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We review a few representative examples of granular experiments or models where 
phase separation, accompanied by domain coarsening, is a relevant phenomenon. We first 
elucidate the intrinsic non-equilibrium, or athermal, nature of granular media. Thereafter, 
dilute systems, the so-called “granular gases”, are discussed: idealized kinetic models, such 
as the gas of inelastic hard spheres in the cooling regime, are the optimal playground to 
study the slow growth of correlated structures, e.g., shear patterns, vortices, and clusters. In 
fluidized experiments, liquid–gas or solid–gas separations have been observed. In the case 
of monolayers of particles, phase coexistence and coarsening appear in several different 
setups, with mechanical or electrostatic energy input. Phenomenological models describe, 
even quantitatively, several experimental measures, both for the coarsening dynamics and 
for the dynamic transition between different granular phases. The origin of the underlying 
bistability is in general related to negative compressibility from granular hydrodynamics 
computations, even if the understanding of the mechanism is far from complete. A relevant 
problem, with important industrial applications, is related to the demixing or segregation 
of mixtures, for instance in rotating tumblers or on horizontally vibrated plates. Finally, 
the problem of compaction of highly dense granular materials, which is relevant in many 
practical situations, is usually described in terms of coarsening dynamics: there, bubbles of 
misaligned grains evaporate, allowing the coalescence of optimally arranged islands and a 
progressive reduction of the total occupied volume.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On décrit quelques exemples représentatifs d’expériences et de modèles concernant des 
matériaux granulaires, dans lesquels apparaît une séparation de phases avec formation de 
domaines de plus en plus grands (coarsening). On précise d’abord la nature intrinsèque 
des matériaux granulaires hors de l’équilibre, dans lesquels la température n’intervient pas. 
On discute ensuite les systèmes dilués appelés «gaz granulaires» : des modèles cinétiques 
idéalisés, tels que des gaz de sphères dures inélastiques en cours de refroidissement, sont 
l’outil idéal pour étudier la croissance lente de structures corrélées, par exemple des figures 
de cisaillement, des tourbillons et des amas. Dans des expériences en milieu liquide, 
on a observé une séparation liquide–gaz ou solide–gaz. Dans le cas de monocouches de 
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particules, la coexistence de phase et la croissance des domaines apparaît dans diverses 
situations, quand on fournit de l’énergie mécanique ou électrostatique. Des modèles 
phénoménologiques décrivent, au moins qualitativement, divers résultats expérimentaux, 
concernant la dynamique de coarsening aussi bien que la transition dynamique entre les 
différentes phases granulaires. L’origine de la bistabilité semble liée à une compressibilité 
négative, révélée par des calculs d’hydrodynamique granulaire, mais le phénomène est 
loin d’être bien compris. Un problème important, notamment pour ses applications 
industrielles, est celui de la décomposition des mélanges ou de leur ségrégation, par 
exemple dans des tambours tournants ou sur des plaques vibrantes horizontales. Enfin, 
le problème du compactage des matériaux granulaires très denses, qui se pose dans bien 
des situations pratiques, est ordinairement décrit comme un coarsening : des bulles de 
grains mal alignés s’évaporent, ce qui permet la coalescence des îlots bien disposés et une 
réduction progressive du volume total occupé.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Granular systems are substances made of many grains, i.e. particles of average diameter roughly larger than 10−2 mm [1]. 
The size of grains is such that interactions are fairly modeled by dissipative hard core repulsion. Correspondingly, granular 
systems are athermal, that is they do not posses neither a spontaneous long-term dynamics nor a thermodynamic equilib-
rium state, except the trivial case of an inert immobile stack (or pile) [2,3].

However, injecting energy, usually by means of vibration, shaking, tumbling or falling, leads the granular system to 
show a variety of dynamical regimes, i.e. different “phases”, roughly analogous to solid, liquid or gas states of molecular 
matter [4,5]. It is quite hard to push the analogy much forward, since dissipation, in the form of tangential friction and 
inelastic collisions, makes granular media intrinsically out of equilibrium: in many cases it is evident that not only an 
Hamiltonian, but even a well-defined thermostat’s “temperature” is lacking and therefore no Gibbs distribution can be 
postulated.

Notwithstanding the inherent non-equilibrium nature of granular phases, many phenomena analogous to equilibrium 
phase transitions show up in granular experiments and simulations. In most of them, a variation of the input energy flux 
sensibly changes the internal ordering of the material. Sometimes, the transition from disordered to ordered phase is as-
sociated with a growth in time of the size of ordered domains, similarly to what happens in more standard coarsening 
phenomena. In this case, an abrupt change of the energy input rate plays the role of the usual quench in coarsening dynam-
ics. In this short review, we collect some noticeable examples where the concept of coarsening is empirically meaningful for 
interpreting and understanding results in the framework of granular systems. For a more extensive review of patterns and 
collective behavior in granular media, please refer to [6].

The presentation follows a decreasing energy line. In Section 2, we address the more dilute models, i.e. the so-called 
granular gases, which in the cooling regime display instabilities toward non-homogeneous states with growing domains in 
the density and velocity fields. Section 3 concerns experiments with dilute or moderately dense shaken granular materials, 
where several kinds of phase separation appear, with ordered domains that slowly grow in time. The instructive case of 
electrostatically driven granular fluids is described, with a few noteworthy examples. In Section 4, we discuss the case 
of demixing or segregation, which usually applies to dense granular materials, slowly agitated or rotated in drums. In 
Section 5, the compaction dynamics, which is often interpreted as an evaporation of alignment defects or a coarsening of 
aligned domains, is briefly reviewed. Finally, the last section draws conclusions and perspectives.

2. Cooling granular gases

Fluidization of granular media is achieved by injecting mechanical energy into the system, typically by shaking the 
whole container or vibrating one of its sides [2]. When the packing fraction φ is low enough (typically lower than 50%), 
a gas-like or liquid-like stationary state is rapidly achieved, characterized by a “granular temperature”, which is defined as 
Tg = 1

d m〈v2〉 where d is the dimensionality, m the mass of a grain and v2 the squared modulus of its vectorial velocity. The 
granular temperature is determined by a balance between the energy injected and the dissipation in collisions, which is 
usually parameterized by a restitution coefficient α ≤ 1 (α = 1 for elastic collisions). Several examples of “phase transitions” 
have been recognized in fluidized granular systems. In the absence of an interaction energy scale, due to the hard-core 
nature of the grain–grain collisions, the transition is usually controlled by the packing fraction, or by the restitution co-
efficient, rather than the granular temperature. A relevant exception is constituted by the sudden quench protocol, where 
the fluidizing mechanism is abruptly interrupted and a “cooling” regime intervenes. In this cooling regime, typically stud-
ied in simulations and within kinetic theory [3], the growth of ordered structures in the velocity field (vortices or shear 
bands) and in the density field (clustering) is observed [7]. In kinetic theory, the idealized starting point is the so-called 
Homogeneous Cooling State (HCS), which is a spatially homogeneous solution of the inelastic Boltzmann equation where 
the temperature follows the Haff’s law, i.e. asymptotically Tg(t) ∼ t−2. Granular Hydrodynamics (GH) [8], which is expected 
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Fig. 1. Coarsening of vortices in the 2d version of the lattice model for the incompressible cooling state, with the size of the system 512 × 512 and the 
restitution coefficient α = 0.7 [12]. The plots represent two snapshots of the same portion of the system at two different times, measured in number of 
collisions per particle: left: τ = 52, right: τ = 535.

to describe the evolution of “slow fields” (density, macroscopic velocity, and granular temperature), is the simplest theory to 
predict the instability of the HCS: near the HCS one may linearize the system of GH equations and, in space-Fourier trans-
form, find a linear algebraic system for each wave vector k. Eigenvalues of the system are guaranteed to be negative only 
for large enough k: for k < k⊥ the shear mode (rescaled by 

√
Tg) becomes unstable and structures such as vortices display 

a correlation length growing as ∼ √
τ (where τ is the time measured in cumulated number of collisions), while for k < k‖

a mode involving density becomes also unstable, growing with a similar law (cluster formation) [7]. Since k⊥ ∼ √
1 − α2

while k‖ ∼ 1 − α2, one has k⊥ 
 k‖ for α → 1. It is possible, for instance, to choose a linear size L of the system such 
that k⊥ > kmin = 2π

L > k‖ , which implies that the shear mode is unstable, but the density mode is not: in the linear (initial) 
stage, there is only the appearance of shear structures in the velocity field, while no clustering is observed.

After some time from the onset of instabilities, the system enters a non-linear regime which is no more described by 
linear GH. The study of full GH equations is difficult and gives place to many possible regimes depending on geometry, 
dimensionality, boundary conditions, degree of inelasticity, etc. [9]. Some observations with Molecular Dynamics (MD) in 
1d showed that the cooling system asymptotically reaches a regime where energy decays as t−2/3, which is independent 
of α and is therefore equivalent to the dynamics of the sticky gas (α = 0) [10]. The sticky gas, characterized by a velocity 
field with traveling shocks and a density field with coalescing clusters, is well described by the inviscid Burgers equation 
and is consistent with the observed energy decay. It appears, however, that this scenario breaks down at d > 1, since there 
the α = 0 case is no more equivalent to the sticky gas. A series of idealized models on the lattice have been proposed to 
study the “incompressible” dynamics of the velocity field, i.e. assuming that the density does not change appreciably from 
the initial homogeneous configuration [11,12]. On each site of the lattice (1d or 2d squared lattice), there is a particle that 
can collide with its neighbors, dissipating energy and conserving the total momentum. For simplicity, the dependence of the 
collision rate upon the relative velocity has been neglected, while the so-called kinematic constraint, which forbids collisions 
between particles going in opposite directions in their center-of-mass reference frame, has been retained. Comparison with 
MD results in 1d is interestingly good [11], even for the clustering regime, by unrolling the coordinates, i.e. replacing the real 
position with the particle’s index, which is analogous to a sort of Lagrangian coordinate. The study of velocity correlations, 
through the structure factors, reveals a correlation length ξ that grows as ∼ 1/Tg(t). If time is measured by the cumulated 
number of collisions τ , one discovers that Tg ∼ τ−1/2 and ξ ∼ τ 1/2, as in a simple diffusive process. In 2d the lattice model 
remains consistent with the previous diffusive scenario [12], revealing an energy decaying as τ−d/2 = τ−1 and a correlation 
length growing again as τ 1/2. This correlation length in 2d is clearly associated with the growth of vortices (see Fig. 1).

3. Phase coexistence in driven monolayers

The study of granular cooling can be considered as a theoretical framework useful to set up new tools and concepts 
for non-equilibrium physics. Experimentally, it is much more relevant to study the stationary dynamics resulting from a 
moderate agitation of the grains. In such a case, correlations usually increase with the density of the system. The dynamics 
of fluidized granular beds has shown a rich variety of interesting ordering phenomena, mainly the appearance of surface 
patterns, localized waves and excitations (e.g., “oscillons”). For a small number of particles, the system reduces to an effective 
2D geometry, and there is no more distinction between surface and bulk: this is the optimal setup where a phase-separation 
scenario clearly emerges.

In a seminal paper, Olafsen and Urbach [13] performed experiments with inelastic particles (stainless steel balls) on a 
horizontal aluminum plane. When the number of particles is insufficient to complete a single layer, the system is named 
a submonolayer of particles. Such a system can be gently shaken, imposing a sinusoidal vertical displacement of the plate 
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Fig. 2. The phase diagrams for the vibrated monolayer experiment in [13]. Two sets of experiments with different numbers of particles are considered: 
(a) N = 8000 particles and (b) N = 14,500 particles. The filled circles denote the acceleration where the collapse nucleates. The open circles in (a) indicate 
the point where the collapse disappears upon increasing the acceleration. The diamonds in (b) show the transition to the ordered (hexagonal) state as the 
acceleration is reduced.
Reprinted with permission from [13].
© 1998 American Physical Society

(z(t) = A sin(ωt)). The relevant parameter is the dimensionless acceleration � = Aω2/g , where g is the gravitational accel-
eration. The regime of interest is when � is not too large, so that particles cannot hop over one another and the motion is 
effectively on a two-dimensional layer. Within this regime, the system behavior depends on �, as well as on the vibration 
angular frequency ω (or the vibration frequency ν = ω/2π ) and on the total number of particles N in the system (see 
Fig. 2).

For very low �, irrespective of the frequency ν , a condensate of particles at rest on the plate, while in contact with each 
other, appears. For a small number of particles, such structure (the so called “collapse”) nucleates as an island surrounded 
by rapidly moving particles (see Fig. 2, top panel). In systems with a large number of particles (but still submonolayer), 
ordered clusters of moving particles may also appear, when shaken at high frequency (see Fig. 2, bottom panel). Particles 
in such clusters move around an average position, disposed in a regular (hexagonal) lattice. The study of the quite interest-
ing phase diagram manifests several analogies with liquid–solid transition, with phase coexistence and hysteretic features. 
Several other experiments [14–16] confirmed the phase coexistence scenario, suggesting the possibility of phase-ordering 
kinetics and coarsening of clusters in vibrofluidized granular submonolayers. Recently, pattern formation in submonolayers 
horizontally shaken has also been observed and investigated [17]. The formation of strike-like patterns in monodisperse sub-
monolayers, reproduced in molecular dynamics simulation, is quite fast (about 10 s) and no real coarsening dynamics can 
been appreciated, at odds with the case of binary mixtures (see below).

In order to better investigate similar phenomena, a different set up has been proposed [18] for much tiny (about 40 μm 
diameter) metallic particles contained between two horizontal metallic plates. The energy was electrostatically injected, 
applying an oscillating voltage between the plates. Quite independently from the oscillating frequency, two threshold values 
for the amplitude of the resulting electric field appear. Above a first, lower value, E1, isolated particles detach from the 
bottom plate and start to bounce. Above an higher value, E2, all the particles move and the granular medium forms a 
uniform gas-like phase.

Interestingly, decreasing the field from such a highly mobilized phase to a value comprised between the two thresholds 
E1 < E < E2, a phenomenon analogous to coalescence dynamics is observed (see Fig. 3). The phenomenon is analogous 
to the one observed in the vertically vibrating steel spheres described above. In fact, a set-up where the same granular 
medium could be excited either mechanically or electrostatically has been investigated [19]. The appearance of the same 
ordered “solid-like” phase (clusters of immobile particles) is reported when the energy injection rate is decreased, both for 
the vibrated and for the electrostatically driven case.

The extremely small size of the grains allows one to study the dynamics of a very large number of particles. Just after 
the quench, many “solid” clusters start to form. Their number decreases in time as N(t) ∝ 1/t . On the other hand, their 
average surface grows as 〈
(t)〉 ∝ t (which corresponds to 〈R(t)〉 ∝ t1/2), as long as the dynamics keeps quasi 2D. (For 
low-frequency applied fields, a different large-time growth 〈
(t)〉 ∝ t2/3 is observed. In this regime the grains can easily 
hop on each other, the clusters contain more than a monolayer of the particles, and the motion is effectively 3D.)

A phenomenological model has been proposed in [18,21] to describe these experiments. The local density n of the 
precipitate phase (the density of immobile particles) is supposed to evolve according to a phenomenological equation

∂tn = ∇2n + φ(n,ng) (1)

where ng is the number density of bouncing particles (i.e. particles of the gas phase). The function φ, at fixed ng , has 
two stable zeros as a function of n, corresponding to n = 0 (gas) and n = 1 (solid), separated by an unstable zero in 
between. The function φ in Eq. (1) characterizes the solid–gas conversion rate. The effectiveness of the solid–gas transitions 
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Fig. 3. Snapshots of coarsening of granular clusters for experiments with tiny particles (diameter: about 40 μm) in an electro-static cell at times t = 0 s
(top left), t = 104 s (top right), t = 2 · 104 s (bottom left), and t = 5 · 104 s (bottom right). The applied dc electric field E = 2.33 kV/cm.
Reprinted with permission from [20]. A movie is available as supplementary material to the original paper [20].
© 2005 American Physical Society

is controlled by the local gas concentration ng. In other words, at fixed ng, Eq. (1) is similar to a time-dependent Ginzburg 
Landau Equation (GLE), whose solution, from an initial random configuration, displays a coarsening dynamics of the solid 
domains, where n � 1. The driving mechanism of the coarsening is the progressive reduction of the curvature of the domain 
interfaces, as described by the Allen–Cahn equation [22]. This scenario is named “model A” in the classification of Hohenberg 
and Halperin [23]. In this case the average domain size grows as 〈R(t)〉 ∝ √

t and their number decreases as N(t) ∝ 1/t .
However, here ng is not necessarily constant, neither in space, nor in time, and we should provide an equation for its 

time evolution to couple with Eq. (1). Nevertheless, exploiting the observation that density relaxation in the gas phase is fast 
compared to the cluster–gas exchange dynamics, one can assume that ng is approximately constant in space and depends 
only on time. On the other hand, the global density of the system is constant in time, hence∫

(n + ng)dx dy � Sng(t) +
∫

n dx dy = M (2)

where S is the surface of the plate and M the total number of particles. It turns out that ng(t) plays the role of a “mean 
field” interaction between gas and solid, and, on long time scales, it becomes close to a special “equilibrium” value neq

g . 
Hence, due to the presence of ng, the phenomenological model [21] does not properly correspond to model A, since, at 
odds with model A, here the coarsening field has to satisfy the conservation constraint given by Eq. (2).

In general, conservation properties of the coarsening field affects the dynamics. When the field is conserved, larger 
domains can grow only at the expenses of smaller ones. For instance, if the coarsening field is locally conserved (which is the 
case of a dynamics described by a Cahn–Hillard equation), this can happen through transfer of solid between interfaces via 
bulk diffusion [24]. The scaling exponents of the average domain size in this case are different (model B in the classification 
of Hohenberg and Halperin [23]): 〈R(t)〉 ∝ t1/3.

Nevertheless, the conservation given by Eq. (2) does not have such a dramatic effect. For long time, when ng attains a 
constant equilibrium value, this condition resembles that of a globally conserved order parameter: 

∫
n(x, y) dx dy = constant. 

In this case, the scaling behavior predicted by model A is recovered: 〈R(t)〉 ∝ √
t . According to the mean field theory of 

Lifshitz–Slyzof–Wagner (LSW) [24,25], the reason for the recovering of Allen–Cahn scaling is that the normal velocity of 
interfaces is given by the excess curvature with respect to the interface curvature averaged over the whole interface in the 
system (this mechanism is named Ostwald ripening for interface-controlled dynamics [25]).

In order to corroborate the phenomenological model [21] and its connection with the coarsening with global con-
servation, the size distribution of clusters has been considered. Experimental investigation in the coarsening dynamics 
of submonolayer granular media [20], allowed the experimental measure of the (scaling) size distribution of clusters. 
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Fig. 4. (Color online.) Average global fourfold bond-orientational order parameter Q 4 versus relative acceleration �. The upper panel (a) shows the case 
of first-order phase transition (with hysteresis effects). The lower panel (b) shows a continuous transition. The continuous lines in (b) correspond to fits 
evidencing a linear trend for the sub-critical region 2.5 < � < 5, on which has been over-imposed a power law in the supercritical region � > 5 (with a 
resulting exponent of 1/2).
Reprinted with permission from [27].
© 2012 American Physical Society

Apparently, the observed distributions, however, do not agree with the theoretical prediction of the mean field LSW the-
ory [25]. In fact, Conti et al. [26] showed that the coalescence of neighboring clusters should not be neglected, as the mean 
field treatment did. Taking into account such a correction, a good agreement is obtained both with the numerical simulation 
of the global conserved GLE model, and with the observation in the granular experiment [20].

Recent interesting developments are reported in two papers by Castillo et al. [27,28]. The experiments are performed 
in vertically vibrated monolayers of 1-mm size steel particles, close to the “solid–liquid” transition. The measure of the 
system structure factor shows that density fluctuations increase in size and intensity as the transition is approached, but 
they do not change significantly at the transition itself. On the other hand, the dense, metastable clusters increase their 
local order in the vicinity of the transition. Exploiting the square symmetry appearing in the dense phase for the specific 
set-up in study, a bond-orientational order parameter (Q 4) has been defined. This quantity evidences a critical behavior at 
the transition, behaving as a first- or second-order phase transition, depending on filling density and vertical height (see 
Fig. 4). In the case of a continuous transition, a power law has been observed for the correlation length, the relaxation time 
and the static susceptibility of the order parameter Q 4. The corresponding critical exponents are consistent with model C 
in the Hohenberg and Halperin classification [23] of dynamical critical phenomena, valid for a non-conserved critical order 
parameter (bond-orientation order) coupled with a conserved field (density).

Should these results be confirmed, the observed dynamical phase transition would determine the corresponding coars-
ening dynamics after a quench. Interestingly, model C displays a quite complex coarsening scenario, with different growing 
laws for different quenching procedures [29].

The origin of bistability and phase separation in vibrated granular monolayers, in terms of an hydrodynamic description, 
is not yet fully understood. Several numerical simulations and experiments have been designed in order to advance in this 
direction.

A transition between a gas-like and liquid-like state with bubble nucleation and subsequent coarsening has been ob-
served in simulations in a two dimensional vibrated box (where the two coordinates represent a horizontal “x” axis and 
a vertical “y” axis: see Fig. 5 for the time evolution of the system density, averaged on the vertical “y” direction). This 
transition has been explained by means of a van der Waals-like macroscopic theory: in such a theory, the phase coexistence 
is usually guaranteed by a nonmonotonous behavior of the pressure as a function of the density, which implies the presence 
of a bistable region separated by a coexistence and a spinodal curve. The inflection point of pressure versus density (neg-
ative compressibility), for granular particles, is due to the energy balance between energy injection (shaking) and energy 
dissipation in inter-particle collisions, which leads to a stationary Tg, decreasing with density.

A partial confirmation of this scenario has emerged in a quasi 1d vibrated experiment [31]. In this experiment, phase 
separation of clusters and coalescence through coarsening has been obtained. The clusters are in a crystal-like (square or 
triangular lattice) phase and coexist with a fluid phase. Even if the nature of the two phases is different, a similar van der 
Waals-like theory has been used to explain the experimental result. Measurements of pressure have indicated the existence 
of a pressure plateau corresponding to the coexistence region. Slow coarsening and coalescence of nucleated crystal islands 
is observed in time.

Starting from the Navier–Stokes granular hydrodynamic equation, Khain et al. [32] proposed a different scenario, where 
bistability results from the nontrivial energy injection mechanism from a vibrating plate to the granular gas. This is different 
from the mechanism advocated in [30], where the van der Walls instability is rather attributed to energy loss due to inelastic 
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Fig. 5. Spatiotemporal evolution of the two-dimensional system simulated in Ref. [30]. The gray level corresponds to the density averaged on the (vertical) 
y-direction of the system (darker regions representing denser regions). In the plot the absicissa represents the time, increasing upward.
Reprinted with permission from [30].
© 2002 American Physical Society

Fig. 6. Spatiotemporal evolution of the patterns during experiments and simulations described in [33]. Images (a)–(d): the real images of the free surface 
of granular layers after a sudden quench from � = 2.4 to � = 2.8: times (in period of vibration) are t = 2 (a), t = 10 (b), t = 200 (c), and t = 1000 (d). 
The bright parts correspond to the crests of the free surface, and the dark parts correspond to the troughs of the free surface. (e)–(h): The images of the 
numerical results of the 2D Swift–Hohenberg equation in time (see [33] for the parameters of the simulation).
Reprinted with permission from [33].
© 2002 American Physical Society

collision between particles. In both cases, the phase separation is associated with a negative compressibility of the granular 
gas.

Another example of coarsening in vibrated granular media, where a mono-disperse granular material is studied, is shown 
in the experiment described in [33]. Here the formation and evolution of regular patterns in a vertically vibrated thin 
granular layer of phosphor-bronze spherical beads is analyzed. This system shows a rich phenomenology: an initially flat 
layer can form complex structures, such as stripes, squares, hexagons, etc., see for instance Fig. 6. The analysis focuses of 
the coarsening dynamics following a sudden change of a control parameter (the vibration amplitude), which leads to stripe 
structure. The first stage of this evolution is characterized by the formation of rolls of well-defined wavelength with random 
orientation. Later, these stripes are observed to align and an ordered structure is eventually attained. This behavior can 
be analyzed within the Swift–Hohenberg theory [34], which describes the dynamics of the order parameter in nonlinear 
dissipative systems, with an instability of the first kind (namely, the instability grows only at a finite wave vector.) This 
model predicts a power-law growth for the characteristic length L(t) ∼ tz with z = 1/4. In the granular experiment, the 
order parameter is defined as a function of the local stripe orientations θ(r, t), which is defined as the local angles of 
the stripes (r denoting the position). This allows one to define the local order parameter ψ(r, t) = exp[2iθ(r, t)] and to 
measure the angle averaged correlation function C(r, t) = 〈Re[ψ(0)∗ψ(r)]〉. This satisfies a scaling relation with the dynamic 
correlation length in the system C(r, t) = g[r/L(t)], where L(t) ∼ tz is the characteristic length scale of the ordered domain 
at time t . The time behavior of this length turns out to be in agreement with the Swift–Hohenberg model.

4. Segregation of mixtures via coarsening

A relevant problem for dense granular systems, with important industrial applications, is the control of mixtures of 
different grains, which can differ by their sizes, densities, shapes, friction coefficients, etc. A large amount of experimental 
and numerical work has been devoted to the study of demixing or segregation. This is a huge field and we refer the reader 
to the review article [5] for experiments and theories on spontaneous segregation in granular mixtures. Here we focus 
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Fig. 7. Segregation of a monolayer mixture in a horizontally oscillated plate. Left: Pictures of the system studied in the experiment [35]. Time runs from the 
top to the bottom and the oscillation direction of the plate is perpendicular to the stripe orientation. Right: Molecular dynamics simulations of the same 
system [38] (stripes are perpendicular to the oscillation direction).
Reprinted with permission from [35].
© 2000 American Physical Society

on the cases where such a phenomenon occurs via domain coarsening of the components and we present results for two 
classes of experiments: vibrated two-dimensional granular systems and rotating tumblers.

Quasi two-dimensional layers The simplest setup to study the phenomenon of spontaneous segregation is a quasi two-
dimensional configuration, where the granular mixture is spread above a horizontally vibrated plate. In this case, several 
studies have shown that mixture segregation occurs through stripe coarsening, which develops orthogonally to the vibration 
direction, and is due to the differential frictional drag acting on the different components of the mixture.

We first consider a mixture of two kinds of particles: poppy seeds and copper spheres [35]. The initially homogeneous 
mixture is a mono-layer placed on a plate that is horizontally oscillated, with amplitude A and frequency ω. For packing 
fractions greater than a threshold value, the two components are observed to segregate in stripes of the two components, 
perpendicular to the oscillation direction of the plate, see left panel of Fig. 7. The evolution in time of these patterns presents 
a coarsening dynamics: the total number of stripes decreases while their average amplitude, L(t), increases with time t . The 
behavior turns out to be well described by a power law, L(t) ∼ tz , with the dynamical exponent z = 1/4. A stochastic model 
based on a random walk, proposed in the geological context of stone striping [36], can explain the observed phenomenon. 
Let us consider the stripe distribution f (x, t), that represents the number of stripes of width x at time t . The evolution 
of the stripe width occurs by particles diffusing between stripes and it is described by a diffusion equation: ∂ f (x, t)/∂t ∝
ν(t)∂2 f (x, t)/∂x2. Here the frequency ν(t) varies in time because the particles have to diffuse in the region between the 
stripes to produce a fluctuation. This region is expected to scale as the average width of stripes L(t) ≡ 〈x(t)〉, and therefore 
ν(t) ∝ L(t)−2. Introducing the variable τ = ∫

ν(t) dt , the diffusion equation is rewritten as ∂ f (x, τ )/∂τ ∝ ∂2 f (x, τ )/∂x2, 
which gives 〈x(τ )2〉 ∼ τ , and thus, using the definition of the variable τ , one readily gets the behavior L(t) ∝ t1/4. In a 
successive experiment [37], the behavior of the same system has been investigated as a function of the packing fraction, 
leading to the identification of a continuous phase transition for the segregation phenomenon.

Segregation via stripe coarsening is also observed in granular mixtures immersed in fluids, subjected to horizontal vi-
bration, as reported in [39], see Fig. 8. The two components in this case differ for masses and viscous coefficients, and the 
force exercised by the fluid produces a differential drag, which is responsible for the segregation mechanism.
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Fig. 8. (Color online.) Numerical simulations reproducing experiments on the segregation dynamics of a granular mixture immersed in a fluid, from [39]. 
Time runs from the top to the bottom and stripes are perpendicular to the oscillation direction of the cylinder (indicated by the double arrow).
Reprinted with permission from [39].
© 2004 American Physical Society

Numerical studies via molecular dynamics simulations [38,40] of a two-dimensional mixture of granular disks, inspired 
by the first experiment described above, support the interpretation that the different drag forces acting on the components 
of the mixture induce the segregation process. Such simulations reproduce the same phenomenology as that observed in the 
experiments, see right panel of Fig. 7. Since the mixture components have different friction coefficients and masses, their 
dynamics is ruled by different relaxation times. Therefore, different particles tend to oscillate with different amplitudes and 
phases, producing the segregation in a stripe pattern.

An accurate theoretical description of these systems can be attempted by means of an effective interaction theory [41]. 
This approach allows one to study an out-of equilibrium dissipative driven system in terms of an “equilibrium” mono-
disperse system. For a granular mixture subject to horizontal oscillations, it has been shown that the effective interaction 
force is anisotropic and presents a repulsive shoulder at long distances which is prominent in the direction of oscillation. 
This description leads to a phenomenological Cahn–Hilliard equation that reproduces the observed phenomenology and 
clarifies the origin of the differential drag mechanism for spontaneous segregation and coarsening in these systems.

Rotating tumblers A different experimental setup where the dynamics of granular mixtures is often studied is represented 
by rotating tumblers (of circular or square section). Several possible segregation patterns are observed, e.g., axial banding, 
radial streaks, etc., all displaying slow domain growth. For a recent detailed review on this specific topic, we refer the reader 
to [42]. The mixture segregation appears to occur in three stages: first radial segregation is observed, then axial segregation 
takes place, with the formation of bands that eventually coarsen slowly with the number of tumbler rotations. Here we 
focus on three experimental studies in order to illustrate this general phenomenology: the first two are concerned with the 
phenomenon of axial segregation in long tumblers, while the last one with the observation of coarsening of radial streaks 
in a quasi-two-dimensional setup.

The first experiment analyzes the axial segregation of dry and wet granular media, in circular or square tumblers [43]. If 
a cylinder filled with a binary granular mixture is rotated around its longitudinal axis, for specific rotational speeds, which 
play here the role of control parameter, one observes the formation of alternating axial bands of the two components: 
initially, the particles separate radially in the plane perpendicular to the rotation axis, and later, a further segregation 
process occurs, where coarsening of the bands takes place. More precisely, the number of bands, N , grows in time at short 
times and then slowly decreases. At long times, one observes for N a logarithmic decay, as −k log(n), where n is the number 
of rotations. This kind of behavior can be explained by some models for standard coarsening in one dimension [22] and it 
is also predicted by a continuous theory for granular segregation [44].

A detailed analysis of the specific mechanisms driving the coarsening process in similar geometries for wet granular 
materials is reported in [45]. In this experimental study, the authors investigate, via optical methods and nuclear magnetic 
resonance imaging, the dynamics of a binary mixture of glass beads of different radii immersed in water, in a long cylin-
drical rotating drum. The axial segregation phenomenon is found to exhibit a slow dynamics, where the number of stripes 
decays logarithmically with the number of rotations. A significant difference with respect to the dry case is that the coars-
ening phenomenon is observed at lower rotation speeds in the presence of water. The physical mechanism responsible for 
coarsening is related to the redistribution of the small particles. However, a clear understanding of the late stage of the 
coarsening dynamics in these systems is still lacking, and the problem is the focus of very recent studies [46].

A different geometry used to study mixture segregation consists of a quasi-two-dimensional slowly rotating tumbler, 
usually filled up to ∼50% with particles. In the experiments reported in [47], the very long time coarsening regime, leading 
to a complete final segregation, was studied (see Fig. 9). The experiment investigates the dynamics of a binary granular 
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Fig. 9. Pictures of the experiment [47], where a quasi-2D circular tumbler, filled up to 55% with a binary mixture of granular particles, is slowly rotated (two 
revolutions per minute). The radial streaks are observed to coarsen into one, producing a final segregation of the components (notice that in an angular 
phase space coarsening cannot last forever and a complete segregation is expected).
Reprinted by permission from Nature Physics [47].
© 2008 Macmillan Publishers Ltd

Fig. 10. (Color online.) Pictures of simulations from Tetris-like model for granular compaction [50]. The three panels reproduce the compaction dynamics 
at three different times ta < tb < tc . Colored pixels are granular particles, while white pixels are voids. Note how the upper free surface of the granular 
media decreases in height, because of compaction. The colors of the pixels (red and blue) indicates the two different possible arrangements of the grains. 
An evident coarsening of domains appears. The average width of the domains grows at first as t1/4, until all the domains span vertically the whole system. 
Then, a growth like √t follows, due to the diffusion and annihilation of domain interfaces.

mixture of glass particles, differing in size or in size and density. Even in this geometry, starting from a homogeneous state, 
when a slow rotation is applied to the tumbler, the mixture initially segregates into radial streaks, which eventually coarsen 
into one, provoking a final separation of the components.

5. Granular compaction

Finally, in the pure solid phase, an interesting ordering phenomenon is compaction [48,49]. This industrial relevant pro-
cedure consists in a weak, sometimes sporadic, energy injection aimed at increasing the packing fraction of the system. 
There is no general optimal protocol to compact a granular medium, and the most accepted theoretical scenario considers 
the dynamics of bubbles of misaligned grains that evaporate, allowing the coalescence of optimally arranged islands and a 
progressive reduction of the total occupied volume. In this context, many lattice models have been proposed [50], where the 
slow coarsening of domains of higher compactivity is observed (see Fig. 10). In order to discriminate different solid, mechan-
ically stable states of a granular, a general analogy with equilibrium statistical physics has been proposed by Edwards [51], 
where energy is replaced by the occupied volume, and the entropy is a measure of the number of configurations in the 
position of grains that result in the same occupied volume.

After an external perturbation, due to shaking or vibration, the system organizes itself in a new metastable configuration. 
In this way, it explores a phase space where each accessible point corresponds to a mechanically stable configuration. This 
observation suggested the idea to introduce a formalism analogous to the standard statistical mechanics [51]. The central 
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hypothesis is that the system can be described by an ensemble average over the mechanically stable states (called “inherent 
states”). Then, assuming that each state has an equal probability a priori to occur, the probability Pr to find the system 
in a inherent state r is obtained maximizing the entropy S = − 

∑
r Pr log Pr , with the macroscopic constraint that the 

total energy of the system E = ∑
r Pr Er is fixed. This gives the Gibbs result Pr ∝ exp(−βconf Er), where βconf is a Lagrange 

multiplier called inverse configurational temperature. A generalized partition function can be then introduced. For example, 
in the explicit case of a monodisperse system of hard spheres with mass m in the gravitational field g , where the centers 
of mass of grains are constrained to move on the sites i of a cubic lattice, one has the Hamiltonian: H = Hhc + mg

∑
i zini , 

where Hhc represents the hard-core interaction between grains, preventing the overlap of nearest neighbor grains, ni is the 
occupation variable on site i and zi its height [52]. In order to validate the Edwards hypothesis, one has i) to introduce a 
dynamics allowing the system to explore the phase space; ii) to verify that, at stationarity, the system properties do not 
depend on the specific parameters of the dynamics; and iii) to check that the temporal averages obtained from such a 
dynamics are consistent with those obtained from the Gibbs distribution. This approach turned out to be effective in several 
idealized models for granular compaction [52–55].

6. Conclusions

In this short review, we have described some relevant examples where coarsening phenomena are observed in the 
context of granular media. Remarkably, the study of these non-equilibrium athermal systems reveals that, in many cases, 
a dynamics analogous to the phase ordering kinetics of standard critical phenomena takes place. Concepts such as “order 
parameter” and “phase transition” turn out to be effective to describe instabilities, clustering, mixture segregation, com-
paction, and other observed behaviors. This suggests that the tools of statistical mechanics can be extended and generalized 
to a wider context, where fluctuations are induced by external forcing, rather than by thermal agitation, and dissipation 
drives the systems out of equilibrium. In that respect, the physics of granular matter shares many features with other 
non-equilibrium systems, such as glasses, suspensions, foams, traffic flow, active matter. In particular, in the context of 
self-propelled particles, the phenomenon of motility-induced phase separation can be explained by the same models of 
coarsening as those used for describing vibrated granular media, see for instance [56]. These considerations strengthen the 
idea that a general theory can be able to describe a wide gamut of different physical systems, at least in those cases where 
the emergent behavior can be characterized in terms of few macroscopic parameters. Here, as in many aforementioned 
systems, a derivation of the coarse grained models from the microscopic dynamics is, in our opinion, an important step, 
deserving further investigation.
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