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This article is a brief review of coarsening phenomena occurring in systems where 
quenched features—such as random field, varying coupling constants or lattice vacancies—
spoil homogeneity. We discuss the current understanding of the problem in ferromagnetic 
systems with a non-conserved scalar order parameter by focusing primarily on the form of 
the growth law of the ordered domains and on the scaling properties.
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r é s u m é

Cet article constitue un bref survol des phénomènes de coarsening qui se produisent 
dans des systèmes où des inhomogénéités gelées, telles que champs aléatoires, constantes 
de couplage variables ou lacunes de réseau, détruisent l’homogénéité. Nous discutons la 
compréhension que l’on a actuellement de ce problème dans les systèmes ferromagnétiques 
avec un paramètre d’ordre scalaire non conservé, en se concentrant d’abord sur la loi de 
croissance des domaines ordonnés et sur les propriétés d’échelle.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Coarsening can exhibit rather different features in systems where homogeneity holds or not. In order to keep the dis-
cussion at the simplest level I will focus on the class of ferromagnetic systems with a scalar order parameter (spin), such 
as those whose properties can be described by the Ising model or, in a continuum approach, by the usual Ginzburg–Landau 
free energy. Inhomogeneous systems with a vectorial order parameter are much less studied and will not be discussed here. 
Besides, the attention will be restricted to a dynamics that does not conserve the order parameter. These descriptions are 
in principle suited, e.g., for a magnetic solid. The aim of the article is not to provide a comprehensive description of the 
behavior of existing real systems, but rather to discuss at the simplest possible level the new features introduced by the 
presence of inhomogeneities.

In the kind of systems we are considering, coarsening is usually observed after a quench from a high-temperature equi-
librium configuration to a temperature below the critical one. Relaxation toward the new equilibrium state then occurs by 
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Fig. 1. (Color online.) A pictorial representation of a coarsening process. Blue and pink regions are the growing domains of the two low-temperature 
equilibrium ordered phases. The four panels correspond to snapshots of the system at subsequent times t1 < t2 < t3 < t4.

the formation and growth of domains inside which the system is basically equilibrated in one of the two symmetry-related 
low-temperature equilibrium phases (see the article by L.F. Cugliandolo in this dossier). For a magnet, these are the two 
possible ordered configurations with positive or negative magnetization ±m. The non-equilibrium behavior occurs on the 
interfaces that move in order to increase the typical domain’s size. A pictorial representation of the process is depicted in 
Fig. 1.

The distinguishing characteristic of coarsening in homogeneous systems is the scaling symmetry [1]. Accordingly, in the 
late stage of the process, configurations of the system at different times are statistically equivalent if lengths are measured 
in units of the characteristic size L(t) of the domains, which grows algebraically like

L(t) = at1/z (1)

where a is a constant, and z = 2 in the case without order-parameter conservation considered here [1]. The scaling symme-
try is mirrored by the form taken by different quantities, as for instance correlation functions. Using the language of spin 
systems the two-time spin–spin correlation G(r, t) = 〈Si(t)S j(tw)〉, where Si = ±1 are spin variables on sites i and j of a 
regular lattice at a distance r, obeys

G(r, tw , t) = g

[
r

L(tw)
,

L(t)

L(tw)

]
(2)

where g(x, y) [with x = r/L(tw) and y = L(t)/L(tw)) is a scaling function (and, similarly, s(x) and c(y) below)]. The form 
(2) contains, as special cases, the scaling S(r, t) = s(x) of the equal-time correlation function S(r, t) = G(r, t, t) and that 
C(t, tw) = c(y) of the autocorrelation function C(t, tw ) = G(0, t, tw).

Eq. (2) is, in principle, strictly obeyed only in a quench to a vanishing final temperature T f = 0. The effect of a finite 
quench temperature is to modify the behavior (2) of correlations at small distances [i.e. r < ξ(T f), where ξ(T f) is the 
coherence length of the equilibrium state at T f (which is small except in the critical region)] and small time-differences t −
tw < ξ(T f)

z]. For simplicity, in the following our discussion about scaling properties will always be restricted to sufficiently 
large space and time scales where such corrections can be discarded. A thorough discussion of the whole scaling form taken 
by G at finite T f is contained in [2].

With the possible exception of liquid systems, whose comprehension however turns out to be more difficult (see article 
by S. Das, S. Roy and J. Midya in this volume), real systems are almost never homogeneous, due to the presence of quenched 
lattice defects or because of external disturbances as site-dependent applied fields. Experiments show that these sources of 
inhomogeneities deeply perturb the coarsening process and the scaling properties. Indeed, although some kind of scaling 
symmetry comparable to Eq. (2) is sometimes reported [3] for the correlation functions, the asymptotic growth law is never 
observed in the form (1) and, instead, a much slower increase of the ordered patterns, usually of a logarithmic type [4–6,3]), 
occurs.

In this article we will mainly review how and why the growth law and the dynamical scaling symmetry, expressed by 
Eqs. (1, 2), are modified in an inhomogeneous coarsening system.



334 F. Corberi / C. R. Physique 16 (2015) 332–342
2. Models

2.1. Homogeneous systems

As an optimal playground to study coarsening I consider the description of a homogeneous system in terms of the Ising 
model with Hamiltonian

H({Si}) = − J
∑
〈i j〉

Si S j (3)

where {Si} is a configuration of N spin variables Si = ±1 and i = 1, . . . , N are sites of a regular d-dimensional lattice. By 
homogeneous it is meant that the Hamiltonian [for instance the one (3)] does not select any particular spatial position and 
all places are a priori equal. Alternatively one can say that, although a single realization of the system can be inhomogeneous 
(i.e. due to the presence of domains), local observables do not depend on space after thermal averaging.

A dynamics is introduced by means of a master equation with transition rates w({Si } → {S ′
i}) regulating the hopping 

between configurations. In the following detailed balance with respect to the equilibrium Boltzmann–Gibbs measure e−βH

will be assumed for the w ’s, implying that the equilibrium state is spontaneously approached. I will also assume, again for 
simplicity, that the sequential evolution of single spins occurs and that the order parameter is not conserved.

For such a model, it is well known that, after a quench from a high-temperature equilibrium ensemble to a temperature 
T f = (kBβ f )

−1 below the critical one Tc, dynamical scaling holds together with Eqs. (1, 2) for any T f < Tc including T f = 0.
In the following, I will discuss how the most common sources of inhomogeneities, i.e. varying coupling constants, exter-

nal fields and lattice defects can be included in the above model. I will restrict the discussion to the case in which such 
features are quenched, namely their position, strength, etc., are not thermalized and do not vary appreciably during the 
coarsening phenomenon.

2.2. Varying coupling constants

If the coupling constants are not uniform, the Ising Hamiltonian reads

H({Si}) = −
∑
〈i j〉

J i j Si S j (4)

where J i j = J0 + θi j and the θ ’s are usually assumed to be uncorrelated random numbers with θi jθk� =J 2δi,kδk,� . Here and 
in the following an over-bar denotes an average taken over the realization of the disorder. The probability distribution of the 
θ ’s must be such that J i j ≥ 0 (otherwise frustration effects could be present, which may radically spoil the ferromagnetic 
character of the system, with a drastic modification of the equilibrium and non-equilibrium properties). This is known as 
the random-bond Ising model (RBIM). Notice that, since the distribution of the coupling constant is usually assumed to be 
symmetric around J0, in this model there is a maximum value J i j = Jmax ≤ 2 J0 of the strength of the bonds.

2.3. External fields

Under the action of a site-dependent external magnetic field hi the Ising Hamiltonian reads

H({Si}) = − J
∑
<i j>

Si S j −
∑

i

hi Si (5)

A useful model is the one where hi is an uncorrelated random variable with expectations hih j = h2δi j , extracted from a 
given distribution (the simplest case is a symmetric bimodal distribution hi = ±h). With these specifications one has the 
so-called random-field Ising model (RFIM).

2.4. Lattice vacancies

The effect of quenched vacancies can be taken into account by defining a dilution variable χi j = 0, 1 on the lattice in 
such a way that the Hamiltonian reads

H({Si}) = − J
∑
〈i j〉

χi j Si S j (6)

If the dilution variable is factorized as χi j = χiχ j , the system has site-dilution and the model is usually referred to as the 
site-diluted Ising model (SDIM). Another possibility is to have bond dilution: In this case, χi j is defined on the couples of 
neighboring spins.

In many cases, the χ ’s can be considered random numbers, usually uncorrelated in space, such that a fraction D of the 
lattice sites—or bonds—are diluted, namely they are associated with χi = 0 or χi j = 0, respectively. These models are usually 
denoted as diluted Ising models.
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For dilutions larger than the limiting value Dc = 1 − Pc—where Pc is the critical percolation probability—a spanning 
network does not exist. This case is not interesting to us because coarsening implies spins to live on a connected graph 
extending throughout the system. In particular, since Dc = 0 in one dimension, these models will not be considered in 
d = 1.

For the description of other systems, like those where spins are defined on the edges of a fractal network, which can 
be either deterministic or random, the χ ’s are taken in order to reproduce the observed topology of such a network. I will 
briefly discuss this issue later.

Of course, possible modifications of the models introduced so far—i.e. those where the random variables are correlated 
or where more than one source of disorder is present—are possible, but I will not consider them here.

3. Downhill versus activated coarsening

In a homogeneous system described by the model of Section 2.1, coarsening occurs at any temperature, including T f = 0. 
This implies that the dynamics, whose main mechanism is a displacement of the interfaces which is regulated by their 
curvature (see article by A.A. Nepomnyashchy in this volume), proceeds without thermal activation.

Quenched disorder or any other source of inhomogeneity in the system, instead, usually introduces preferred positions 
where interfaces get pinned in local energy minima. The dynamics can then proceed only by means of thermal activation.

A simple argument shows how this can slow down the kinetics with respect to the homogeneous case where Eq. (1)
holds. In view of the dynamical scaling property, the typical pinning energy barrier �E at time t is expected to depend on 
the configuration through L(t) alone, �E = f [L(t), K ], where K specifies the set of model parameters, as for instance K =
( J/T , h/T ) in the RFIM or K = ( J/T , d) in the SDIM. In the following, among these various parameters, we will explicitly 
write only the one, denoted by ε , which denotes the strength of the disorder (as h in the RFIM, or J in the RBIM).

The evolution is slowed down due to the Arrhenius time tesc(�E) ∝ eβ�E needed to escape pinning barriers. Making the 
simplifying assumption that this effect can be taken into account by a simple rescaling of time (t → t/tesc) in Eq. (1) one 
has

L(t, ε) = at1/2 e− β
2 �E (7)

(In the presence of quenched disorder, quantities as L(t) or G(r, t, tw) are defined throughout as averaged both over the 
thermal history and the disorder realizations.) The next point is to establish the form of f [L, ε]. Although this cannot be 
done in general, most of the systems can be divided into three classes [7] according to the way �E depends asymptotically 
on L(t), namely if (i) �E approaches a constant value or (ii) it diverges algebraically or (iii) logarithmically with L(t). Let us 
detail below these cases:

• (i) limL→∞ f [L, ε] ≤ c(ε), where c(ε) is usually an increasing function of disorder (with c = 1 for ε = 0), but it is 
constant with respect to L;
This implies that there is an upper limit to the height of the barriers. Using the fact that barriers are approximately 
constant in Eq. (7), one finds the same growth law as that of a homogeneous system, but with a smaller pre-factor, of 
the order of a e− β

2 c(ε) , which depends strongly on temperature;
• (ii) limL→∞ f [L, ε] = b−1(ε)Lψ , where ψ > 0 is an exponent and b(ε) is another constant. In this case, barriers grow 

algebraically with the domain’s size. This leads to a logarithmic growth

L(t) 
 [bβ−1 ln t]1/ψ (8)

for large times;
• (iii) limL→∞ f [L, ε] = z(ε) ln L, with z(ε) a constant. Plugging into Eq. (7) one finds the large time behavior

L(t) ∝ t1/ζ (9)

with an exponent ζ = 2 + βz which depends on temperature and, possibly, on other parameters of the system.

3.1. Role of the lower critical dimension

The models introduced above [including the usual Ising model (3)] have a finite critical temperature (only in spatial 
dimension) larger than the lower critical one dL . If d ≤ dL , a non-interrupted coarsening process can be observed only when 
quenching to T f = 0 (in an infinite system), because for any T f > 0 the ordered phase is not sustained.

Despite this, by quenching to a very low temperature T f , if the dynamics does not require activation, one usually does 
observe coarsening up to a certain time teq(T f) such that L(teq) 
 ξ(T f), where ξ(T f) is the final equilibrium coherence 
length. For instance, this is what happens in the usual Ising model in d = dL = 1 where ξ(T f) 
 e2β f J . At low temperatures, 
teq(T f) grows very large, and for t � teq(T f), the kinetics is analogous to the one at T f = 0.

When homogeneity is spoiled, the dynamics right at T = 0 is frozen due to the energetic barriers discussed above that 
pin the system in metastable states. The way out is to quench to a temperature high enough to drive activated coarsening, 
but low enough to inhibit the nucleation of equilibrium fluctuations. As for the clean case, as long as L(t) is smaller than 
the equilibrium correlation length ξ(T f), one observes the same coarsening behavior as in the T f = 0 quench.
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These considerations apply to all the one-dimensional cases that will be discussed in Section 5 as well as to other 
systems that will be considered in the following for which Tc = 0, as for instance the d = 2 RFIM case or some models 
defined on fractal lattices.

3.2. Crossover structure

The growth laws (i), (ii), (iii) of Section 3 are asymptotic behaviors of L(t). Usually, these laws are expected when 
L(t) exceeds a certain characteristic length λ(ε) associated with the presence of the disorder (or of other sources on in-
homogeneities). In order to understand the meaning of λ(ε) by means of a specific example, let us consider the SDIM 
of Section 2.4. For D sufficiently small, vacancies are isolated with a typical inter-distance λ(D) = D−1/d . As long as 
L(t) � λ(D), the domains do not feel the presence of the dilution and the system behaves as a homogeneous one (this 
will be further discussed in Section 7.2). Hence, whatever the asymptotic behavior of this model is [either in class (i), (ii) or 
(iii) of the previous Section 3], this can only show-up for sufficiently large times such that L(t) � λ(D). One can show that 
the crossover phenomenon at L(t) 
 λ(ε), where the behavior of the system changes, is a common feature, not restricted to 
the previous example of the SDIM, as we will discuss further.

On the other hand, the behavior of the systems in the pre-asymptotic regime L(t) � λ(ε) is generally model-dependent: 
There are cases where, as in the SDIM discussed above or in models with a fraction of spins frozen in a random configuration 
[8], inhomogeneities are initially ineffective and one recovers the growth law (1) of the clean case, and others where they 
produce a different behavior.

As an example of this different behavior, let us consider the RBIM. In this case, there are random couplings on any
bond, and—if T f is sufficiently low—this influences the process already at the level of the fast process of single spin flips. 
Due to this, in the pre-asymptotic regime L(t) � λ(J ), the disordered bonds alter the behavior of the system with respect 
to the clean case, thus spoiling Eq. (1), at variance with the SDIM [this will be further discussed in Sections 5.1, 7.3]. 
However, although determined by the disorder, this early behavior is not the asymptotic one, which sets in only when L(t)
is sufficiently large to allow for the simple scaling argument of the previous Section 3 to become valid. Translating sufficiently 
large in the condition L(t) � λ(J ) provides a definition of λ(J ) in this case (although physically not as transparent as the 
one above for the SDIM).

I conclude this section by mentioning that the slowing down of the growth law discussed above is not restricted to 
those systems that—when homogeneous—support a non-activated dynamics. The simplest example is provided by systems 
with a conserved order parameter. In the homogeneous case, coarsening proceeds asymptotically by means of the acti-
vated evaporation–condensation process. However, the presence of disorder [9] or other inhomogeneities usually introduces 
further energetic barriers slowing even more the kinetics.

4. Scaling form

Once the existence of a crossover length λ(ε) next to the ordering length L(t) is established, the next step is to ascer-
tain whether a scaling symmetry is induced by the presence of such lengths and, in this case, how the form (2) can be 
generalized.

A straightforward generalization of the form (2) keeping into account the crossover length is the following

G(r, tw , t, ε) = G
[

r

L(tw)
,

L(t)

L(tw)
,

λ(ε)

L(tw)

]
(10)

and similarly for other observable quantities. This amounts to the usual scaling prescription: with each parameter entering 
G , here r, tw , t, ε , a characteristic length is associated, r, L(tw ), L(t), λ(ε) respectively, and these quantities enter as adimen-
sional ratios a scaling function G .

A debated question regards the dependence of the scaling functions, like G(x, y, z), on the strength of the noise, which 
occurs through the third entry z = λ(ε)/L(tw). According to a hypothesis, the so-called superuniversality [10], the effect 
of disorder can be fully accounted for by the slower growth of L(t). This implies that disorder does not alter all other 
properties of the coarsening process, among which—for instance—the geometry of the growing pattern, which is encoded 
in the form of G in Eq. (10). This would mean that no extra dependence on ε is left in the scaling functions and, for the 
correlations considered above, one should have G(r, tw , t, ε) = G

[
r

L(tw )
,

L(t)
L(tw )

,1
]

= g
[

r
L(t,ε)

,
L(t)

L(tw )

]
, where g(x) is the same 

as that in (2) for the clean system.
Presently the superuniversality hypotheses has received confirmation in some specific cases [11–16], but it has also been 

shown not to be obeyed in other system [17–21], as we will discuss below.

5. Coarsening in one dimension

The effect of inhomogeneities on the coarsening process can be more easily understood in one-dimensional systems. In 
this case the task is simplified by the fact that interfaces are point-like.
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Fig. 2. (Color online.) An interface initially located between sites i and i + 1 (plotted in a continuous blue line) moves to a new position r sites away 
(dashed orange line).

Fig. 3. (Color online.) The energy of a single interface is sketched against its displacement r for the RBIM (upper panel) and the RFIM (lower panel) in d = 1
(we set E = 0 for r = 0). For the RBIM, the distance λ where the maximum energy barrier 4 Jmax is felt is also indicated. For the RFIM, the typical energy 
barrier increases as r1/2.

5.1. RBIM

Let us suppose to have a single interface in the system originally located between sites i and i + 1 (namely Si Si+1 = −1), 
as pictorially sketched in Fig. 2 (continuous blue line).

Let us suppose that at a later time the interface moves a distance r away from the original position, namely between 
sites i + r and i + r + 1 (dashed orange line in Fig. 2). The energy change in this process is �Ei,i+r = 2[ J i+r,i+r+1 − J i,i+1]. 
Since the coupling constants are random numbers this form of �Ei,i+r induces local minima and maxima in the potential 
landscape felt by an interface, namely the energy cost of an interface as a function of its position, which is sketched in 
Fig. 3.

Recalling the discussion at the end of Section 2.2, there exists a maximum value c(ε) = 4 Jmax for the height of the 
barriers and hence the RBIM is an example of class i) of Section 3. Therefore Eq. (1) holds for long times (but with t < teq) 
at low T f .

Clearly, interfaces must travel a certain distance—or, equivalently, domains must grow up to a certain crossover size 
L(t) = λ—in order to sweep a region containing the barrier of maximal height c. According to the argument of Section 3.2, 
pinning is effective from the very beginning of the process, but the difference with the asymptotic stage is that, for L(t) < λ, 
�E may depend on L(t). Accordingly the growth law of the homogeneous system (1) is not observed pre-asymptotically 
and, instead, one finds a J /T -dependent power law, as in Eq. (9) [17].

Regarding the superuniversality hypotheses, it has been convincingly shown not to hold in [17].

5.2. RFIM

In this case, one has

�Ei,i+r = −
i+r∑
j=i

h j ∼ hr1/2 (11)

where in the last passage we have assumed a bimodal distribution hi = ±h of the random field (but other possible choices 
do not make significative differences) and we have used the central limit theorem. Also in this case, there are local minima 
and maxima, but the potential landscape where the point defect moves increases with r, as it is pictorially shown in Fig. 3. 
Indeed, as Eq. (11) shows, the energy of the interface, which has moved to a site at a distance r, can be though itself as 
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the position of a Brownian walker after r steps: the energy landscape is therefore of the Sinai type [22]. As a consequence, 
the pinning energy is not bounded as in the RBIM and increases algebraically with the typical distance x(t) traveled by the 
interface, as indicated by Eq. (11). Since it can be shown that also here, as in the clean case, the average size of domains 
L(t) grows proportional to x(t) [18], one concludes that the 1d RFIM belongs to class ii) of Section 3. One indeed has 
L(t) ∝ (ln t)2 in the large time domain [18,19].

Notice that monotonously increasing barriers mean that they are bound to prevail over the thermal energy scale kBT f
if L(t) is large enough, namely for L(t) � λ, where λ(h/T f) ∼ (h/T f)

−2 is the crossover length [19] that can be obtained 
balancing the two energetic contributions.

At early times L(t) � λ, the Sinai potential is washed out by thermal fluctuations and one recovers the growth law 
(1) characteristic of the non-disordered system. The 1d RFIM is therefore another example of a crossover with an initial 
homogeneous-like behavior.

Also in this model superuniversality is not obeyed [18,19].

6. Coarsening on fractal substrates

Coarsening occurring on fractal substrates that can be embedded in a Euclidean space can be still described by a model 
with dilution, like the ones of Section 2.4 [see Eq. (6)], with suitable prescriptions for the χ ′s. In the following I will 
focus on the case with site-dilution. The problem has been studied numerically [23,24] both for spins defined on random 
fractal networks, like the percolation cluster, and for deterministic ones, such as the Sierpinski fractal and others. These 
deterministic structures are built recursively upon replicating a native geometry—e.g. a triangle for the Sierpinski gasket—of 
a certain size �.

After the quench, the typical signatures of the coarsening phenomenon are observed, with the growth of an ordering-
length and dynamical scaling. Correlation functions can be cast in scaling form, as in Eq. (2): the scaling function is different 
from the homogeneous case and depends on the fractal considered. Regarding the growth law, one observes either a log-
arithmic increase of L(t), as for a system in class (ii) [Section 3], or a temperature-dependent power growth law, as for 
class (iii). This shows that some topological aspect of the substrate—namely the network on whose edges the spin variables 
are defined—is relevant to determining the growth law and other universal properties. However, this aspect cannot be traced 
back to usual indicators such as the fractal or the spectral dimension.

Despite a precise identification of this topological feature is currently missing, in [23] the conjecture was proposed that 
the same property might determine both the existence of the equilibrium phase transition and the non-equilibrium asymp-
totic growth law. Specifically, systems that do not sustain a (finite-temperature) para-ferromagnetic transition (examples are 
the percolation network and the Sierpinski gasket) should belong to class (iii) and the others (i.e. the Sierpinski carpet) to 
class (ii).

Concerning the pre-asymptotic behavior, let us stress that, due to the recursive construction of the deterministic fractals 
discussed above, the fractal properties are limited to distances larger than �, while for shorter distances the structure is 
compact. This fixes the crossover length λ = �. For L(t) � �, one recovers the characteristic growth law (1) of a homogeneous 
substrate.

7. Coarsening in d > 1

Understanding coarsening in inhomogeneous systems in dimension larger than one is much harder than in d = 1. On 
the one hand, this is due to the fact that analytical approaches are much more difficult, on the other hand because physical 
intuition is less straightforward when interfaces are lines or surfaces that in the presence of the pinning centers can bend 
and stretch. Moreover, numerical simulations—crucial in the absence of analytical tools—are very demanding due to the slow 
growth of L(t).

Despite many similarities with the one-dimensional models, the pattern of behaviors exhibited in higher dimensions is 
different and in some cases quite enriched with respect to the 1d case, as we will discuss below.

7.1. RFIM

There is a general consensus on the fact that the RFIM is characterized by a logarithmic growth both in d = 2 [25,21,9]
and in d = 3 [11,21], although the value of the exponent ψ defined in Section 3 (ii) cannot be precisely determined numer-
ically, due to the very slow increase of L(t). Recalling also the behavior in d = 1, this shows that the barriers encountered 
at late times have a similar nature in all the spatial dimensions considered. Experiments on real systems [4] confirm the 
logarithmic growth.

The behavior of the model in the pre-asymptotic stage is, instead, more rich. In [11], a pure-like early stage with Eq. (1)
was found. However, in [21], it was shown that, by taking the small T f limit with fixed h/T , a different power law, with an 
h/T f dependent exponent ζ is observed, as in Eq. (9). A similar behavior is observed in [26].

These apparently contrasting observations can be reconciled in a double crossover scenario. With the two independent 
parameters ε = h/T f and τ = T f/ J of the model, one can build two characteristic lengths λ(ε) and �(τ). Then, in principle, 
one may observe a couple of crossovers as L(t) meets these two lengths, with different behaviors in the three time sectors 
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Fig. 4. (Color online.) A pictorial representation of the substrate (plum boxes below) as the density D of vacancies is changed (according to the green axis 
in the middle). The behavior of the two lengths λ and � is shown in orange.

separated by them [furthermore, Eq. (2) should be upgraded to contain the extra dependence of the scaling function g on 
�(τ)/L(tw)].

In the low-T f limit considered in [21], where h/T f is kept fixed, λ is finite and τ 
 0, implying also � 
 0. This means 
that there is a single crossover at L(t) 
 λ from a pre-asymptotic to a late regime where the barriers seeded by the disorder 
act differently as to produce a change from an initial homogeneous-like growth [Eq. (1)], to the disorder-dependent power 
law of Eq. (9). In the opposite situation of a large T f (actually as large as possible to keep the ordering of the system), � is 
rather large and λ is so small that the crossover associated with it, occurring at very early times, is not observable. One has 
again a single crossover, when L(t) 
 �, but now it occurs similarly to the 1d case, namely from a pre-asymptotic behavior 
where barriers are tamed by thermal fluctuations, when one recovers Eq. (1), to the asymptotic logarithmic behavior.

In the articles cited above, the authors observe alternatively one or the other crossover, and this is possibly due to 
the choice of the model parameters. If the double crossover interpretation is correct, it should in principle be possible, by 
tuning the parameters opportunely, to observe the two crossovers in a single quench history. To the best of my knowledge, 
however, this has not yet been reported.

There is no consensus on the validity of superuniversality in this model. Indeed in [11,12] it was found to hold, while it 
was clearly shown not to be obeyed in [21]. However, it must be recalled that the evidences in favor and against superuni-
versality are often obtained with different parameter settings. For instance, the two situations with T f 
 0 and T f finite are 
considered where, as discussed above, also a different crossover pattern is observed. This issue, therefore, is currently not 
well understood.

7.2. SDIM

Numerical simulations of this system in d = 2 have been interpreted both in terms of a power-law increase of L(t)
[13,27], or as a logarithmic growth law [28]. A reconciliation between these interpretation is provided in [29] in terms again 
of a rich crossover interplay, as it is briefly explained below.

Coarsening in this system is deeply related to the geometry of the diluted lattice. Let us start, therefore, with a brief 
review of the geometrical properties of the substrate, as dilution is varied from high to low values. According to percolation 
theory [30], at D = Dc a spanning fractal cluster of non-diluted sites is present, with which an infinite percolative coherence 
length �(Dc) is associated (not to be confused with the coherence length ξ of the Ising model defined on top of the 
substrate). This situation is pictorially represented on the far right of Fig. 4.

As D is slightly lowered below Dc (i.e. moving a bit to the left in Fig. 4), the infinite cluster is fractal over distances 
up to �(D) ∼ (Dc − D)−ν , where ν = 4/3 is a critical exponent, and it becomes compact over larger distances. Besides, 
finite clusters are also present. Upon lowering further D , � keep decreasing until, for a certain value D∗ of D , it becomes 
comparable to the lattice spacing. The behavior of �(D) is sketched as an orange line in the upper part of Fig. 4 [i.e. for 
D > D∗]. For D < D∗ , the infinite cluster is compact over all length scales and there are no finite droplets. There only remain 
isolated vacancies and, as already discussed in Section 3.2, their typical distance defines another length λ(D), which keeps 
increasing upon lowering D up to λ(D = 0) = ∞, as shown in Fig. 4 for D < D∗ .

In the following, we show how the conjecture put forth in [23], which was reviewed in Section 6, may help in under-
standing the kinetics of this model. Exactly at Dc, coarsening occurs on a percolation cluster. Since there is no ferromagnetic 
transition on this network, that is to say that Tc = 0, a power-law growth as in Eq. (9) is expected. This behavior is drawn 
in bold green in the schematic picture of Fig. 5. Away from the percolation point D = Dc, the large-scale properties of the 
network provide an equilibrium phase transition at a critical temperature Tc(D) > 0. In this case, therefore, one expects an 
asymptotic logarithmic growth law. This is recognized in Fig. 5 by the asymptotic downward bending of the curves with 
0 < D < Dc for large times. Clearly, right at D = 0, the homogeneous case is recovered with the usual law (1), which is 
shown in red in Fig. 5.
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Fig. 5. (Color online.) A pictorial representation of the behavior of L(t) for different choices of D , on a double logarithmic scale.

This pattern of behaviors is indeed observed in the numerical study [29] of the model in the small T f-limit. This supports 
the conjecture discussed in Section 6.

Not only the asymptotic laws, but also the early-stage behaviors can be understood. Let us start from the large dilution 
regime D � Dc. In this case, the properties of the spanning cluster are the same as those at Dc up the length �(D). Hence 
a crossover phenomenon is expected from an early stage regulated by Eq. (9) for L(t) � �(D) to the asymptotic logarithmic 
growth when L(t) � �(D), as it is pictorially represented with a dotted orange line in Fig. 5. This shows that the growth 
law may be interpreted as algebraic or logarithmic, depending on the choice of D and on the time-scale of the observations 
and might explain why different findings are reported in the literature.

Let us turn now to consider the small dilution regime, which behaves differently. As discussed in Section 3.2, a crossover 
occurs here between an early homogeneous-like behavior (1) and a late logarithmic growth when L(t) meets λ(D) ∼ D−1/d . 
This is shown in Fig. 5 with a dotted-violet line.

This whole pattern of crossovers is actually observed in [29] suggesting—once again—that an interpretation in terms of 
the scaling symmetry and the related crossover structure is a groundbreaking tool.

Notice also that, although two lengths are present also in the SDIM, the crossover mechanism is very different from the 
one—denoted as double crossover in Section 7.1—invoked for the RFIM. Indeed, in that case, the two lengths λ(ε) and �(τ)

are built from two independent parameters of the model. This allows one, in principle, to have a double crossover, namely 
three consecutive regimes.

For the SDIM in the small-T f limit considered in [29], both � and λ depend on the same parameter D and this occur in 
such a way that either λ 
 0 (for D > D∗) or � 
 0 (for D < D∗). Hence, for any choice of 0 < D < Dc, only one between 
the two lengths λ and � can play a role, and a single crossover between an early and a late stage can be observed, as it is 
clarified in Fig. 5.

Finally, let us consider the issue of superuniversality. In Refs. [28] [27], the authors succeed in collapsing the curves for 
correlation functions using the simple scaling (2). In [28], this is interpreted as a possible confirmation of the superuniver-
sality hypotheses. However, in [29], a study with a more ample choice of values of D and different timescales clearly shows 
that (2) is not sufficient to collapse all the curve and, instead, a scaling form with an extra argument as Eq. (10) is needed, 
suggesting that superuniversality is violated also in this model.

7.3. RBIM

For the RBIM, Huse and Henley (HH) [31], elaborating on previous ideas due to J. Villain [32], predicted the logarithmic 
law (8) with ψ = 1/4. Their argument, in d = 2, can be summarized as follows: according to roughening theory, a piece 
of interface of linear size r in equilibrium deviates from flatness by a typical quantity w(r) ∝ rζr , where the roughening 
exponent ζr is a universal quantity. If disorder is present, the pinning energy of the interfaces scales as Ep ∼ rχ

r , where χr is 
another exponent.

On the other hand, simply due to geometry, moving a distance r along the surface of a coarsening curved domain one 
also deviates from flatness by a certain quantity a(r, R), where R is the radius of curvature. Hence, on scales r up to rc—such 
that a(r, R) 
 w(r)—the domain’s wall is basically equilibrated. A simple calculation shows that a(r, R) is at least of order 
a = r2/R (this can be very easily proved for a circular shape in the small r limit) and hence one has rc 
 R1/(2−ζr) .

The next smallest scale to evolve towards equilibrium is precisely rc and, recalling the discussion above, the pinning 
energy associated with this is Ep ∼ rχr

c 
 Rψ , with ψ = χr/(2 − ζr). For random bond disorder in d = 2, it is known [31,33]
that ζr = 2/3 and χr = 1/3, leading to ψ = 1/4. Assuming scaling by the identification R ∼ L(t) and plugging this result into 
ii) of Section 3, one arrives at Eq. (8) with ψ = 1/4.
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The correctness of the HH prediction has remained controversial for quite a long time since numerical results for the 
d = 2 RBIM showed a steady algebraic growth with a disorder-dependent dynamical exponent [12,34] as in Eq. (9). This 
would imply an asymptotic logarithmic increase of the pinning barriers at variance with the prediction of HH. Recently, 
more extensive numerical simulations [20] have produced sufficient numerical evidence for the existence, after a long-lasting 
algebraic regime, of a crossover to an asymptotic logarithmic growth. This supports the HH scenario, although a precise 
determination of the ψ exponent is, also in this case, not possible. Experiments on real two-dimensional systems also find 
[5,6,3] a logarithmic growth, and the HH exponent ψ = 4 was reported in [6,3].

The very nature of the long-lasting pre-asymptotic regime with a power-law increase of the domain’s size, which is 
observed also in some experiments [3], is not presently clarified. In view of the discussion of Section 3, it could be due to a 
genuine regime where the scaling of barriers is only logarithmic—according to iii)—different therefore from the asymptotic 
behavior described by HH. This is not necessarily the case, since even within the HH scenario long-lasting pre-asymptotic 
corrections might yield an effective algebraic growth law at intermediate times, as noticed in different contexts in [35].

Interestingly enough, the algebraic growth law can be made truly asymptotic by considering a symmetric bimodal distri-
bution J i j = J0 ± J0 of the coupling constants, as it was shown numerically in [36]. This choice amounts to have a fraction 
1/2 of bonds J i j = 0 and an equal quantity of J i j = 2 J0. This realizes a percolation cluster of bonds, since the bond perco-
lation threshold is Dc = 1/2. According to the conjecture mentioned in Section 6, one expects an algebraic increase of L(t)
as in Eq. (9), as indeed it is observed.

Regarding superuniversality, also in this model the situation is controversial: while it was observed to hold true in
[12,16], clear violations have been observed in [20]. Some experimental evidences in favor of a superuniversal scaling have 
been reported in [3].

8. Conclusions

In this article, I briefly reviewed the coarsening phenomena occurring in simple model systems without space-translation 
invariance. Following the footsteps of early studies of phase ordering in homogeneous ferromagnets, most efforts in this 
field have been devoted to the determination of the growth law and of the dynamical scaling properties. Apart from some 
instances of one-dimensional systems, analytical approaches are scarce, and the current understanding of the problem rests 
mostly upon heuristic arguments and slowly converging numerical simulations. This fact, together with the observation of a 
broad spectrum of distinct behaviors, makes the problem far from being settled.

Our poor understanding hinders the development of a general framework for growth kinetics in disordered and inho-
mogeneous ferromagnetic systems, which is a subject of noteworthy technological relevance. This, in turn, encumbers the 
discussion on the very nature of more complex disordered systems, such as spin glasses, which according to a debated 
interpretation [37] could also be described as a disordered ferromagnet.

As discussed in this paper, despite this state of affairs, the rich (and sometimes apparently contrasting) behavior of 
different systems—or even of the same system in different temporal or parameter regions—can be interpreted in terms of an 
upgraded scaling framework where, next to the typical size L of ordered regions, there is another (or, in some cases, others) 
relevant characteristic length(s) λ associated with the inhomogeneities. This fosters the overview of the phenomenon and 
could help to set the basis for a general renormalization group scheme where diverse universal behaviors—e.g., power-law 
or logarithmic growth laws—are connected by a crossover pattern. However, the development of such a controlled theory is 
a matter for future research.
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