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1. Introduction

Since the early 1990s, there has been an interest in understanding and accessing the effects of electromigration on
kinetic instabilities of crystal steps [1–7] and epitaxial islands [8–13], and on morphological stability of epitaxial films
[14–16]. Among other applications (which were developed primarily at the microscale), electromigration has been also used
for fabrication of nanometer-sized gaps in metallic films. Such gaps are suitable for testing of the conductive properties
of single molecules and control of their functionalities [17–19]. For instance, Ref. [19] describes fabrication of nanoscale
contacts by using electromigration to thin down and finally break the epitaxially grown ultrathin (10 ML) Ag films wetting
the Si(001) substrate. The gap between contacts can be cyclically opened and closed by applying electromigration current
at 80 K to open the gap, and enabling surface diffusion by annealing at room temperature, to close it.

Thus, for this and other emerging applications at the nanoscale [20,21], it seems important to understand and char-
acterize the effects of substrate wetting and electromigration that are simultaneously active in the physical system. This
paper combines these effects in a model that is based on (an) evolution equation(s) for the continuous profile of the film
surface. The focus is on wetting films with isotropic surface energy, but with anisotropic adatom mobility [8,9], although
the model allows any combination of wetting properties and anisotropies. We factor in and discuss the effects on film sta-
bility and morphological evolution of the electric field that is either parallel, or perpendicular to the initial planar surface
of the film, and do not limit considerations to small deviations from planarity, i.e. the arbitrary surface slopes and even
surface overhangs are permitted by the model. Models of wetting appropriate for continuum-level modeling of the surface
diffusion-based dynamics of solid films have been developed and discussed extensively primarily in the context of thin film
heteroepitaxy [22–35]. Our analysis is based on one such model, called the two-layer exponential model for the surface
energy [24,28,29,32–37] (which is particularly useful when the surface energy is anisotropic), but other models of wetting
discussed in Refs. [22–35] can be used instead, and the results are expected to be qualitatively similar. The goal of modeling
in this paper is not to match the theoretical results to the experiment [19] and thus help in understanding the experiment,
but rather to provide the broad analysis of the interplay of two effects (wetting and electromigration) that, at least to our
knowledge, has not been addressed in prior publications.

2. Problem statement

We consider a 2D single-crystal film of unperturbed height H0 with the 1D parametric surface Γ (x(u, t), z(u, t)), where
x and z are the Cartesian coordinates of a point on a surface, t is the time and u is the parameter along the surface. The
origin of the Cartesian reference frame is on the substrate, and along the substrate (the x-direction) the film is assumed
infinite. The z-axis is in the direction normal to the substrate and to the initial planar film surface. Surface marker particles
will be used for computations of surface dynamics [38]. Thus x and z (z > 0) in fact represent the coordinates of a marker
particle, which are governed by the two coupled parabolic PDEs [39,40]:

xt = V zs = V
1

g
zu (1)

zt = −V xs = −V
1

g
xu (2)

Here (and below) the subscripts t , s, u, z and x denote partial differentiation with respect to these variables, V is the normal
velocity of the surface, which incorporates the physics of the problem, and g(u, t) = su = zu/ cos θ =

√
x2

u + z2
u . Here s is the

surface arclength and θ the surface orientation angle, i.e. the one that the unit surface normal makes with the reference
crystalline direction (chosen along the z-axis). If the surface slopes are bounded at all times (surface does not overhang),
then it is more convenient to describe surface dynamics by a single evolution PDE for the height function h(x, t) of the film.
Eqs. (1), (2) can be easily reduced to such “h-equation”, which we will use for analysis; however, Eqs. (1) and (2) will be
used for most computations in this paper. Similar parametric approach was used recently in Ref. [41] for the computation
of a hill-and-valley structure coarsening in the presence of material deposition (growth) and strongly anisotropic surface
energy.

Assuming that temperature is sufficiently high and surface diffusion is operative, the normal velocity is given by:

V = DΩν

kT

[{
M(θ)μs

}
s + αE0q

{
M(θ) f (θ)

}
s

]
(3)

where D is the adatoms’ diffusivity, Ω the atomic volume, ν the adatoms surface density, kT the Boltzmann factor, μ the
surface chemical potential, M(θ) the anisotropic adatom mobility, E0 the applied electric field, q > 0 the effective charge
of adatoms, f (θ) = sin θ , if the electric field is vertical, or f (θ) = cos θ , if the electric field is horizontal, and α = ±1 is
used to select either stabilizing, or destabilizing action of the field for the chosen combination of the vertical or horizontal
orientation of the field and the mobility M(θ). The two values of α correspond to two possible field orientations once either
the horizontal, or the vertical field direction has been chosen (that is, field directed up–down, or left–right). The first term
in V describes the high-T surface diffusion, the second term describes surface diffusion enabled by electromigration [42].
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Fig. 1. Anisotropic mobility M(θ) (solid line) and its derivative (dashed line) for β = 1, N = 4 and φ = π/16.

The surface chemical potential μ is assumed to have the contributions from the surface energy and the surface wetting
interaction with the substrate/film interface:

μ = Ω[γ κ + γz cos θ] (4)

where κ = θs = g−3(zuu xu − xuu zu) is the surface mean curvature and, in the general case, γ (z, θ) is the height- and
orientation-dependent, i.e. anisotropic, surface energy. (Note again that z here stands for the shortest distance between
the substrate and a chosen point (x, z) on a film surface; this distance is the height h(x, t) of the surface if there is no
overhangs.) In this paper, we focus on the effects due to anisotropic adatom mobility, thus we will use the simpler isotropic
model for the surface energy [22–35]:

γ = γ (z) = γf + (γS − γf)exp (−z/�) (5)

where γS is the (constant) energy of a substrate/gas (or vacuum) interface, � the characteristic wetting length, and γf the
constant energy of a crystal/gas interface (that is, of the film surface). Eq. (5) is the interpolation between the two energies.
In the limit of a thick film, z → ∞, only the latter energy is retained in this expression (because the intermolecular forces
between the substrate and the surface molecules are relatively short-ranged), and in the limit of a film of zero thickness,
only the former energy is retained. Despite that Eq. (5) is phenomenological, it matches surprisingly well the experiments
and the ab-initio calculations (at least for lattice-mismatched systems) [32,36,37].

Finally, we assume the (dimensionless) anisotropic adatom mobility in the form [9]:

M(θ) = 1 + β cos2 [N(θ + φ)]
1 + β cos2 [Nφ] (6)

where N is the number of symmetry axes and φ is the angle between a symmetry direction and the average surface
orientation. β is a parameter determining the strength of the anisotropy. Throughout the paper, we present results either
for β = 0 (isotropic case), or for β = 1 and N = 4, φ = π/16. For the latter set of parameters values, the graphs of the
functions M(θ) and M ′(θ) are shown in Fig. 1.

Remark 1. In the limit z → ∞ (where wetting effect is not operative), the present problem is most closely related to the
one analyzed by Schimschak and Krug in Ref. [9]. The essential difference is that these authors determine the electric field
from the solution of the potential equation with the appropriate boundary conditions on the material boundaries, including
the moving surface [43,44]. Thus their solution for the electric field is nonlocal, unlike the local approximation used in this
paper. The local nature of the electric field explains why we did not detect traveling wave solutions, which are the hallmark
of Refs. [9,44].

Next, we choose � as the length scale and �2/D as the time scale and write the dimensionless counterparts of Eqs. (1),
(2), where we use same notations for dimensionless variables:

xt = [
B
{

M(θ)μs
} + A

{
M(θ) f (θ)

} ]
zs ≡ V zs (7)
s s
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Fig. 2. Sketch of perturbation’s linear growth rate ω(k) corresponding to longwave instability of the film surface.

zt = −V xs (8)

μ = [
1 + (G − 1)exp (−z)

]
κ + (1 − G)exp (−z) cos θ, where cos θ = zs (9)

Notice that the dimensionless forms of f (θ) and the parametric expression for κ coincide with their dimensional forms,
and that Eq. (5) has been substituted in Eq. (4). For conciseness, we keep differentiation with respect to the arclength, s,
in the dimensionless equations, but their most transparent forms for the computations result when the differentiation with
respect to s is replaced with the differentiation with respect to the parameter u, using ∂/∂s = (1/g)∂/∂u. In Eqs. (7)–(9),
B = Ω2νγf/(kT �2) is the surface diffusion parameter, A = ανΩE0q/(kT ) is the strength of the electric field, and G = γS/γf
is the ratio of substrate-to-film surface energies. For wetting films, G > 1, for non-wetting films, 0 < G < 1. Notice that A
may take on positive or negative values through the parameter α.

As was mentioned above, if there is no overhangs, then Eqs. (7)–(9) can be reduced to the single dimensionless evolution
equation for the surface height h:

ht = B
[
M(hx)

(
1 + h2

x

)−1/2
μx

]
x + A

[
M(hx)

(
1 + h2

x

)−1/2
f (hx)

]
x (10)

where

μ = [
1 + (G − 1)exp(−h)

]
κ + (1 − G)exp(−h)

(
1 + h2

x

)−1/2
, κ = −hxx

(
1 + h2

x

)−3/2
(11)

f (hx) = hx if the electric field is vertical, or f (hx) = 1 if the electric field is horizontal. Also, M(hx) is given by Eq. (6), where
θ is replaced by arctan(hx).

Using values: D = 1.5 × 10−6 cm2/s, Ω = 2 × 10−23 cm3, γf = 2 × 103 erg/cm2, ν = 1015 cm−2, kT = 1.12 × 10−13 erg,
� = 3 × 10−8 cm (0.3 nm, or 1 ML), gives B = 8. Using q = 5e (where e = 5 × 10−10 statcoulombs is the absolute value of
the electron charge) and the minimum applied voltage difference �V = 5 × 10−3 V acting across the typical distance of
the order of the film height, �L = 10 nm, gives |qE0| = 4 × 10−4 erg/cm, which translates to |A| = 71. Applied voltage in
surface electromigration experiments at the nanoscale can be as high as 1 V [19]; thus, in this study, we explored the range
of field strengths 71 � |A|� 7100.

In the following sections, we will analyze several representative situations.

3. Vertical electric field

3.1. Linear stability analysis

The small slope approximation (|hx| � 1) of Eq. (10) reads:

ht = BM(0)
[{

(1 − G)exp(−h) − 1
}

hxxx + hx(G − 1)exp(−h)(hxx + 1)
]

x

+ BM ′(0)(G − 1)
[
exp(−h)h2

x

]
x + AM(0)hxx − 3

2
AM(0)h2

xhxx + 2AM ′(0)hxhxx (12)

where the mobility has been linearized about the flat surface hx = 0, that is, M(hx) = M(0) + M ′(0)hx , M(0) > 0. The last
two terms are the simplest nonlinearities from the expansion of the electromigration flux that involve M(0) and M ′(0).
Without loss of generality, we will take M(0) = 1 here and elsewhere in this paper. (See Fig. 1. When mobility is isotropic,
i.e. β = 0, then M = M(0) = 1, as is seen from Eq. (6).) Notice that the anisotropy of the mobility, M ′(0), does not have an
effect on linear stability, as it enters in the coefficients of the nonlinear terms. Also note that the last three terms can be
written in a conservative form similar to the terms in the first line of the equation and to the first term in the second line
(and this is how they are implemented in the code).

Introducing small perturbation ξ(x, t) in Eq. (12) by replacing h with h0 + ξ(x, t) (where h0 = H0/� is the dimensionless
unperturbed film height), linearizing in ξ and assuming normal modes for ξ , gives the perturbation growth rate ω(k), where
k is the perturbation wavenumber:
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Fig. 3. Wetting films and vertical electric field: Instability cut-off wavenumber kc . (a) vs. h0, A = −71, G = 2; (b) vs. A, h0 = 10 (solid line), h0 = 1 (dashed
line), G = 2; (c) vs. G , h0 = 10 (solid line), h0 = 6 (dash-dotted line), h0 = 3.5 (dashed line), A = −71.

Fig. 4. Wetting films and vertical electric field: Maximum growth rate ω. Cases (a)–(c) are as in Fig. 3.

ω(k) = −B
[
1 + (G − 1)exp(−h0)

]
k4 − [

B(G − 1)exp(−h0) + A
]
k2 (13)

Remark 2. When wetting interaction is absent (thick film: h0 → ∞), Eq. (13) reduces to the standard one, ω(k) = −Bk4 −
Ak2, which reflects the stabilizing action of the surface diffusion and either stabilizing (A > 0, electric field is in the positive
z direction), or destabilizing (A < 0, electric field is in the negative z direction) action of the electric field. Such film is
absolutely stable when A > 0, but when A < 0 it is long wave-unstable.

3.1.1. Analysis of Eq. (13)
– Wetting films (G > 1). From Eq. (13), one notices that wetting films are absolutely linearly stable when A > 0, but they

are long wave-unstable when A < −B(G − 1)exp(−h0) < 0 (see Fig. 2). The short-wavelength cut-off wavenumber, the
maximum growth rate, and the wavenumber at which the latter occurs are:

kc =
√

−A − B(G − 1)exp(−h0)

B[1 + (G − 1)exp(−h0)] , ωmax = 1

4

[A + B(G − 1)exp(−h0)]2

B[1 + (G − 1)exp(−h0)] , kmax = kc√
2

(14)

kc and ωmax are plotted in Figs. 3 and 4. The film stability decreases with increasing h0, and this trend saturates
around h0 = 10 (3 nm). That is, for the stated field strength A = −71, films of thickness h0 > 10 do not “feel” the
stabilizing presence of the substrate, and they are as stable as the films that do not interact with the substrate at all.
Of course, increasing field strength |A| makes the film less stable, but increasing G makes it more stable, since the
substrate energy provides stabilizing effect. In Figs. 3c and 4c, the rate of decrease of kc and ωmax with G (i.e., the rate
of stabilization) increases fast with decreasing h0. For A = −71, at h0 ∼ 3.5 and G ∼ 300, the entire dispersion curve
ω(k) is below the k-axis, see the dashed curves in Figs. 3c and 4c, and thus the film is absolutely linearly stable for
h0 <∼ 3.5 and G >∼ 300. By analyzing the condition for long-wave instability, A < −B(G −1)exp(−h0) < 0, one can get
an understanding of why this happens. Indeed, this condition is equivalent to h0 > ln (B A−1(1 − G)), and for the typical
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Fig. 5. Non-wetting films and vertical electric field: (a) Contour plot of the critical thickness h0c . (b) Diagonal cross-section (from the lower left corner to
the upper right corner) of the contour plot in (a).

values of A and B stated above and for moderately large G , the right-hand side of the latter inequality is negative, thus
the long-wave instability occurs for any film height h0. This is similar to the situation when wetting effects are absent,
see Remark 2 (but of course the spectrum of unstable wavenumbers and the magnitude of the maximum growth rate
are different). There is a critical thickness h0c below which the film is absolutely linearly stable only if G − 1 ∼ |A|, i.e.
when G is of the order of at least one hundred.

– Non-wetting films (0 < G < 1). In this case, for A < 0 the long-wave instability occurs for any film thickness and any
electric field strength – which is again similar to the situation when wetting effects are absent, see Remark 2. When
A > 0, the long-wave instability (with kc, ωmax and kmax numerically similar to those shown in Eq. (14)) occurs when
the film height is less than critical, h0 < h0c = ln (AB−1(1 − G)−1). When h0 > h0c the film is absolutely linearly stable.
h0c is plotted in Fig. 5. It is clear that h0c increases with increasing either A, or G , or both parameters.

3.2. Nonlinear surface dynamics of wetting films

Computations with the small-slope Eq. (12) (where M(0) = 1, M ′(0) = 0) were performed for G = 2 and varying field
strengths A that satisfy the condition for long-wave instability, A < −B(G − 1)exp(−h0) < 0. Computational domain was
0 � x � λmax, λmax = 2π/kmax with periodic boundary conditions, and the initial condition was the small-amplitude cosine-
shaped perturbation of the flat surface h0 = const. All computations produced steady-state solutions that have the shape of a
vertically stretched cosine curve with a fairly large amplitude. However, neither of these steady states were confirmed when
instead fully nonlinear parametric equations (7)–(9) were computed.1 Fig. 6 shows the computed morphology. Overhangs
are clearly visible, and the bottom of the “pit” flattens out as it approaches the substrate due to an increase of the repulsive
force, promoting overhangs in the vicinity.

Similarly, when Eq. (12) was computed with the random small-amplitude initial condition on the domain 0 � x � 20λmax
(the mobility was again isotropic), the result was a perpetually coarsening hill-and-valley structure. This was again not
confirmed in the computations of parametric equations. The late-time morphology computed using the parametric equations
is shown in Fig. 7a. The surface develops deep “pockets” whose walls overhang and eventually merge, resulting in tear
drop-shaped voids trapped in the solid; this can be seen, for instance, on the interval 40 < x < 50. Fig. 7b shows the typical
random initial condition.

Anisotropic mobility resulted in morphologies that are similar to the ones shown in Figs. 6 and 7a, but skewed left or
right, depending on the sign of φ. As we pointed in Section 3.1, anisotropy matters in the nonlinear stage of the dynamics.

4. Horizontal electric field

4.1. Linear stability analysis

In the case of the horizontal electric field the small slope approximation of Eq. (10) reads:

1 Of course, we first carefully checked that values of kc , kmax and ωmax from the linear stability analyses are reproduced in the computations of the
parametric equations. This is one of the methods that we used for checking that the parametric code is error-free.
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Fig. 6. Wetting films, vertical electric field, isotropic mobility: One wavelength of the surface morphology on the periodic domain 0 � x � λmax, computed
using Eqs. (7)–(9) (M ′(0) = 0) starting from the small-amplitude cosine-shaped initial condition. A = −71, h0 = 10, G = 2.

Fig. 7. Wetting films, vertical electric field, isotropic mobility: (a) Surface morphology computed using Eqs. (7)–(9) (β = 0 in Eq. (6)) on the domain
0 � x � 20λmax, starting from the small-amplitude random initial condition shown in (b). A = −71, h0 = 10, G = 2.

ht = B
[{

(1 − G)exp(−h) − 1
}

hxxx + hx(G − 1)exp(−h)(hxx + 1)
]

x

+ BM ′(0)(G − 1)
[
exp(−h)h2

x

]
x − Ahxhxx + AM ′(0)hxx − 3

2
AM ′(0)h2

xhxx (15)

Again here we retained two simplest nonlinearities from the expansion of the electromigration flux term. The coefficient
M(0) in the third-to-last term has been set equal to one. This nonlinear term and the last (nonlinear) term in Eq. (15) do
not have any effect on linear stability. Unless mobility is isotropic, the second-to-last term of Eq. (15) has an effect on linear
stability. Assuming anisotropy, the growth rate is:

ω(k) = −B
[
1 + (G − 1)exp(−h0)

]
k4 − [

B(G − 1)exp(−h0) + AM ′(0)
]
k2 (16)
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Fig. 8. Wetting films, horizontal electric field, anisotropic mobility: Amplitude of the steady state vs. the perturbation wavelength λ for different strengths
of the electric field. Upper inset – zoom into the area of the graph around λ = 0.5. Lower inset – minimum height of the steady-state profile vs. λ, also for
different strengths of the electric field. Arrows labeled “λmax” point out the λmax value for each of the three electric field strengths. Parameters values are
h0 = 10, G = 2.

Comparing Eqs. (13) and (16), it is clear that one can obtain stability properties in the horizontal field case by replacing
A in Eq. (13) with AM ′(0). Since M ′(0) ≈ −2.7 (see Fig. 1) for the chosen parameter values in Eq. (6), then for instability
one must have A > 0 (the electric field is in the positive x direction). Thus, for instance, the stability analysis of wetting
films in the paragraph 1 of Section 3.1.1 translates directly into the case of the horizontal field simply by replacing A in the
formulas by −2.7A, where A > 0. Figs. 3b and 4b are also valid in the case of the horizontal field if the A values along the
horizontal axes are understood as values of the product −2.7A (thus the absolute characteristic A values are roughly three
times smaller than in the case of the vertical field).

4.2. Nonlinear surface dynamics of wetting films

4.2.1. Periodic steady states from sinusoidal perturbations
Computations with either the small-slope Eq. (15), or the parametric equations (7)–(9), of the evolution of an one-

wavelength (λ),2 small-amplitude cosine curve-shaped perturbation on a periodic domain resulted in steady-state profiles
that have the shape of a vertically stretched cosine curve with a fairly large amplitude. The steady-state profiles often dis-
played a more sharply peaked bottom and less curved walls than the cosine curve, and the amplitude is significantly smaller
in the (fully nonlinear) parametric case. In fact, it can be noticed from Fig. 8 that the film is nowhere close to dewetting
the substrate for all tested field strengths, notwithstanding that the stabilizing influence of the substrate is minimal for the
chosen parameters’ values (see the discussion in Sections 3.1.1, paragraph 1, and 4.1).

Remark 3. When Eq. (15) is used in a computation, the last term there is largely responsible for the saturation of the surface
slope and the existence of the steady state. When this nonlinear term is omitted from the equation, the slope increases until
the computation breaks down.

In the computations of the parametric equations, unless λ is larger than approximately 4λmax, the surface evolves to-
wards the steady state mostly by vertical stretching of the initial shape. Perturbations of larger wavelength develop a
large-amplitude, hill-and-valley-type distortions that slowly coarsen into a steady-state, cosine curve-type shape. Fig. 8
shows the amplitude of the steady-state profile, hmax − hmin, and the height of the profile at its lowest point, hmin, vs. λ. It
can be seen that, at least for moderate strengths of the electric field, growth of the amplitude is logarithmic in the vicinity
of λc , and for λ 
 λc growth is linear. The numerically determined slope of the linear section of A = 71 curve is 0.208, the
one of the A = 710 curve is 0.217, and the one of the A = 7100 curve is 0.209, which suggests that the slope is insensitive
(or very weakly sensitive) to the field strength. The decay of hmin with increasing wavelength mirrors the growth of the

2 In this computation, λ is not necessarily equal to λmax.



M. Khenner / C. R. Physique 14 (2013) 607–618 615
Fig. 9. Wetting films, horizontal electric field, anisotropic mobility: (a) log–log plot of the averaged (over ten realizations) maximum hill height; (b) log–log
plot of averaged kink–kink (valley–valley) distance. Dots: computed data, lines: fitting curves. A = 71, h0 = 10, G = 2.

amplitude, thus the steady-state surface shape is symmetrically vertically stretched about the equilibrium surface position
h0 = 10. All computed steady states are stable with respect to the imposition of random small- and large-amplitude point
perturbations, which we confirmed by computing the dynamics of such perturbed shapes.

4.2.2. Coarsening of random initial roughness
We employed fully nonlinear simulations based on parametric equations for the determination of the coarsening laws at

increasing electric field strengths and at variable wetting strengths (characterized by values of the parameters h0 and G).
Computations were performed on the domain 0 � x � 20λmax with periodic boundary conditions; all runs were terminated
after the surface evolved into a large-amplitude hill-and-valley structure with 3–5 hills. Unless wetting is strong, i.e. h0

is small and G is large – the case that is discussed in more detail below – the slopes of the hills are constant at 24◦
during coarsening, except for the short initial period. Figs. 9–11 are the log–log plots of the averaged, over ten realizations,
maximum surface amplitude hmax − hmin and the averaged mean horizontal distance X between valleys (kinks) vs. time.

Remark 4. We also attempted to compute coarsening dynamics resulting from the small-slope Eq. (15). While the hill-
and-valley structure does emerge and coarsens with time, the characteristic constant hill slope is nearly 90◦ . This suggests
that additional nonlinear terms must be retained in Eq. (15) for predictive computations and raises the question of which
terms must be retained. We had not tried to obtain an adequate nonlinear small-slope model, leaving this agenda to future
research.

Of course, increasing the field strength results in faster coarsening, as the times needed for coarsening into a “final”
structure are 103, 10, and 1 for field strengths A = 71, 710 and 7100, respectively. These values also point out the decrease
of the rate of change of a coarsening rate with the increasing field strength. Other than that, the coarsening laws are similar
for the three tested field strengths. Fits to the data in the case A = 71 are shown in Figs. 9a and b. At small times, coarsening
is fast (exponential, see Fig. 9b), then it changes to a slower power law with the exponent in the range ∼ 0.1 ÷ 0.2. (Since
the values of the amplitude’s logarithm are negative, we were unable to fit the exponential law to the data in Fig. 9a, thus
we fitted the quadratic, which results in the tε1+ε2 log10 t -type law.)

Remarkably, when h0 is decreased from 10 to 6, a very different coarsening behavior emerges, see Figs. 10a, b and 11a, b.
At G = 2, after the period of slow power-law coarsening at intermediate times, the coarsening accelerates to exponential
coarsening or tε1+ε2 log10 t type coarsening at late times (Figs. 10a and b)). (For reference, the linear stability in the case
h0 = 6 is shown in Figs. 3c and 4c by the dash-dotted line.) At G = 500, we did not output a sufficient number of data
points in the beginning of the computation, but it is expected that initial coarsening is still faster than the power law. The
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Fig. 10. Same as Fig. 9, for A = 71, h0 = 6, G = 2.

Fig. 11. Same as Figs. 9 and 10, for A = 71, h0 = 6, G = 500.

amplitude starts to decrease towards the end of the simulation, and the kink–kink distance coarsens fast on the entire time
interval.3

It seems certain that such unusual dynamics in the strongly wetting states emerges due to nonlinear “overdamping” of
electromigration-induced faceting instability by the surface–substrate interaction force. Toward this end, in Figs. 12a and b,
the surface shapes and surface slopes for h0 = 10, G = 2 and h0 = 6, G = 500 cases are compared at the time when seven
hills formed on the surface. In the former case, the hills are steep, have rather uniform height and their slopes are almost
straight lines. In the latter case, they are more irregular, “rounded”, and the average height is smaller. It is reasonable to

3 We also mention that this accelerated coarsening dynamics is not reproduced by the small-slope Eq. (15), as can be expected from Remark 4. While
there is some evidence of acceleration, this computation breaks down too fast.
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Fig. 12. (Color online.) Wetting films, horizontal electric field, anisotropic mobility: (a) Surface height. Black line: A = 71, h0 = 10, G = 2, red line: A = 71,
h0 = 6, G = 500; (b) Surface slope. Black crosses: A = 71, h0 = 10, G = 2, red triangles: A = 71, h0 = 6, G = 500. Note that the computational domains are
of different length for the two presented cases, since the λmax values differ.

expect that in the opposite case of non-wetting films, the surface–substrate interaction will instead “sharpen up” the hills,
i.e. increase their slopes and make the surface structures appear more spatially and temporally uniform.

Finally, we remark that the discussed coarsening laws for strong wetting cases also are qualitatively different from the
laws governing coarsening in the absence of wetting, but in the presence of deposition, attachment–detachment, strong sur-
face energy anisotropy, and interface kinetics [41,45]. Indeed, only the coarsening exponents shown in Fig. 9 (week wetting)
are within the same range (0.1–0.5) for nearly the whole computational time interval, as are the exponents computed in
the cited papers.

5. Conclusions

In this paper, the effects of electromigration and wetting on thin film morphologies are discussed, based on the contin-
uum model of film surface dynamics. It has been shown that the wetting effect modifies significantly the stability properties
of the film and the coarsening of electromigration-induced surface roughness. Also it has been shown that the small-slope
evolution equations that were employed in many studies of electromigration effects on surfaces, are often inadequate for the
description of strongly-nonlinear phases of the dynamics. It is expected that the account of the surface energy anisotropy
and the electric field non-locality (through the solution of the moving boundary value problem for the electric potential)
will lead to uncovering of even more complicated behaviors.
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