z by
the Friedel sum rule (see also the contribution by ]. Villain, M. Lavagna, and P. Bruno in this issue) because, since in a 1D
system the scattered wave is in the same direction as that of the incident one, only the | =0 term enters the Friedel sum
rule. This phase shift can be simply understood in 1D since a 2t CDW period contains two electrons, half a CDW period
(—m) is required to screen the impurity charge of one hole. The screening is achieved by a phase variation of the electron
density from +m/2 to —m/2 on a distance of about one lattice spacing corresponding to the extension of the impurity
potential (right-hand part of Fig. 23). However the intra-chain CDW phase shift 27 induces also an inter-chain phase shift
of m with neighboring CDWs. This last phase shift cancels the optimal Coulomb inter-chain coupling energy gain, W, in
transverse direction (see Fig. 12a in section 3). Thus the best way to recover the optimal inter-chain coupling is to resorb
2n by forming two solitons on each side of the impurity, as shown in the right part of Fig. 23 (each soliton recovering a
—n = w/2 half phase shift). The matching of the FOs on the regular PLD by formation of two 7t/2 phase shifts could be
responsible of the asymmetry of intensity (—I,/+1}) of the +2kr/—2kr reflections observed in the diffraction processes by
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Fig. 23. Right part: FOs with its phase shift of —x around a V impurity located at n = 0 and its matching with the regular PLD/CDW via the formation of two
solitons, each achieving a phase shift of /2 at the modulation. The top panel gives the spatial dependence of the phase ¢(n) of the resulting modulation
with respect to the regular PLD/CDW (interrupted lines in the bottom panel). Left part: experimental X-ray diffraction spectrum of Ko3(Mo0g.972V0.028)03 at
15 K compared to the Fourier transform (continuous line) of the PLD/CDW modulation shown in the right-hand part. (Adapted from Ref. [88].)

the FOs (see left-hand side of Fig. 23) [90b]. Note also that by the formation of two 1/2 solitons, the total variation of
the phase of the CDW perturbed by the impurity, obtained by integration of (31) on the chain length, is zero. This finding
means that ¢(n) should vanish asymptotically on each side of the impurity when |n| becomes large (see the right-hand side
of Fig. 23). On large scales, there is thus charge neutrality of defects dressed by the FOs. Thus the spatially averaged 2kg
value of the CDW consistently corresponds to 2kg calculated from the 1D band filling obtained by electron count based on
chemical formulae of the Kg 3(Mo1_xVx)O3 solid solution: 2kg(x) = [(3 — 10x)/4]b*.

5. Concluding remarks

This review is focused on the CDW/PLD instability in a 1D conductor. It covers mostly the case of the Peierls transition
driven by the 2kg divergence of the electron-hole response function. In the presence of strong electron-electron repulsions,
the 1D electron-hole response function diverges also for the 4kg critical wave vector, which corresponds to the wave number
of a Wigner lattice of localized charges (one localized charge every 1/p sites) coupled with a PLD [21-23]|. These 4kg
CDW/PLD effects, which are now well documented in 1D organic compounds, have been reviewed recently [45,91]. They
are distinct from the 2kg CDW/PLD Peierls effects that occur in the free-electron gas and that are the main object of this
review. Note that for intermediate electron-electron repulsion, the 1D electron gas can exhibit simultaneously 2kg and 4kg
electron-hole instabilities [92], as experimentally observed [45,91]. Charge localization effects are also commonly observed
in oxides and organic compounds of higher electronic dimensionality. In 1D conductors, the study of quarter-filled systems
is particularly interesting because 4kg bond and 4k site localization phenomena, stabilizing respectively Mott dimer and
charge ordered (CO) ground state of different inversion symmetry, are basically decoupled. However, a mixture of bond and
charge orders without inversion symmetry can lead to electronic ferroelectricity, as observed in some organic materials [93],
and could drive multiferroicity in several classes of materials [94,95].

Another field of current interest concerns the presence of CDW instability in 2D and 3D electronic systems. In 2D layered
transition metal oxides and bronzes, where, because of the anisotropic overlap of tp; d-wave functions, the electronic lattice
can be decomposed into sub-lattices of differently oriented sets of interpenetrating weakly coupled chains, it is found that
PLD/CDW transitions result from a succession of Peierls instabilities driven by the underlying 1D band electronic structure
[96,97]. It has also been proposed that the crystal structure of some group V and VI simple elements and AYBY! compounds
could be stabilized by a Peierls-like transition occurring in a prototype 3D cubic lattice, where there is an anisotropic overlap
of the p-wave functions (see, for example, [98]). Note that H. Jones was the first to propose in 1934 [4] a similar stabilization
mechanism for Bi; see also R.E. Peierls [1] for the column V elements. However, such a mechanism could be questioned [99]
if the s—-p hybridization which blurs the 1D nature of the orbital overlap cannot be neglected. This is apparently not the
case for column-V, -VI and -VII elements, where the s-p hybridization is very small (see the contribution of ].-P. Gaspard
in this issue). Incommensurate PLD/CDW modulations are observed in layered transition-metal di-chalcogenides MX; [100].
However, the origin of these CDW transitions cannot be simply rationalized by a simple FS nesting mechanism. This leaves
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open the possibility of CDW instabilities driven by strong electron-phonon coupling mechanisms. CDW transitions are also
observed in 3D electronic systems. For example, three distinct CDW ground states are stabilized below 43 K in « — U (for a
recent review, see [101]), with a critical CDW wave vector nesting flat portions of the FS due to narrow f bands [102].

Some 1D systems exhibit complex intertwined orders such a mixt 2kg SDW-CDW in (TMTSF),PFg [19], or even a succes-
sion of complex orders combining charge, spin, orbitals and lattice degrees of freedom as found in the ty; multiband BaVSs3
compound [53]. Complex spin, charge and orbital current modulations are also observed in 2D superconducting cuprates.
However, the wide panel of denominations used to describe the charge effects (CDW, CO, d-wave bond order, charge and
spin stripes, charge “nematicity”, etc.) together with the presence in most of the compounds of a meso-/nano-scale phase
separation show that a clear physical picture is far to emerge (for recent reviews, see [103,104]).

CDW, SDW, orbital anti-ferromagnetism and spin currents ground states are predicted when semi-conductors/semi-
metals with small indirect bandgap/overlap exhibit an excitonic instability [105]. In these transitions towards an excitonic
insulator, the mechanism appears to be similar to that of the Peierls transition, the wave vector Q that links the energy
extremes of the hole and electron pockets playing the same role as the 2kr nesting wave vector of a 1D Fermi surface. Good
candidates for such transitions could be the incompletely nested semi-metallic oxides and bronzes [97].

The phase diagram of many density-wave (CDW, SDW, CO) systems includes also superconductivity. In most of them,
superconductivity develops under pressure at the vanishing point of the density-wave ground state. This situation is well
illustrated by organic conductors [106,107]; see also the contribution of D. Jérome in this issue. However, in multiband
conductors or when Fermi level states of a single-band conductor are not completely removed by the nesting process,
superconductivity could coexist with the CDW modulation. Coexistence between CDW and superconductivity is observed in
cuprates, in 1T-TiSe; and in the multiband charge transfer organic conductor TTF[Ni(dmit), ], (see [41] and earlier references
therein).

6. Chemical index

BCPTTF: benzocyclopenthyl-tetrathiafulvalene
CuBDT: bis-dithiolate copper

dmit: isotrithione-dithiolate

KCP: Ky Pt(CN)4Bro3-3H,0

MEM:  N-methyl-N-ethylmorpholinium
mnt: maleonitrile-dithiolate

Per: perylene

TCNQ:  7,7,8,8-tetracyano-p-quinodimethane
TMA: trimethyl-ammonuim

TMTSF: tetramethyl-tetraselenafulvalene
TMTTF: tetramethyl-tetrathiafulvalene

TTF: tetrathiafulvalene
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Appendix A. Mean-field dynamics of the Peierls transition

Inelastic neutron scattering by phonons measures the w Fourier transform S(q, ) of the time-dependent displacement-
displacement correlation function (ugq(t)u_q(0)), which can be expressed as:

_ hw(q)
S@q, w, T)_coth<—2kBT )ImD(q,a), T) (A1)

In (A.1) coth(x) is the Bose-Einstein occupation number of the w(q) phonon branch and D(q, w, T) is the phonon propagator.
For the electron-phonon coupled system considered in Fig. 9a, D(q, w, T) is expressed by the Dyson equation:
282

D(q,w, T)= —
@O D= 0 0@ @ e

(A2)
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Note that expression (A.2) involves the electron-phonon coupling constant g, which is related to the term g introduced in
section 2.3 by the relationship:

g=28%2q/Kq
For a linearized electronic dispersion of the 1D electron gas, the 2kr Lindhard electron-hole response function can be
expressed under the compact form [18]:

_ 2y &c 1 1 | hw

In (A.3), ¥ (2) is the digamma function. v/ (z) is the sum of real and imaginary components, which are respectively even and
odd in frequency. Thus (A.3) can be generally written as:

2’/8;) — (0, T) + 07 (0?, T)}. (A4)

X (2kg, w, T) = N(Ef) [ln(

T[I(B

For hw < 47kgT, one has the development:

2 (w? T) ~ w?1f, (A.5a)

2.2
(. T) ~ 7} (1 A, ) (A.5b)

Tr =&r/vE=h/~2nkgT, and 77 = 1.7577.
D(q, w, T) can thus be written in the general form:

292’(]:

D(Qkg,w, T) = - A.6
@kr. 0. ) = @2 T2 Il @2 T) (A.6)
Expression (A.6) explicitly involves with the notations of (A.4):
5 TMF
- the renormalized square phonon frequency wg (w?, T)” = w3 [ln(%) — Z(w?, T)} (A7)
- the damping I' (w?, T) = wit (0?, T) (A.8)

In these expressions wp = «/X.QZkF is the frequency of the amplitude mode, A = 2§2N(Ep)/.(22kF is the dimensionless
electron-phonon coupling constant (see also expression (22)) and TQ"F is given by expression (23).
Neutron scattering measures the imaginary part of (A.6):

22,0 (@?, T)
[w? — wr(w?, T)2]2 + w2 (w?, T)?

Poles of (A.9) give the dynamics of the 2kg critical phonon. When the damping can be neglected, the frequency of the soft
phonon @y, (T) is the solution of the implicit equation:

o\ T
(2) =1n<@)+2(w2j) (A10)

This equation is graphically solved in Fig. 24.

If watr < 1, the intersection between the left-hand-side and right-hand-side members of (A.10) gives the frequency
ok (T) of the Kohn anomaly renormalized by electron-phonon coupling. Its frequency is smaller than £2y,. Furthermore,
when T tends to T’Q"F, W)y, (T) softens according to expression (21) of section 2.3:

Im D (2kp, w, T) =

(A.9)

T
Wi (T) = wn ln<ﬁ) (A11)
TP

This situation, which corresponds to the adiabatic limit, is depicted by the numerical simulation of the left-hand part of
Fig. 11. Note that when wy(T) tends to zero, one has to include the thermally-dependent damping term I'(w?,T) in the
phonon-softening mechanism. There are also non-harmonic corrections included in the free energy (9), which are ignored
in the RPA approximation. They will be considered at the end of the Appendix.
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A
)

( w >'
(UA

@T1)* B2, 1)

T
In(wr

W2, (T)

Fig. 24. Graphical solution wyy, (T) of the implicit equation (A.10).

If waTr > 1, the intersection occurs at frequencies close to $2y.. The (weakly) renormalized frequency wyy, is deter-
mined by the behavior of X (w?, T) at large values of w. There is no phonon softening. This situation corresponds to the
anti-adiabatic limit.

An incomplete phonon softening occurs when watr ~ 1. To analyze this behavior, one must take into account the ther-
mal dependence of tr through the critical dimensionless quantity watr which can be written under the form:

TMFN @
wontr = =2 e (A12)
QZkF Cc T

In (A.12) the critical ratio (kgTMF/n$2.)c amounts to @ ~ 0.1-0.14. When the temperature decreases towards TMF,
(A12) increases. When for T > TMF, T /25, becomes larger than the critical ratio (TMF/£25,)c a phonon hardening, shown
in Fig. 11b, results from the increase of the X(w?, T) term upon cooling. However, it is also possible to have a high-
temperature phonon softening, when wa7r < 1, which however never vanish if, when T approaches TMF, watr becomes
larger than 1. Also by continuity, a phonon softening at high temperature could be followed by phonon hardening near TI]Y'F.
Fig. 10 illustrates these different behaviors. Note that the longitudinal acoustic branch of TTF-TCNQ exhibits a frequency
hardening around the 4k critical wave vector upon cooling [36].

The right-hand part of Fig. 11 shows in the non-adiabatic regime that, in addition to the phonon hardening phenomenon
previously discussed, Im D(2kg, w, T) exhibits a quasi-elastic response that critically narrows in frequency when TQ"F is
approached. To calculate this quasi-elastic response, one must consider on the same footing the low-frequency dependence
of X (w?, T) and of the damping term I'(w?, T) given by expressions (A.5). In the lowest order in w, (A.9) becomes a
Lorentzian response:

constant

ImD kg, 0, T) ~ —————
w? + Doy (T)?

(A13)
The frequency dependence of (A.13) is typical of a relaxation dynamics. Furthermore, the damping constant I, (T) of the
Lorentzian response critically decreases to T[')’IF according to:

In(z3r)
Do (M) = — 2 (A14)

MF
TP

The mean-field theory of the dynamics of the SP transition gives a critical ratio (kgT2N /AS2sp)c ~ 0.45 or h§2sp ~ ANF, sig-
nificantly larger than the one found for the Peierls chain (expressions (27) and (A.12)). This critical ratio separates adiabatic
and anti-adiabatic fluctuations regimes (see [108] and Fig. 4 in Ref. [42]).

Non-harmonic terms are relevant to describe the true dynamics of the Peierls chain beyond the RPA approximation [109].
When for watr < 1, the dynamics includes these terms, the Kohn anomaly tends to soften at Teg ~ 0.38T}§"F defined in
Fig. 5. However, because of sizeable 1D fluctuations, the Kohn anomaly becomes over-damped around Tef. Below Teg, when
the Peierls order is established on a large correlation length &(T), the damping diminishes and one recovers a dynamics
of decoupled fluctuations of the amplitude and of the phase of the order parameter. There is no real softening and thus no
true Peierls transition for an isolated Peierls chain at finite temperature in agreement with thermodynamics arguments. The
dynamics of the Peierls systems quoted in Table 1 is in fact measured in real systems made of coupled chains. When Tp is
comparable to or larger than T, pre-transitional Peierls dynamics basically follow that given by the mean-field theory with
Tp replacing TQ’IF. This is the case of the Kohn anomaly measured in Kg3MoO3 where Tp ~ Teof. However, in this compound,
the amplitude mode fluctuations already emerge from the damped Kohn anomaly at a frequency comparable to wps above
Tp [110].
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