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It is known that similar physical systems can reveal two quite different ways of behavior, 
either coarsening, which creates a uniform state or a large-scale structure, or formation of 
ordered or disordered patterns, which are never homogenized. We present a description 
of coarsening using simple basic models, the Allen–Cahn equation and the Cahn–Hilliard 
equation, and discuss the factors that may slow down and arrest the process of coarsening. 
Among them are pinning of domain walls on inhomogeneities, oscillatory tails of domain 
walls, nonlocal interactions, and others. Coarsening of pattern domains is also discussed.
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r é s u m é

Il est connu que des systèmes physiques similaires peuvent révéler deux comportements 
assez similaires, le coarsening, qui crée un état uniforme ou une structure à grande échelle, 
ou la formation de motifs ordonnés ou désordonnés, qui ne sont jamais homogénéisés. 
Nous présentons une description du coarsening utilisant deux modèles basiques simples, 
l’équation d’Allen–Cahn et celle de Cahn–Hilliard, et discutons les facteurs qui peuvent 
ralentir et arrêter le processus de coarsening. On trouve parmi ceux-ci l’ancrage de parois 
de domaines sur des inhomogénéités, les queues oscillatoires de parois de domaines, ainsi 
que d’autres. Le coarsening de domaines de motifs est aussi discuté.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For many decades, the nonlinear development of instabilities in physical systems was an object of extensive investiga-
tions. The most spectacular consequences of instabilities are the appearance of ordered spatially non-uniform structures 
(pattern formation, see [1–3]) or irregular motions (spatio-temporal chaos [4]) under uniform external conditions. However, 
there is one more scenario of an instability development: that is a gradual growth of the characteristic scale with time 
(coarsening) [5,6]. Different evolution scenarios can take place in rather similar physical systems.

As an example, let us consider the phase separation in binary alloys that consist of two kinds of atoms, A and B, with 
volume fractions φA(x, t) and φB(x, t), respectively. There exists a temperature Tc such that for T > Tc the components are 
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mixed, i.e., the order parameter φ(x, t) = φA(x, t) − φB(x, t) vanishes everywhere, while for T < Tc they are separated, i.e., 
there exist two thermodynamically stable phases, one with φ > 0 (“A-rich phase”) and the other with φ < 0 (“B-rich phase”). 
A mathematical model of that phenomenon has been suggested by Cahn and Hilliard [7]. Under the simplest assumption 
of a constant mobility, the kinetics of the phase separation is described by the following non-dimensional equation (the 
Cahn–Hilliard equation),

φt = ∇2(−φ + φ3 − ∇2φ) (1)

The uniform phase φ = 0 is unstable, while the uniform phases φ = ±1 are stable. The instability of the phase φ = 0 creates 
a mosaic of islands of both stable phases. The size of these islands (domains) grows due to coarsening, which eventually 
leads to a complete separation of stable phases [5,6].

A diblock copolymer, which consists of monomers A and B with reduced equal local densities φA and φB, is quite similar 
to a binary alloy. The basic difference is the existence of a long-range interaction of monomers [8–10] which provides an 
additional term in the evolution equation for the order parameter:

φt = ∇2(−φ + φ3 − ∇2φ) − �φ, � > 0, 〈φ〉 = 0 (2)

There are no other spatially uniform stationary solutions except φ = 0. Therefore, when the latter solution is unstable (at 
� < 1/4), a transition to a non-uniform state is unavoidable [11]. At small �, the initial evolution of disturbances is similar 
to that in the Cahn–Hilliard equation, but it is stopped when stripes with a definite pattern wavelength are created [12].

The existence of longwave linear instability and multiple homogeneous states does not guarantee the creation of spa-
tially uniform domains through coarsening. As an example, let us discuss the nonlinear dynamics governed by the one-
dimensional Kuramoto–Sivashinsky equation,

φt = −φxx − φxxxx − (φ2)x, 〈φ〉 = 0 (3)

which is used for the description of instabilities in reaction–diffusion systems [13,14], instabilities of flame fronts [15], and 
film flow instabilities [16]. In that case, the linear part of the equation is identical to that of the Cahn–Hilliard equation, 
and any constant solution, φ = φ0, satisfies Eq. (3). However, all solutions corresponding to uniform states are unstable. 
The Kuramoto–Sivashinsky equation is a paradigmatic model of the spatio-temporal chaos [14]; stable periodic patterns are 
also possible [16,17], but the attraction domain of that regime is small. Generally, the way of the instability development 
depends significantly on the details of the system nonlinearity and symmetry [18,19].

Note that pattern formation and coarsening are not incompatible phenomena. Let us return to model (2) that describes 
formation of stripes. Because of the rotational invariance of the problem, the orientation of stripes is arbitrary. Initially, 
a disordered system of stripes is developed from random initial conditions, and then the mean size of ordered domains 
grows with time, i.e., domain coarsening takes place for differently oriented stripe patterns rather than for different uniform 
phases [11,20].

One can see that the interplay between coarsening and pattern formation is nontrivial, and it is the subject of the 
present chapter. Let us emphasize that here we discuss only dynamic models of coarsening and pattern formation, which do 
not include any kind of noise. The phenomena caused by thermal fluctuations are considered in other papers of the present 
issue and in the comprehensive book [21], where the reader can find many additional references on that subject.

2. Coarsening in one dimension: dynamics of domain walls

When considering the kinetics of coarsening, one has to take into account the following basic factors.
1. The existence of a Lyapunov functional. If the temporal evolution of an n-component order parameter φi , i = 1, . . . , n is 

described by a gradient evolution equation

φi,t = −
n∑

k=1

Dik
δF

δφk
, i = 1, . . . ,n (4)

where F = ∫
L(φ, φx, . . .) dx is the Lyapunov functional of the system, and Dij is a positive definite matrix, then

Ft =
∑

i

∫
φ̇i

δF

δφi
dx = −

∑
i,k

∫
Dik

δF

δφi

δF

δφk
dx ≤ 0 (5)

In the case of an equilibrium phase transition, the existence of the Lyapunov functional (free energy) is the consequence 
of the thermodynamics. The nonlinear development of instabilities in systems far from equilibrium in some cases is also 
governed, at least approximately, by potential systems of equations that possess Lyapunov functionals.

2. The existence of a conservation law. In the case where the order parameter is a density of a conserved quantity (e.g., the 
number of molecules), the evolution equations have a divergence form,

φi,t = −∇ · Ji, i = 1, . . . , N (6)

where the flux Ji is a function of the order parameter and its derivatives.
In order to understand how both factors influence the coarsening kinetics, let us consider a number of examples.
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2.1. Non-conserved order parameter

2.1.1. Allen–Cahn equation
We start with the Allen–Cahn equation [22]

φt = φxx + φ − φ3 (7)

which describes a phase transition in the absence of a conservation law for the order parameter φ. The physical interpre-
tation of that model can be as follows [6]: φ is the spontaneous magnetization directed along the definite axis (due to the 
crystal anisotropy). Also, the Allen–Cahn equation is the simplest example of an order parameter equation for a pattern 
forming system far from the thermodynamic equilibrium. Let us consider the onset of convection in a horizontal cylinder 
heated from below. Above the instability threshold, the rotation of the liquid in the transverse section of the cylinder can 
be either counterclockwise (φ > 0) or clockwise (φ < 0). The temporal evolution of the order parameter φ(x, t) (x is the 
coordinate along the axis of the cylinder) is governed by the Allen–Cahn equation [23].

Eq. (7) has a Lyapunov functional,

F (t) =
∫

L(x, t)dx, L(x, t) = 1

2
φ2

x + 1

4
(φ2 − 1)2 ≥ 0 (8)

Its derivative

Ḟ =
∫ (

∂L

∂φ
φt + ∂L

∂φx
φxt

)
dx =

∫
(−φ + φ3 − φxx)φt dx = −

∫
dxφ2

t ≤ 0 (9)

is non-positive, hence the Lyapunov functional decreases monotonically with time until a stationary state is reached. It 
is obvious that Eq. (7) has three fixed points corresponding to uniform phases, φ = 0 (unstable paramagnetic phase) and 
φ = ±1 (ferromagnetic phases with opposite orientations of the magnetization); the latter solutions correspond to the 
absolute minima of the Lyapunov functional, F = 0. The separatrices

φ± = ± tanh
x − ξ√

2
, ξ = const (10)

(kink and antikink) describe domain walls separating semi-infinite domains with different signs of the order parameter. Note 
that

φ± ∼ ±{1 − 2 exp[∓(x − ξ)
√

2]} as x → ±∞ (11)

The contribution of a domain wall to the Lyapunov functional is F0 = 2
√

2/3 > 0.
Other stationary solutions to (7) describe spatially periodic patterns that can be considered as periodic arrays of domains 

with alternating signs of φ. They are expressed through the elliptic Jacobi function.
Let us impose an infinitesimal disturbance φ̂(x, t) on the stationary solution φ(x) and consider its temporal evolution 

governed by the linearized problem,

φ̂t = φ̂xx + (1 − 3φ2(x))φ̂, |φ̂| < ∞ as x → ±∞ (12)

For normal disturbances φ̃(x) exp(σ t), we obtain an eigenvalue problem,

σ φ̃ = φ̃′′ + (1 − 3φ2)φ̃, |φ̃(±∞| < ∞ (13)

It is obvious that solution φ = 0 is unstable: σ(k̃) = 1 − k̃2 for φ̃ = eik̃x , and the solutions φ = ±1 are stable: σ(k̃) =
−2 − k̃2 for the same φ̃ . The domain-wall solutions (10) are neutrally stable. One can show that all the spatially-periodic 
solutions mentioned above are unstable.

Let us discuss now the temporal evolution of the system, when the initial state is the unstable phase φ = 0 with a certain 
initial, spatial disordered, perturbation. According to the stability analysis presented above, the final state should be uniform 
or contain a single defect, a domain wall. However, it is clear that the decomposition of the phase φ = 0 can produce 
numerous domains with alternating signs of φ. Such a state can be characterized by a certain density of defects decreasing 
with time, or by a mean domain length which grows with time. At late stages of the evolution, when the typical distance 
between domain walls is large the analysis can be done by means of asymptotic methods [24,25]. One considers a set of 
domain walls (10) of alternating signs centered at ξi = ξi(t), i = 1, 2, . . . , and slowly moving because of their interaction. By 
means of asymptotic expansions, the original nonlinear problem is transformed into an infinite system of inhomogeneous 
linear equations. Their solvability conditions determine the following equations of motion for the centers of domain walls 
[26]:

2
√

2
ξ̇i = −∂U

(14)

3 ∂ξi
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where

U =
∑

i

W (ξi − ξi−1), W (ξi − ξi−1) = −8
√

2 exp
[
−√

2(ξi − ξi−1)
]

(15)

Thus, the domain walls attract to each other according to the exponential interaction law (14) which reflects the exponential 
domain wall asymptotics (11).

System (14) has a family of stationary solutions

ξ j = a + j l, j = 0,±1,±2, . . . (16)

corresponding to periodic patterns with the spatial period 2l. The attractive interaction makes all these solutions unstable.
Consider the interaction of a pair of domain walls. Setting l(t) = ξ2(t) − ξ1(t), we find that the distance between domain 

walls is governed by the equation

2
√

2

3
l′(t) = −32 e−l

√
2 (17)

If l(0) = l0  1, the solution is

l = l0 + 1√
2

ln
(

1 − 48 e−√
2l0t

)
(18)

The distance between two domain walls becomes of O (1) at

t ∼ t0 = 1

48
e
√

2l0 + O (1) (19)

Finally, the domain walls reach the distance of order O (1) and annihilate. During the time interval t , only the domain walls 
with the original separation greater than ∼ ln(48t)/

√
2 can survive. Thus, a logarithmic coarsening takes place. In a large 

but finite system with the length L, the number of domain walls N(t) ≤ L/l(t).
As an example of the situation when two locally stable phases are energetically non-equivalent, let us consider a system 

with the Lyapunov functional

F [φ(x)] =
∫ [

1

2
φ2

x + 1

4
(1 − φ2)2 − hφ

]
dx (20)

which corresponds to the dynamic equation

φt = φxx + φ − φ3 + h (21)

In the case of a magnetic system, the last term in the expression (20) describes the influence of an external magnetic field, 
which makes the orientation of the magnetization in the direction of the field preferable. The uniform stationary states 
satisfy the equation

φ − φ3 + h = 0 (22)

In the interval −h∗ < h < h∗ , Eq. (22) has three solutions: stable solution φ = φ+ > 1/
√

3, another stable solution φ = φ− <

−1/
√

3, and an intermediate unstable solution φ0, −1/
√

3 < φ0 < 1/
√

3. For h > 0, the phase with φ = φ+ > 0 is stable, 
and the phase with φ = φ− is metastable.

If h is small, domain walls are described by formulas (10) at the leading order. By means of an asymptotic analysis, one 
can find that the motion of each domain wall is governed by the equation [26]

2
√

2

3

dξ

dt
= ∓2h (23)

(the upper sign is for a kink and the lower sign is for an antikink). This motion creates a coarsening process, which is 
significantly faster than that in the case of energetically equivalent phases. That process leads to the elimination of the 
metastable phase.

2.1.2. Fractional Allen–Cahn equation
The logarithmic law of the one-dimensional coarsening is caused by the exponentially weak interaction, due to the expo-

nential asymptotics (11) characteristic for solutions of partial differential equations. However, the basic equations governing 
the natural phenomena are often integro-differential equations rather than partial differential equations. For instance, the 
free energy density of a fluid depends on the fluid density in a nonlocal way [27]. The conventional van der Waals’ expres-
sion for the fluid free energy which contains a squared density gradient [28] corresponds to a certain asymptotic limit of 
the basic nonlocal expression. The asymptotics of a domain wall (i.e., the gas-liquid boundary) in the framework of local 
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and nonlocal models are strongly different: while a local model predicts an exponential decay, a nonlocal model suggests a 
power-law decay [27]. Fronts that cannot be governed by local partial differential equations have been found also in studies 
of transitions with long range interactions [29], vacancy diffusion and domain growth in binary alloys [30], and ordering 
kinetic on fractal structures [31] (for the latter subject, see [32]). As an example let us discuss the front propagation in 
systems with superdiffusion [33]. While the normal diffusion is associated with a Gaussian non-correlated random walk of 
particles, the superdiffusion is observed in non-equilibrium systems with an algebraically decaying jump length distribution, 
where the central limit theorem is no valid. Among the examples are wave turbulence [34], transport in porous media [35], 
and forage trajectories of animals [36]. One can use a superdiffusive generalization of the Allen–Cahn equation,

φt = Dγ
|x|φ + φ − φ3, 1 < γ < 2 (24)

Here Dγ
|x| denotes the fractional Riesz derivative, which can be defined by its action in the Fourier space:

F
(

Dγ
|x|φ(x)

)
(k) = −kγ F (φ(x)) (k) (25)

where F is the symbol of the Fourier transform. Eq. (24) has a Lyapunov functional [37]. In a contradistinction to the 
exponential asymptotics (11) of the domain walls in the local PDE (7), the domain walls in the integro-differential equation 
(24) has an algebraic tail,

φ+ ∼ 1 − sec(πγ /2)

2�(2 − γ )
x−γ , x  1 (26)

That leads to a power law for the kink–antikink attraction,

l′(t) = −Cl−γ (27)

(cf. (17)), and for the temporal decay of the number of domain walls on a finite spatial interval, N ∼ t−1/γ [37].

2.1.3. Non-potential systems
For systems far from equilibrium, e.g., in the case of longwave instabilities of flows, the Lyapunov functional generally 

does not exist. Nevertheless, coarsening may take place if the domain walls are described by monotonic functions. As an 
example, let us mention the amplitude equation that governs the fixed-flux convection in a tilted slot [38]:

φt = φxx + φ − φ3 + 2αφφx, α > 0 (28)

Because the symmetry x → −x is violated, the kink and antikink domain walls have different widths:

φ±(x) = tanhβ±(x − ξ), β± = 1

2
(α ±

√
α2 + 2) (29)

The interaction of domain walls is attractive but asymmetric. For a pair which consists of a kink with the center in the 
point ξ1(t) and an antikink with the center in the point ξ2(t), the equations of motion look as

ξ ′
1 = F+ exp(−2|β−|(ξ2 − ξ1)), ξ ′

2 = F− exp(−2β+(ξ2 − ξ1)) (30)

where F+ �= F− . All the periodic stationary solutions (patterns) are unstable, and a logarithmically slow coarsening takes 
place, similarly to the case of the Allen–Cahn dynamics.

2.2. Conserved order parameter

2.2.1. Potential systems
Let us return to the Cahn–Hilliard equation (1), which can be written as

φt + jx = 0, j = (φxx + φ − φ3)x; −l ≤ x ≤ l (31)

Being a generic nonlinear equation governing longwave instabilities in the presence of the conservation law [18], that 
equation has been revealed in numerous problems of different physical nature, including secondary flows produced by 
the instability of the Kolmogorov flow [39], Marangoni instability of a two-layer system with a deformable interface [40], 
nonlinear development of zigzag instability of convection rolls [41], and even coarsening of ordered domains in oscillatory 
patterns governed by the complex Swift–Hohenberg equation [42], which describes oscillations in lasers [43,44] and optical 
parametric oscillations [45–47].

For sake of simplicity, apply the boundary conditions φx = φxxx = 0 at x = ±l; then

j(±l) = 0,
d

dt

l∫
φ dx = 0 (32)
−l
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(the total length of domains of each phase is conserved). The Lyapunov functional (8) decreases with time:

Ft = −
∫

(φxx + φ − φ3)2 dx ≤ 0 (33)

Using the boundary conditions, one can present Eq. (31) in the form [25]

∂−2
x φt + φxx + φ − φ3 + h(t) = 0, ∂−2

x φt(x, t) = 1

2

l∫
−l

|x − y|φt(y, t)dy (34)

Note that despite the energetical equivalence of phases φ = ±1, an efficient field h(t) appears, which must be determined 
self-consistently. The motion of a kink and an antikink towards each other would change the total lengths of domains of 
different phases, and hence it is not possible. Two kinks can move simultaneously towards an antikink placed between them, 
or kink–antikink pairs can move as a whole. The correlated motion of n domain walls with the centers at ξi , i = 1, . . . , n, 
sufficiently far from each other, is governed by the system [25]

−
n∑

j=1

2(−1)i− j|ξi − ξ j|ξ ′
j = 16

∑
j �=i

e−|ξi−ξ j |
√

2sign(ξ j − ξi) + 2(−1)ih(t), i = 1, . . . ,n (35)

supplemented by the conservation law

n∑
i=1

(−1)iξ ′
i = 0 (36)

For a kink–antikink pair, the attraction is compensated by the field h = 8 exp[−(ξ2 − ξi)
√

2], hence the domain walls are 
motionless. For a symmetric kink–antikink–kink triplet with coordinates of domain walls ξ1 = −l(t), ξ2 = 0 and ξ3 = l(t), 
one obtains h = 0, l′ = −8 exp(−l

√
2), hence the annihilation time depends on l0 = l(0) as

t0 ∼ 1

8
√

2
l0 el0

√
2

(cf. (19)).

2.2.2. Non-potential systems
As an example of a non-potential system with a conservation law, let us consider the convective Cahn–Hilliard equation,

φt + (φxx + φ − φ3)xx − D

2
(φ2)x = 0, −∞ < x < ∞ (37)

which has been suggested to describe several physical processes, namely spinodal decomposition of phase separating sys-
tems in an external field [53–55], step instability on a crystal surface [56], faceting of growing, thermodynamically unstable 
surfaces [57–61], evolving nanofoams [62] as well as dewetting of a thin film flowing down an inclined plane [63]. That 
equation provides “a bridge” between the Cahn–Hilliard equation (1) (D = 0) and the Kuramoto–Sivashinsky equation (3)
(φ → −2φ/D , D  1).

Stationary patterns φ = φ(x) are described by the problem

φ′′′ + (φ − φ3)′ − Dφ2

2
= − D A

2
, −∞ < x < ∞; A > 0; x → ±∞, |φ| < ∞ (38)

For any D �= 0, the set of solutions to Eq. (38) is incomparably more complex than that of the usual Cahn–Hilliard equation. 
One can easily find some exact solutions to the problem. The constant solutions,

φ = φ± = ±√
A (39)

correspond to two stable phases. For domain walls, there exist exact solutions [53], one for a kink with A = A+ = 1 + D/
√

2,

φ = φ+(x) = φ0+ tanh
φ0+√

2
(x − ξ), φ0+ =

√
1 + D/

√
2, ξ = const (40)

and the other for an antikink with A = A− = 1 − D/
√

2, D <
√

2,

φ = φ−(x) = −φ0− tanh
φ0−√ (x − ξ), φ0− =

√
1 − D/

√
2, ξ = const (41)
2
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However, the set of stationary solutions is much richer. Specifically, solution (40) is just one representative of a family
of kinks φ+(x; A). In addition to the monotonic antikink (41), there exists also a discrete set of non-monotonic antikink 
solutions [64] (that phenomenon is typical for models containing higher-order spatial derivatives, see [65–67]). The kink–
antikink pair is formed by antikink (41) and a representative of the family of kinks with A = A− .

If 0 < D < D0 = √
2/3. In that region, the coarsening is observed [55,58,59,61]. Because of the asymmetry between 

kinks and antikinks, a kink–antikink pair moves spontaneously with a definite velocity v2(D, L). The most typical process 
observed by coarsening is the annihilation of domain wall triplets, when two kinks of the same sign approach with velocities 
±v3(D, L) the kink of the opposite sign situated between them. Exact expressions for v2(D, L) and v3(D, L) can be found 
in [68]. In the limit of small D [61],

v2(D, L) ∼ v3(D, L) ∼ −(D2
√

2/4)exp(−DL/2)

Therefore, the coarsening law is logarithmic.
For D > D0, the domain walls have oscillatory tails. That case will be discussed in the next section.

3. Factors hindering coarsening

In the present section, we discuss some typical situations where the system cannot reach a uniform state or another 
energetically preferred state by coarsening.

3.1. External inhomogeneities

The motion of domain walls leading to annihilation can be stopped by inhomogeneity of the medium. Recall that we con-
sider the phenomena in the absence of noise. Coarsening in inhomogeneous systems in the presence of thermal fluctuations 
is considered in [69].

In a potential system, the domain wall would “prefer” the location where its energy will be smaller than in other 
locations. For example, let us consider the following modification of the one-dimensional Allen–Cahn equation [23]:

φt = φxx + [1 + ε f (x)]φ − φ3 (42)

At the leading order in ε , the equation of motion for a domain wall of any kind is

2
√

2

3

dξ

dt
= − d

dξ
V ih(ξ), where V ih(ξ) = 1

2

∞∫
−∞

f (ξ + y) cosh−2(y)dy (43)

Specifically, if the inhomogeneity has a δ-like shape,

f (x) = −2V 0δ(x − x∗)

the interaction potential is

V ih(x0) = −V 0 cosh−2 x0 − x∗√
2

Generally, the shape of the potential is a linear transformation of the inhomogeneity shape, according to (43).
If there are many domain walls and many inhomogeneities, the motion of domain walls is determined by the system of 

Eqs. (14) with the potential

U =
∑

i

W (ξi − ξi−1) +
∑

i

V ih(xi)

where W (ξi − ξi−1) is determined by Eq. (15), and V ih(xi) corresponds to (43). Thus, the problem of finding stationary 
solutions to (42) is equivalent to finding equilibrium configurations of a chain of particles in the external potential (43), 
interacting according to the law (15). This model resembles the well-known Frenkel–Kontorova model (see, e.g., [70]).

As an example, let us consider two domain walls with coordinates ξ1 and ξ2 which are near the distant δ-shaped 
attracting inhomogeneities:

f (x) = −2V 0δ(x − x1∗) − 2V 0δ(x − x2∗), V 0 > 0, x2∗ > x1∗
x2∗ − x1∗ = l∗  1, |ξ1 − x1∗| = O (1), |ξ2 − x2∗| = O (1). The equation of motion for the left domain wall is:

2
√

2 dξ1 = 16 e−(ξ2−ξ1)
√

2 − √
2V 0 sinh

ξ1 − ξ1∗√ cosh−3 ξ1 − x1∗√ (44)

3 dt 2 2
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The first term in the right-hand side of equation can be estimated as 16 exp(−l∗
√

2). The minimum of the second term in 
the right-hand side of the equation is equal to −2

√
2V 0/3

√
3. Thus, we come to the conclusion that if

2
√

2

3
√

3
V 0 > 16 e−l∗

√
2 (45)

the domain wall will not be able to escape from the potential well created by the inhomogeneity. Hence, the coarsening 
will be stopped when the distances between the neighbor domain walls satisfy inequality (45).

Similarly, in the case of domain walls pushed by the asymmetry of phases (see (23)), we find the criterion of pinning:

V 0 >
3
√

3√
2

h

If f (x) is a periodic function, the sequence of pinning sites (minima of the potential) filled by pinned domain walls can 
be regular (“commensurate patterns”) [71] or irregular (“spatial chaos”) [72].

3.2. Oscillatory tails of domain walls and stability of stationary patterns

In the examples considered in Section 2, the domain walls are described by monotonic functions like (10). The mono-
tonicity of the asymptotic behavior of the domain wall solution on the infinity leads to a sign-preserving (attracting) 
interaction between domain walls. Oscillatory tails of domain walls create a sign-alternating interaction potential. The do-
main walls can be captured near the potential minima, therefore stable patterns are formed due to pinning of a domain 
wall by an inhomogeneity created by another domain wall.

As an example, let us consider the stability of periodic solutions to the convective Cahn–Hilliard equation (37), which 
satisfy the condition φ(x + l) = φ(x). At large values of l, these solutions resemble periodic sequences of domain walls. 
Define the pattern wavenumber K = 2π/l. The normal disturbances of a periodic solution have the shape of a Floquet–Bloch 
function, φ̂(x, t) = φ̃(x) exp(ikx + σ t), where φ̃(x + l) = φ̃(x), and k is a quasi-wavenumber, |k| < K/2. A periodic solution is 
always neutrally stable (σ = 0) with respect to a spatial shift, φ̃(x) = φx(x), k = 0. Therefore, a special attention has to be 
payed to potentially unstable longwave disturbances with small k. Their growth rate σ(k; K ) can be presented as

σ(k; K ) = σ1(K )k + σ2(K )k2 + . . .

One can show that the sign of σ 2
1 (K ) depends on the dependence of the squared pattern amplitude

A = 1

l

l∫
0

φ2(x)dx

(see (38)) on the pattern wavenumber K = 2π/l [16,73,64]. If dA/dK < 0 for any K , which takes place for D < D0 = √
2/3, 

then σ 2
1 (K ) > 0 for any K , therefore all periodic solutions are unstable. That is compatible with the attractive interaction 

between domain walls. For D > D0, the function A(K ) is not monotonic, and the extrema of A(K ) separate the regions 
of a monotonic growth of longwave disturbances, σ 2

1 (K ) > 0, and those of the oscillatory response of patterns to dila-
tions and compressions, σ 2

1 (K ) < 0 [74]. The region of oscillatory response can contain a subinterval of stable patterns 
(where σ2(K ) < 0) [60,64]. That is possible because of the alternating sign of the interaction between domain walls. On 
the boundaries of the stability interval, the patterns become unstable with respect to either longwave (phase) disturbances 
(see [75,76]) or shortwave disturbances with k = K/2, leading to a spatial period doubling.

Because the potential of the interaction between domain walls has multiple minima, the distance between domain walls 
is not selected in a unique way. The pattern includes elements with “short” and “long” distances between the maxima that 
alternate in a rather irregular way [60].

3.3. Nonlocal interaction

A specific kind of an arrested coarsening process has been found for Eq. (2) [12], which can be written also as

∂−2
x (φt + �φ) + φxx + φ − φ3 + h(t) = 0 (46)

For small � the lowest density of the Lyapunov functional is achieved for patterns with wavelength λopt = O (�−1/3). Ac-
cording to the linear stability theory, the disturbance with largest growth rate has a wavelength λc = O (1). Therefore, one 
could expect that the energetically preferable, longwave pattern will be developed from the initial shortwave pattern by 
coarsening. The coarsening process takes place indeed, but it is stopped when the wavelength reaches a much smaller 
value, λmin = O (ln(1/�)). The criterion of the pattern stabilization is similar to (45), but now the stabilizing factor is the 
nonlocal interaction, which is proportional to �.
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3.4. Pattern-induced pinning of a domain wall

The stability regions of a periodic pattern and a uniform state may overlap. In that case, the behavior of a domain wall 
between the pattern and the uniform state is crucial. Near the threshold of the instability creating shortwave patterns, where 
the width of a domain wall is large compared to the characteristic pattern wavelength, one can describe the dynamics of a 
domain wall using the envelope function approach [77,78]. In the framework of that approach, one comes to the conclusion 
that a domain wall between the pattern and the uniform state moves with a constant velocity, which is proportional to the 
difference between the Lyapunov functional densities of the phases [41]. However, the influence of the underlying periodic 
pattern leads to some qualitative changes of the domain wall dynamics. First, the motion of the domain wall is an oscillatory 
process; during one period, one stripe is created or melted [79,80]. Secondly, because of the pinning effect, there is a finite 
interval of the parameter value where the domain wall is motionless, i.e., a pattern and a uniform state coexist. Near the 
threshold of the pattern appearance, that interval is transcendentally small [81,41].

As an example, let us consider the competition and coexistence between patterns and uniform states for a system 
governed by the Swift–Hohenberg equation,

φt =
[
ε −

(
∂2

∂x2
+ 1

)2]
φ − φ3 (47)

which corresponds to the Lyapunov functional

F {φ} =
∫ {

−ε

2
φ2 + 1

4
φ4 + 1

2

[(
∂2

∂x2
+ 1

)
φ

]2}
dx (48)

That model was suggested for studying hydrodynamics fluctuations near the instability threshold [82] and used for modeling 
Bénard convection [83]. At ε > 0, periodic patterns exist with wavenumbers k in the interval 1 − √

ε < k2 < 1 + √
ε , and 

they are stable in a subinterval k−(ε) < k < k+(ε). At ε > 1, constant nonzero solutions φ± = ±√
ε − 1 appear. At ε > 3/2

they become stable with respect to small disturbances; kinks with oscillatory tails connect both stable uniform phases φ±
[84].

The value of the Lyapunov functional density for the regular pattern with an optimal wavenumber is lower than that 
of the uniform state when ε < εm ≈ 6.3 [84,79]. Nevertheless, the domain wall between both states is immobile for much 
smaller values of ε , ε > εc ≈ 1.7574. The reason is the self-induced pinning caused by the oscillatory asymptotic perturba-
tion of the uniform state. Similarly, the pinning effect prevents the replacement of a pattern by a uniform state at ε > εm . 
The stability interval for a finite fragment of patterns sandwiched between semi-infinite regions of a uniform state slightly 
depends on the length of that fragment [79]. Note that the noise activates the transition for a metastable state to a truly 
stable, energetically preferred, state [79].

The coexistence of patterns and uniform states has been revealed for many pattern-forming systems (for a review, 
see [85]).

4. Coarsening in two and three dimensions: curvature effects

4.1. Phase separation

First, let us consider domain coarsening for spatially uniform states in a system without the conservation law.
In a two-dimensional (three-dimensional) potential system, the Lyapunov functional can be diminished without annihi-

lation of a domain wall, just by diminishing its length (area). Let us consider a two-dimensional Allen–Cahn equation,

φt = φxx + φyy + φ − φ3 + h (49)

and present the isoline φ(x, y, t) = 0 (“a front”), which describes the center of curved domain walls between the stable 
uniform phases, in the form y = H(x, t): φ(x, y, t) < 0 as y < H(x, t), φ(x, y, t) > 0 as y > H(x, t). One can show that the 
motion of the domain wall is determined, in the limit of small h and a small curvature of the front, by the equation [86,26],

Ht√
1 + H2

x

= Hxx

(1 + H2
x )

3/2
− 3

√
2

2
h, or v = κ − 3

√
2

2
h (50)

where v is the normal velocity, and κ is the curvature of the front. Specifically, in the case h = 0 (both phases have the 
same free energy), we get just the relation v = κ , which is called curvature flow.

As an example, let us consider a round droplet of the phase φ− in the infinite sea of the phase φ+ . Because κ = 1/R , in 
the case h = 0 the droplet radius is changed according to the law

R2(t) = R(0)2 − 2t
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The droplet collapses during the finite time t∗ ≈ R2
0/2. The obtained life time of the droplet shows that the characteristic 

coarsening scaling is l ∼ O (t1/2), which is significantly faster than in the one-dimensional case. The same coarsening law is 
obtained in the 3D case.

Moreover, even for the fractional Allen–Cahn equation,

φt = −(−∇2)γ /2φ + φ − φ3 + h, 1 < γ < 2 (51)

the front motion is determined by a formula similar to (50) (up to numerical coefficients that depend on γ ), and the scaling 
l ∼ O (t1/2) is established on the late stage of coarsening (at the initial state, l ∼ O (t1/γ ), according to the scaling properties 
of the linearized equation) [37].

A more significant change of the front dynamics is produced by memory, when the temporal evolution of the order 
parameter is governed by the equation

φt = −
t∫

0

a(t − s)
δF

δφ
(x, s)ds (52)

Eq. (50) is replaced by

vt

1 − αv2
+ γ v = κ − 3

√
2

2
h(1 − αv2)1/2 (53)

where the constants α and γ are determined by the Laplace transform of the kernel a(t − s) [87,88].
In the presence of a conservation law, using the Cahn–Hilliard equation, one can find that the evaporation of a single 

round droplet of the phase φ− in the infinite sea of the phase φ+ is governed by the equation [6]

R3(t) = R3(0) − 3

2
σ t

where σ is a parameter corresponding to the effective surface tension of the domain wall. Hence, the scaling law l ∼ O (t1/3)

is predicted. In the case of droplets of different sizes, the main mechanism of coarsening is the growth of big droplets 
(with a smaller curvature) at the expense of small droplets (with a larger curvature), which leads to “flattening” of the 
interphase boundary and hence the decrease of the Lyapunov functional (“Ostwald ripening”). Lifshitz and Slyozov [89] and 
Wagner [90] have developed a kinetic theory of the phase separation in the limit of small concentration of the minority 
phase. A detailed description of that theory and its extensions can be found in [21]. Here we mention some basic results. 
There exists a critical radius Rc(t) ∼ t1/3 such that smaller droplets evaporate by diffusion, while larger droplets grow by 
absorbing the matter through the majority phase. They have obtained a self-similar droplet radius distribution and found 
the law R(t) ∼ t1/3 for the characteristic droplet radius. Later, the latter law was confirmed, theoretically and numerically, 
for arbitrary concentrations of phases [91–94]. Note that at shorter time after the beginning of the phase separation process, 
a scaling law R(t) ∼ t1/4 has been predicted and observed [95–97]. The same scaling laws are observed in the framework 
of a more general model,

φt = −∇ · [M(φ)(∇2φ + φ − φ3)] (54)

with a non-constant mobility function M(φ). For instance, the crossover from R(t) ∼ t1/4 to R(t) ∼ t1/3 has been observed 
for M(φ) = 1 − φ2 [98].

A nontrivial kind of Cahn–Hilliard equation has been derived for the description of flows in thin liquid films in the 
presence of disjoining pressure [48–51]. Here the conservation law is the conservation of the liquid volume, while “the 
phases” are a macroscopic film and a mesoscopic “precursor film”. The Cahn–Hilliard equation describes the decomposition 
of a film into droplets connected by the thin precursor film. The coarsening of droplets is due to the growth of large droplets 
at the expense of small ones and because of the motion of droplets leading to their coalescence. In the framework of the 
standard model [49], the coarsening law is N(t) ∼ t−2/5, where N(t) is the number of droplets. Generalizations of that 
model leading to different coarsening rates can be found in [52].

A specific kind of coarsening takes place if there are more than two thermodynamically equivalent phases [99,100], e.g., 
because of different possible orientations of the spin (the list of examples can be found in [100]). The problem can be 
modeled by means of an overdamped sine-Gordon equation similar to the Allen–Cahn equation (7) but with the potential 
V (φ) = cos pφ − 1; the stable equilibrium phases correspond to the potential maxima, φ = 2πm/p, m = 0, 1, . . . , p − 1. For 
p = 2, the coarsening is similar to that for the Allen–Cahn equation in any dimension. If p > 2, the coarsening in 1D is 
determined by the exponentially weak interaction of domain walls, which can be now either attractive or repulsive. For 
p ≥ d + 1, a logarithmic rate of coarsening is also predicted [100].

Coarsening in non-potential systems was studied using isotropic [62] and anisotropic [59] generalizations of the convec-
tive Cahn–Hilliard equation.

A numerical analysis of coarsening versus pattern formation in non-potential pattern-forming systems has been carried 
out in [101].
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4.2. Pattern ordering

The naturally appearing patterns usually contain numerous defects [102]. Specifically, the pattern may have a multido-
main structure. One can distinguish between two kinds of domain walls in periodic patterns [41]. The first kind of domain 
walls separates patterns of different symmetry, which are generally not energetically equivalent (e.g., stripe patterns and 
hexagonal patterns). In that case, the domain wall tends to move, expanding the energetically preferred domain, but it can 
be stopped by pinning, as it was explained in the previous sections [41]. The second kind of domain walls separates patterns 
of the same type but with different orientations or different values of the wavelength. Domains with different orientations 
appear spontaneously or are created by the side walls in a finite region [103]. Different scenarios of domain wall evolution 
are possible [41]: (i) the domain wall can be a source of wavenumber selection, similarly to a side wall [104] or a ramp 
smoothly matching pattern region with a subcritical region [105]; (ii) the domain wall can be destroyed by an intrinsic 
instability; (iii) it can spread and smooth down.

Besides domain walls, patterns contain dislocations [106,107], coupled pairs of dislocations [108,109], and disclinations 
[110–112]. Their motion is also a significant factor of the ordering in periodic patterns [41,109].

While some specific phenomena related to the dynamics of defects in patterns have been a subject of a theoretical 
analysis, the full picture of pattern ordering is studied mostly by means of numerical simulations of dynamical equations 
(possibly with noise) or experimentally.

In isotropic systems with symmetry φ → −φ (e.g., for (2) or (47)), stripes of different orientations are generated. That 
allows a simplified description of patterns by the phase field φ(x, t), φ(x, t) = φ0 cos[ψ(x, t)], with the local wavevector 
k(x, t) = ∇ψ(x, t) [113]. The numerical simulations reveal power laws for the growth of domains and elimination of domain 
walls, dislocations and disclinations for the original equation (47) [114] and for the phase equation [115]. Computations 
carried out for (2) show that on the background of the final state, which is a unidomain structure, the orientational two-time 
correlation function has a power-law asymptotics, while the spatial two-point correlation function is subject to a transition 
from a power law to an exponential law with time [116].

If the symmetry φ → −φ is violated (due to an external field [117] or a cubic term in the free-energy density [118]), 
a competition between stripes and hexagons takes place. As an example, let us mention ordering in patterns governed by a 
generalized Swift–Hohenberg equation

φt = −δF

δφ
, F {φ} =

∫ {
−ε

2
φ2 + 1

4
φ4 + s

3
φ3 + 1

2
[(∇2 + 1)φ]2

}
dx, x = (x, y) (55)

Changing s, one can arrange a transition between stripes and hexagons and vice versa. The analysis of the transition has 
been done [118] by studying the structure factor S(k, t) = 〈|φ̂(k, t)|2〉, where φ̂(k, t) is the Fourier transform of the order 
parameter φ(x, t), and 〈〉 denotes ensemble averaging. One has found different scaling laws for ordering the stripes, for 
the growth of hexagonal domains due to the stripe-to-hexagon transition, and for the growth of stripes from disordered 
hexagonal patterns.

Orientational ordering in hexagonal patterns has been studied experimentally in [119] and numerically in [120], using 
the modification of Eq. (2) with broken inversion theory. Note that the problem of the orientational ordering is related to 
the problem of coarsening in the system with degenerate phases studied in [99,100].

In conclusion, we have reviewed basic models and effects related to coarsening in pattern-forming systems. Recently, 
investigations of more complex cases have been initiated, e.g., domain coarsening in an oscillatory pattern [121], pattern 
coarsening in time-dependent domains [122], and patterns in networks [123]. These subjects are beyond the scope of the 
present review.
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