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This work presents a Boundary Element Method (BEM) formulation for contactless 
electromagnetic field assessments. The new scheme is based on a regularised BEM 
approach that requires the use of electric measurements only. The regularisation is 
obtained by leveraging on an extension of Calderón techniques to rectangular systems 
leading to well-conditioned problems independent of the discretisation density. This 
enables the use of highly discretized Huygens surfaces that can be consequently placed 
very near to the radiating source. In addition, the new regularised scheme is hybridised 
with both surfacic homogeneous and volumetric inhomogeneous forward BEM solvers 
accelerated with fast matrix–vector multiplication schemes. This allows for rapid and 
effective dosimetric assessments and permits the use of inhomogeneous and realistic 
head phantoms. Numerical results corroborate the theory and confirms the practical 
effectiveness of all newly proposed formulations.
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r é s u m é

Cet article présente une méthode aux éléments de frontière (BEM) adaptée à l’évaluation 
sans contact du champ électromagnétique. La nouvelle approche est fondée sur une 
formulation intégrale régularisée, qui nécessite seulement des mesures du champ élec-
trique. La régularisation est obtenue à partir d’une extension des techniques de précondi-
tionnement de type Calderón aux matrices rectangulaires. Cela résulte en des systèmes 
bien conditionnés indépendamment de la densité de discrétisation et permet l’utilisation 
de surfaces de Huygens ayant une discrétisation très fine qui, par voie de conséquence, 
peuvent être placées très près de la source rayonnante. En outre, la nouvelle formulation 
est hybridée avec deux solveurs d’intégrales de surface (pour des problèmes homogènes) 
et de volume (pour des problèmes non homogènes) et est accélérée avec des algorithmes 
rapides de multiplication matrice–vecteur. Ceci permet des évaluations dosimétriques 
rapides et efficaces et permet aussi l’utilisation de fantômes de tête non homogènes et 
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réalistes. Les résultats numériques corroborent la théorie et confirment l’efficacité pratique 
de toutes les nouvelles formulations proposées.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Cellular phones, laptops, bluetooth/wireless hotspots, broadcasting systems are all devices that emit mid-to-high doses of 
electromagnetic radiation that penetrates materials and biological tissues in their vicinities. Recommendations from various 
institutions in Europe and United States, dictate strict limits on the amount of electromagnetic radiation that can be toler-
ated within tissues and anatomical parts surrounding a radiating source. The guidelines from the International Commission 
on Non-Ionizing Radiation Protection (ICNIRP), that are the legal standard in Europe [1,2], are dictating restrictions in terms 
of electric field induced in tissues (frequency range up to 100 kHz [3,4]), specific absorption rate (SAR, frequency range 
100 kHz–10 GHz [5]), and incident power density (frequency range 10 GHz–300 GHz [5]). The early validation against these 
limits is a crucial step in every industrial process involving radiating elements in the design.

Common technologies and standards that industry uses to assess the electromagnetic exposure and field levels are 
largely based on internal probes [6] and phantoms [6–8]. Phantoms are suitably designed dielectric structures obtained 
by filling with a dissipative liquid a container mimicking the shape of different anatomical parts whose electromag-
netic exposition needs to be studied [9,10]. The measuring probes penetrate the phantom and effectuate measures of 
the electric and/or magnetic field [11,12]. Unfortunately however, such an invasive measurement procedure presents 
several drawbacks. It is costly, since it necessitates ad-hoc mechanical set-ups. It does not guarantee a perturbation-
free measurement since an internal probing can perturb the value of the measured fields [13,14]. Finally, it has the 
need of repeatedly penetrating the dielectric phantom, something that prevents the use of solid dielectric materials 
and, as a consequence, liquid filled phantoms provide homogeneous and isotropic dielectric profiles only. This is a poor 
and unrealistic modelling of biological tissues whose dielectric/resistive properties are often both inhomogeneous and 
anisotropic [15–18].

A first class of partial solutions to some of the above-mentioned issues relies on techniques for determining optimal 
sets of measurement samples. This for the purpose of reducing the overall number of measurements that are necessary 
for a full characterisation of the radiation exposure [19–22]. Although these techniques decrease the complexity of a stan-
dard, phantom-based, electromagnetic exposure analysis, they are still very complicated to implement, and they leave the 
modelling limitations of the phantom/probe approach, lamentably, unaltered. A second and more recent class of enhanced 
dosimetry assessment techniques relies on the use of computational imaging tools to complement the raw measurements of 
the electromagnetic field. Under this category fall several schemes that adopt finite element based discretisations of models 
of human tissues and, given an external measurements of the electromagnetic field, solve the electromagnetic problem by 
using FDTD [23–25], FEM [26–28], and related methods [29–33]. Although effective and easily available from commercial 
simulation toolboxes, these schemes often rely on a good knowledge of radiation sources, something that is often unavail-
able in dosimetry assessment.

An effective remedy to these issues is proposed by methods relying on the use of the Huygens principle [34,35], 
where the (potentially unknown) source is replaced by a surfacic distribution of equivalent sources that are determined 
together with the field values necessary for the dosimetric assessment. These strategies however, often require the use of 
densely discretized Huygens surfaces and, when differential equation based methods are the leading modelling formula-
tion, CFL conditions and low-frequency issues (see [36] and references therein) may render the approach computationally 
expensive. A good alternative could be the use of Huygens principle formulations based on Boundary Element Methods 
(BEMs). These approaches discretise only material boundaries and are not subject to CFL constraints so that an increase 
of discretisation density in some parts of the Huygens screen would not result in increase in other parts of the sim-
ulation volume. Very promising formulations following these strategies have been presented in [37–39]. These schemes 
encompass the model of a dosimetric phantom with an equivalent surface and establish a suitable integral relation-
ship linking equivalent sources with magnetic and electric field measurements. Such a strategy falls in the more general 
category of inverse source approaches that have been studied extensively in the electromagnetic characterisation of radi-
ating sources [40–45]. The problem of characterising the sources, especially in the presence of severe ill-posedness has 
also been impacted by more general techniques in inverse scattering and imaging where the regularisation techniques of 
inverse problems related to imaging have been adapted to microwave imaging for human body tissues and their anoma-
lies [46–53].

Integral equation techniques however, are not panacea; BEM methods in fact suffer from a major drawback viz. they 
give rise to dense interaction matrices, resulting in high computational costs when realistic modelling are called for. More-
over, classical formulations rely often on Dirichlet-to-Neumann mappings (linking magnetic to electric field quantities and 
vice-versa) that are well-known to be ill-posed and unbounded operators [54]. For this reason although the use of dense 
equivalent surfaces does not impact a volume discretisation (as in CFL prone methods) it still gives rise to ill-conditioned 
system as a function of the discretisation density that can result in high computational costs for the solution and in numer-
ical instabilities in real case scenarios.
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Fig. 1. (Colour online.) Volume and surface definitions.

This work focuses in addressing these drawbacks and its contribution is threefold: (i) It will propose a BEM based 
formulation that requires the use of electric measurements only. This is done at the cost of solving an additional integral 
problem with respect to the works in [37], but it has the practical advantage of avoiding magnetic field measurements and 
the theoretical advantage of providing more freedom in the choice of the mapping operators and in the integral formulation 
modelling the dosimetric phantom. (ii) This additional freedom will be exploited to use a Huygens formulation that can be 
regularised. For this purpose this work will propose a Calderón-based strategy for rectangular matrices that will provide 
well-conditioned systems independent on the discretisation density of the Huygens screen. (iii) Finally, we will hybridise 
our formulation with both surfacic homogeneous and volumetric inhomogeneous forward BEM solvers accelerated with fast 
matrix–vector multiplication schemes. This allows for rapid and effective dosimetric assessments and it permits the use of 
inhomogeneous and realistic head phantoms.

This paper is organised as follows: Section 2 presents background material and sets the notation. Section 3 presents 
the Huygens formulation we are adopting here. Section 4 presents a Calderón regularisation for rectangular matrices. Sec-
tion 5 presents numerical results that confirms the practical effectiveness of the new approaches. Section 6 presents our 
conclusions and avenues for future work.

2. Background and notation

Consider a volume �h (please refer to Fig. 1) characterised by a (potentially lossy and inhomogeneous) dielectric per-
mittivity εh (r) and residing in a free-space of dielectric permittivity and magnetic permeability ε and μ, respectively. 
The surface of �h is denoted as �h = ∂�h . Consider a (potentially unknown) source radiating the electromagnetic field (

E i(r), H i(r)
)
; the source resides in the interior of the closed surface � (an equivalent, Huygens, surface). The total electric 

field E(r) is assumed to be known on a surface �m as a result of a measurement procedure. In our application scenario, �h
will model a (potentially lossy and inhomogeneous) head phantom while the source, entirely included in the closed surface 
�, will model a mobile phone radiator (the model of which is potentially unknown).

On the equivalent surface � we can define the following surface operators

Sk
�( f (r)) = ik

∫
�

eik|r−r′|

4π |r − r′| f (r′)d� − 1

ik
∇

∫
�

eik|r−r′|

4π |r − r′|∇
′ · f (r′)d� (1)

Dk
�( f (r)) = −

∫
�

∇ eik|r−r′|

4π |r − r′| × f (r′)d� (2)

where k is the free space wave number.
When the dielectric profile of �h is homogeneous, i.e. εh(r) = εh , we denote with kh the associated wave number in 

�h . In this case, with identical definitions with respect to the ones in (1) and (2), we define the operators Sk
�h

, Dk
�h

and 

Skh
�h

, Dkh
�h

for which the integrals are defined on the surface �h and for which the wave numbers are set equal to k and 

kh , respectively. In the following we will also need the definition of the surface operators T k
�h

= n̂ × Sk
�h

, T kh
�h

= n̂ × Skh
�h

, 

Kk
�h

= n̂ ×Dkh
�h

and Kkh
�h

= n̂ ×Dkh
�h

for an outward directed normal n̂ on the surface �h and the definition of the free space 
and relative wave impedance η = √

μ/ε and ηr = k/kh , respectively.
When the dielectric profile of �h is inhomogeneous, i.e. for general, potentially position-dependent, εh(r), we define the 

dielectric contrast ratio as χ(r) = 1 − εh(r) . In this case, we define the volume operator
ε
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Sk
�h

( f (r)) = ik
∫
�h

eik|r−r′|

4π |r − r′| (χ(r′) f (r′))d�

− 1

ik
∇

∫
�h

eik|r−r′|

4π |r − r′|∇
′ · (χ(r′) f (r′))d� (3)

3. The inverse source scheme

It is very well known from potential theory [55] that we can represent the field radiated outside � from sources located 
inside � as

Eext(r) = αSk
�( J (r′,α,β)) + βDk

�(M(r′,α,β)) (4)

and

ηH ext = 1

ik
∇ × Eext(r) (5)

where α and β can be arbitrarily chosen. The values of J (r′) and M(r′) will be a function of this arbitrary choice while 
the resulting value of Eext(r) will be independent of it. A common choice is α = β = 1, for which J (r′) and M(r′) have 
the particularly physical meaning of being the Love’s currents [56] equal to n̂r × H ext(r) and −n̂r × Eext(r) respectively 
(n̂r represents the outward directed normal on �). Given that we want to avoid the measurement of the magnetic field, 
however, this choice does not suit our treatment. We select instead α = 1 and β = 0, in this case we deal only with the 
current distribution J (r′) that in the general case however, does not have a straightforward physical interpretation. We thus 
define J (r′) the (unknown) current distribution on � such that

Eext(r) = Sk
�( J (r′)) (6)

and

ηH ext(r) = 1

ik
∇ × Sk

�( J (r′)) (7)

∀r ∈ R
3/�. The reader should again notice that the current J (r′) will not be a simple function of the tangential component 

of the total magnetic field, like the standard electric current is, but it will be a more complicated function of tangential 
components of both total electric and magnetic fields. Given however that the radiated fields are to be recovered only in 
the external region of the equivalent surface, the complicated relationship between the current and the total fields will 
never be used nor required to be made explicit.

3.1. Homogeneous head model

We assume in this section that the dielectric profile of the head is homogeneous in �h . The purpose of the dosimetric 
assessment is to find the value of E(r), r ∈ �h , i.e. the total electric field within the head. This field is computed using 
the surface currents on the surface �h . These unknown surface currents on the head due to the external field radiated by 
the equivalent current J (r), given the homogeneity of the dielectric profile on �h can be obtained by solving the PMCHWT 
integral equation given by[

(T k
�h

+ T kh
�h

/ηr) −(Kk
�h

+Kkh
�h

)

(Kk
�h

+Kkh
�h

) (T k
�h

+ ηrT kh
�h

)

][
Mh(r′)
J h(r′)

]
=

[−n̂ × ηH ext(r)
−n̂ × Eext(r)

]
(8)

where the unknown electric and magnetic surface currents denoted by J h(r′) and Mh(r′) for r′ ∈ �h respectively can be 
found using

[
Mh(r′)
J h(r′)

]
=

[
(T k

�h
+ T kh

�h
/ηr) −(Kk

�h
+Kkh

�h
)

(Kk
�h

+Kkh
�h

) (T k
�h

+ ηrT kh
�h

)

]−1 [−n̂ × ηH ext(r)
−n̂ × Eext(r)

]
(9)

and from which the field Eh(r) scattered by the head can be obtained as

Eh(r) = Sk
�h

( J h(r′)) +Dk
�h

(Mh(r′)) r ∈R
3/�h (10)

or

Eh(r) = [Dk
�h

Sk
�h

]

[
(T k

�h
+ T kh

�h
/ηr) −(Kk

�h
+Kkh

�h
)

k kh k kh

]−1 [−n̂ × ηH ext(r)
−n̂ × Eext(r)

]
(11)
(K�h
+K�h

) (T�h
+ ηrT�h

)
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This can be further written as a function of J (r′) on � by leveraging on (6) and (7) as

Eh(r) = [Dk
�h

Sk
�h

]

[
(T k

�h
+ T kh

�h
/ηr) −(Kk

�h
+Kkh

�h
)

(Kk
�h

+Kkh
�h

) (T k
�h

+ ηrT kh
�h

)

]−1

·
[−n̂ × η 1

ik ∇ × Sk
�( J (r′))

−n̂ × Sk
�( J (r′))

]
(12)

By enforcing the condition E(r) = Eext(r) + Eh(r) on �m we obtain

Sk
�( J (r′)) + [Dk

�h
Sk

�h
]

[
(T k

�h
+ T kh

�h
/ηr) −(Kk

�h
+Kkh

�h
)

(Kk
�h

+Kkh
�h

) (T k
�h

+ ηrT kh
�h

)

]−1

·
[−n̂ × η 1

ik ∇ × Sk
�( J (r′))

−n̂ × Sk
�( J (r′))

]
= E(r), r ∈ �m (13)

As pointed out in the previous section, the field E(r) is assumed to be known as a result of a measurement procedure, so 
that the unknown current distribution J (r′) can be obtained by inverting (13). This inversion will be obtained by subsequent 
use of boundary element discretisations as explained in the following section.

As a final remark for this section, we think that the reader may wonder why a single current formulation has been 
adopted for the Huygens surface and instead a two currents formulation has been adopted on the head surface. The reason 
behind this choice is that we do not need to calculate the field inside the Huygens surface, but only outside it. In other 
words we do not need to enforce any transmission conditions on the surface since only the external field is necessary and 
the current is recovered without the need of recovering the associated values of tangential electric and magnetic fields (for 
which an additional integral equation should have been solved). Instead, for the dielectric head, we must find the field 
both outside and inside. For this reason it is more convenient to use a two currents formulation where the transmission 
conditions are simpler to enforce being only the tangential continuity of the electric and magnetic field.

3.1.1. Discretisation
In order to solve numerically the integral equations defined in the previous section, it is necessary to discretise the 

involved surface operators. As in any standard boundary element method, we need to approximate the various geometries 
present with a triangular tessellation giving rise to surface meshes for �h , � and �m . On the internal edges of these surface 
meshes, we can define the sets of Rao–Wilton–Glisson (RWG) basis functions [57] { f h

n}Nh
n=1, { f n}N

n=1 and { f m
n }Nm

n=1 respec-
tively (Nh , N and Nm being the number of edges on �h , � and �m respectively). The surface currents can be approximated 
as

J h(r) =
Nh∑

n=1

αn f h
n(r)

Mh(r) =
Nh∑

n=1

βn f h
n(r)

J (r) =
N∑

n=1

γn f n(r) (14)

The different blocks in equation (13) can be discretized as explained in what follows. The PMCHWT operators T k
�h

, T kh
�h

, Kk
�h

and Kkh
�h

are discretized using the sets of RWG basis functions both as source and testing functions resulting in the matrices

(T)mn =
〈
n̂ × f h

m(r),T k
�h

( f h
n(r))

〉
�h

(T′)mn =
〈
n̂ × f h

m(r),T kh
�h

( f h
n(r))

〉
�h

(K)mn =
〈
n̂ × f h

m(r),Kk
�h

( f h
n(r))

〉
�h

(K′)mn =
〈
n̂ × f h

m(r),Kkh
�h

( f h
n(r))

〉
�h

(15)

where the notation 〈a · b〉χ = ∫
χ a · b dχ and (A)mn represents the element in the row m and the column n of a matrix A. 

The discretized version of the continuous operators applied to the equivalent source currents radiating the fields on the 
head surface are given by
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(K�)mn =
〈
n̂ × f h

m(r),−n̂ × η0
1

ik
∇ × Sk

�( f n(r))
〉
�h

(T�)mn =
〈
n̂ × f h

m(r),−n̂ × Sk
�( f n(r))

〉
�h

(16)

Similarly, the discretized version of the continuous operators applied to the surface currents on the head radiating the fields 
on the measurement surface are given by

(S�h )mn =
〈

f m
m(r),Sk

�h
( f h

n(r))
〉
�

(D�h )mn =
〈

f m
m(r),Dk

�h
( f h

n(r))
〉
�

(17)

The incident electric field due to the equivalent source currents on the measurement surface represented as a matrix is 
given by

(S�)mn =
〈

f m
m(r),Sk

�( f n(r))
〉
�m

(18)

The overall right-hand side vector reads

vm = 〈
f m

m(r), E(r)
〉
�m

(19)

Finally, define the unknown current coefficients vector

(γ )m = γm (20)

Leveraging on all the definitions above, the discretisation of equation (13) reads

S�γ + [ D�h S�h ]

[
(T + T′/ηr) −(K + K′)
(K + K′) (T + ηrT′)

]−1 [
K�

T�

]
γ = v (21)

3.2. Inhomogeneous head model

In realistic scenarios, the modelling of the human head phantom may result in inhomogeneous dielectric profiles mod-
elling different tissues (typically scalp, skull and brain). The objective of dosimetric assessments remains unchanged from 
the case analysed in the previous section, i.e. the total electric field inside the head region must be recovered starting from 
measurements in the vicinities of the radiating source. The total electric field now is the sum of the external field radi-
ated by the equivalent current J (r′) and the equivalent volume current J v

h (r′) inside the human head model. The mapping 
between the volume currents and the external field can be expressed using a Volume Integral Equation (VIE) [58,59][

(1 − χ(r))
I
ik

+ Sk
�h

]
J v

h (r′) = Eext(r) r ∈ �h (22)

where I is the identity operator and the unknown volume current is given by

J v
h (r) =

[
(1 − χ(r))

I
ik

+ Sk
�h

]−1

Eext(r′) r ∈ �h (23)

It should be noted that only a volume electric current is necessary since only the electric permittivity is inhomogeneous 
while the magnetic permeability is perfectly homogeneous (μ = μ0). The electric field in the external region due to the 
volume current inside the head is given by

Eh(r) = −Sk
�h

J v
h (r′) r ∈R

3/�h (24)

or

Eh(r) = −Sk
�h

[
(1 − χ(r))

I
ik

+ Sk
�h

]−1

Eext(r′) (25)

which can be written in terms of surface currents on the equivalent surface as

Eh(r) = −Sk
�h

[
(1 − χ(r))

I
ik

+ Sk
�h

]−1

Sk
�( J (r′)) (26)

The total electric field on the measurement surface �m is thus obtained as
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Sk
�( J (r′)) − Sk

�h

[
(1 − χ(r))

I
ik

+ Sk
�h

]−1

Sk
�( J (r′)) = E(r) r ∈ �m (27)

The above equation gives the relationship between the unknown equivalent surface current and the measured electric field 
in the presence of an inhomogeneous head model. The unknown surface current J (r′) can be obtained by solving the 
discretized version of the above equation, as explained in the next subsection.

3.2.1. Discretisation
Equation (27) can be discretized after meshing the equivalent surface � with triangular cells and the head volume �h

with tetrahedral cells. On a pair of triangular cells of the equivalent source and measurement surface, we define the sets 
of RWG basis functions { f n}N

n=1 and { f m
n }Nm

n=1, respectively. Similarly, on a pair of each adjacent tetrahedron of the volume 
mesh, we define an Schaubert–Wilton–Glisson (SWG) basis function [58] giving rise to the set { f v

n }Nv
n=1 (Nv represents 

the number of triangular cells based on which the SWG basis functions are defined). Using these basis functions, we can 
discretise the volume and surface currents as

J v(r) =
Nv∑

n=1

αn f v
n (r)

J (r) =
N∑

n=1

γn f n(r) (28)

The VIE operator can be discretized as

(S�h )mn =
〈

f v
m(r),Sk

�h
( f v

n (r))
〉
�h

(29)

and the Gram matrix is given by

(G�h )mn =
〈

f v
m(r),

1 − χ(r)

ik
f v

n (r)
〉
�h

(30)

The discretized surface operator applied to the equivalent source current radiating on the head surface is given by

(S�h
� )mn =

〈
f v

m(r),Sk
�( f n(r))

〉
�h

(31)

Similarly, the discretized volume operator applied to the volume currents of the inhomogeneous head model radiating on 
the measurement surface is given by

(S�
�h

)mn =
〈

f m
m(r),Sk

�h
( f v

n (r))
〉
�m

(32)

The discretisation of the operator defined for the incident electric field due to the equivalent source currents on the mea-
surement surface

(S�)mn =
〈

f m
m(r),Sk

�( f n(r))
〉
�m

(33)

and the right-hand side and solution vectors

vm = 〈
f m

m(r), E(r)
〉
�m

(34)

(γ )m = γm (35)

remain similar to those of the homogeneous case (treated in the previous section). By combining the discretisations above 
we obtain the following discretized version of equation (27)

S�γ − S�
�h

[ G�h + S�h ]−1 S�h
� γ = v (36)
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4. Calderón preconditioning

As delineated in the previous sections, the linear system of equations (21) and (36) requires near-field measurements for 
building up the right-hand side vector. A practical case of interest arises when the equivalent surface and the measurement 
surface coincide, i.e. when �m = �. Even in this case, however, the surface meshes on �m and � are often different. In fact, 
the discretisation of the measurement surface is dependent on the overall number of degrees of freedom of the measured 
near-field values [19,20] and also on the limitations of the measurement system setups [21,60]. On the other hand, the 
discretisation of the equivalent surface depends on how well it can model the near-field behaviour of the radiating source 
and it plays a role in the pseudo-inversion procedure. This results in a different discretisation density on the equivalent 
surface compared to the measurement surface. Therefore, the system matrices in equation (21) and (36) are rectangular and 
they deal with unequal number of unknowns compared to the number of equations. These equations can be solved in the 
least squares sense using an iterative solver by applying the transpose to the matrix S� as

ST
�[S� + S̃�]γ = ST

�v (37)

where in case of the homogeneous head model

S̃� = [ D�h S�h ]

[
(T + T′/ηr) −(K + K′)
(K + K′) (T + ηrT′)

]−1 [
S�

K�

]
(38)

and for the inhomogeneous head model

S̃� = −S�
�h

[G�h + S�h ]−1S�h
� (39)

In equation (37), the matrix S̃� represents a compact perturbation of the EFIE operator matrix with a negligible contribution 
to the spectrum of S� . The overall system matrix inherits the ill-conditioning of the EFIE operator due to the dense discreti-
sation and low-frequency breakdown [61]. The condition number of S� shows a behaviour of order O( 1

(kh)2 ) [62,63]. This 
results in a conditioning behaviour of order O( 1

(kh)4 ) for the system matrix ST
�S� . Therefore, solving equation (37) becomes 

a challenging task as the discretisation on the equivalent surface increases and/or the frequency decreases. In this work, we 
propose to leverage on Calderón preconditioning to solve this problem. Calderón preconditioning is based on the Calderón 
identity [64,65]

(T k
� )2( J (r)) = − J (r)

4
+ (K̃k

�)2( J (r)) (40)

The discretisation of equation (40) results in well conditioned system matrices [64]. The operator T k
� when discretized 

with the sets of RWG basis functions { f n}N
n=1 and {n̂ × f m

n }Nm
n=1 results in the matrix S� . To realise the discretisation of 

the Calderón identity (equation (40)), however, we also need the sets of Buffa–Christiansen (BC) basis functions {bn}N
n=1

and {n̂ × bm
n }Nm

n=1 (the definition of these functions is omitted here for the sake of brevity, the reader should refer to [66]
or [64] for the implementational details of these boundary elements). This discretisation gives rise to the matrix SBC

� =〈
bm

m(r),S�(bn(r))
〉
�m

. In order to link correctly the basis functions between the two operator matrices SBC
� and S� , we need 

a suitable Gram matrix G�m = 〈
n̂ × f m

m(r), bm
n (r)

〉
�m

. The proposed regularised linear system of equations for dosimetry 
assessment then reads

[SBC
� ]T[G�m ]−1[S� + S̃�]γ = [SBC

� ]T[G�m ]−1v (41)

5. Numerical results

The first test focused on the validation of the BEM formulation, developed in Section 3.1 for homogeneous phantom 
profiles. The electric field radiated by a mobile phone antenna in the presence of an homogeneous head phantom is shown 
in Fig. 2a. The mobile antenna has been enclosed in a parallelepiped’s equivalent surface that is also used as measurement 
surface. After applying the numerical procedure detailed in Section 3.1, the electric field is reconstructed in Fig. 2b. Fig. 4c 
shows the reconstruction relative error computed as

ε(r) = |E(r) − Er(r)|
|E(r)| (42)

where the electric field E(r) and Er(r) are due to the radiating source and the Huygens surface in the presence of the head, 
respectively. The maximum field relative error stays below 1%, confirming the validity of the formulation.

A second numerical test has been performed to assess the performance of the BEM formulation, developed in Section 3.2
for inhomogeneous phantom profiles. The inhomogeneous head phantom we have used is shown in Fig. 3. We have adopted 
an MRI based three layers head model which has a piecewise-constant dielectric profile. The reader should notice, however, 
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Fig. 2. (Colour online.) Homogeneous head model.

Fig. 3. (Colour online.) Volume regions of the human head model.

that any other dielectric profile of arbitrary inhomogeneity could have been used as well. The electric field radiated by 
a mobile phone antenna in the presence of this inhomogeneous head phantom is shown in Fig. 4a. The mobile antenna 
has been again enclosed in a parallelepiped’s equivalent surface that is also used as measurement surface. After applying 
the numerical procedure detailed in Section 3.2, the electric field is reconstructed in Fig. 4b. The reconstruction relative 
error is shown in Fig. 2c, the maximum field relative error stays well below 1% confirming that also this formulation for 
inhomogeneous dielectric profiles is a valid one.

A final set of tests has been focused in validating the Calderón regularisations proposed in Section 4. First we have 
considered two canonical cases (a cube and an hemisphere) to check the stability of the regularisation to mesh refinement. 
To this purpose the measurement mesh has been kept constant, while the equivalent surface mesh density was increased. 
For the case of the cube, the condition numbers of the overall system matrix w.r.t. to the average edge length is shown 
in Fig. 5. It is clear that the regularised system matrix has a constant condition number when the mesh density increases 
whereas without regularisation a steep condition number growth is observed. A similar behaviour is observed in the case of 
the hemisphere as it is shown in Fig. 6. The stability of the regularised system with respect to frequency has been tested as 
well. The condition numbers as a function of the frequency are shown in Fig. 7. Also in this case the regularised formulation 
is stable, while standard operators show the expected frequency instability. A regularisation in a real case scenario has been 
equally tested. To this purpose we have used the previous homogeneous head model. The relative tolerance of a CGS solver 
w.r.t. number of iterations to compute the dosimetry assessment can be seen in Fig. 8. The tolerance curves show that the 
regularisation proposed here can greatly improve the convergence behaviour and, as a consequence, the time necessary for 
dosimetric assessment.
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Fig. 4. (Colour online.) Inhomogeneous head model.

Fig. 5. (Colour online.) Variation of the condition number of a cube mesh.

Fig. 6. (Colour online.) Variation of the condition number of a hemisphere mesh.
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Fig. 7. (Colour online.) Variation of the condition number of a cube mesh w.r.t. frequency.

Fig. 8. (Colour online.) Validation of the Calderón regularisation in a real-case scenario.

6. Conclusions

A Boundary Element Method (BEM) formulation for contactless electromagnetic field assessments has been presented. 
The new scheme, which is based on a regularised BEM approach, requires the use of electric field measurements only. 
The regularisation, which is based on Calderón techniques, enables the use of highly discretized Huygens surfaces that can 
be consequently placed very near to the radiating source. A hybridisation with both surfacic homogeneous and volumetric 
inhomogeneous forward BEM solvers has been proposed that allows the use of inhomogeneous and realistic head phantoms. 
Numerical results have been presented that corroborate the theory and confirm the practical effectiveness of all newly 
proposed formulations. Future investigations will include the extension of the new formulations presented here to the time 
domain as well as their application to an industrial-level measurement setting.
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