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Due to their strong surface energy anisotropy, subboundaries generally do not intersect
solid–melt interfaces at right angles. As a consequence, subboundary surface grooves move
laterally during solidification, and thereby interact, in alloys, with the solute concentration
gradients created in the liquid. We discuss the consequences of this effect during thin
directional solidification at speeds (V ) lower than the cellular-instability threshold V c of
the system. We show that the lateral drift of the subboundary grooves slows down (or
equivalently the tilt angle of the subboundaries relative to the growth direction decreases)
as V increases and vanishes as V approaches V c.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Du fait de leur forte anisotropie capillaire, les sous-joints de grains ne coupent générale-
ment pas les interfaces solide–liquide à angle droit. En conséquence, les sillons de surface
des sous-joints se déplacent latéralement en cours de solidification, et ainsi, dans les al-
liages, entrent en interaction avec les gradients de concentration de soluté créés dans
le liquide. Nous discutons les conséquences de cet effet en solidification directionnelle
d′échantillons minces à des vitesses de solidification (V ) inférieures au seuil d′instabilité
cellulaire V c du système. Nous montrons que la dérive latérale des sillons des sous-joints
se ralentit (ou, ce qui revient au même, l’angle d’inclinaison des sous-joints par rapport à
la direction de croissance diminue) lorsque V augmente et s’annule lorsque V atteint V c.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In directional solidification, i.e., when solidification is performed at an imposed speed V under a fixed unidirectional
thermal gradient, the solid–melt interface of a non-faceted dilute binary alloy undergoes a morphological transition at a
threshold value V c of V : the solid–melt interface is planar (it follows an isotherm) at V < V c, and exhibits a “cellular”
(periodically modulated) shape at V > V c. The physical factors at play are the solute concentration gradient ahead of the
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Fig. 1. Symmetrical surface groove of a subboundary (SB) with a strong surface energy anisotropy at rest in a unidirectional thermal gradient. For the
symbols, see the text.

interface, the applied thermal gradient G and the solid–liquid surface energy γsl . The destabilizing effect exerted on the
interface by the solute concentration gradient increases as V increases and exceeds the stabilizing effects of the other two
factors when V exceeds V c [1,2]. Coriell and Sekerka studied the influence, on this morphological transition, of isotropic
grain boundaries intersecting the solid–melt interface using linearized equations for the solidification. They showed that,
after a transient, grain boundary surface grooves take on a steady profile in the form of a damped sinusoid, the amplitude
of which increases as V increases and diverges as V approaches V c [3].

At the melting points of alloys, high-angle grain boundaries (GBs) generally are wetted by a thin liquid film and have
little surface energy anisotropy. By contrast, low-angle grain boundaries, or subboundaries (SBs) remain dry and keep, near
the solid–melt interface, the high surface energy anisotropy that they have at lower temperature [4]. Therefore, when local
equilibrium is reached, SBs do not intersect the solid–melt interfaces at right angle. We study here some consequences
of this fact on the behavior of SBs during the solidification of dilute alloys. Let us first consider a thin (two-dimensional)
directional-solidification system at rest (V = 0). We take the x axis parallel to the isotherms, the z axis parallel to the growth
direction, the origin of x at the abscissa of the surface-SB junction J and the origin of z at the isotherm that corresponds
to the unperturbed planar solid–liquid interface (Fig. 1). We call φ the tilt angle of the SB with respect to z, γ the surface
energy of the SB and γsl the surface energy of the solid–liquid interface. We assume the orientation dependence of γ to
be strong and that of γsl to be negligible. We denote the entities related to the right-hand (x � 0) side and the left-hand
(x � 0) side of the system by the indices “R” and “L”, respectively. The condition of local equilibrium at J is given by the
Young–Herring equation:

γsl(tL + tR) + σ = 0 (1)

In this equation, tL and tR are the unit tangent vectors to the R and L flanks of the groove, respectively, and σ is the surface
tension force or “σ vector” of the SB defined by

σ = γ t + dγ

dφ
n (2)

where t and n are the unit vectors tangent and normal to the SB, respectively [5]. At rest, the solute concentration in
the liquid is uniform. The condition that the surface is continuous in J imposes that the shape of the groove has mirror
symmetry with respect to the z axis. Thus φ takes a value φa (where “a” stands for “at rest”) such that σ is parallel to z. This
angle generally is a large one owing to the strong surface energy anisotropy of SBs. Incidentally, it should be stressed that
the profile of the surface groove in this “symmetrical configuration” is given by the standard formulae for a meniscus [6]:
the anisotropy of the SB does not come into play, except in so far as it alters the Young angle of the surface at J . During
solidification of a pure substance, φ would remain equal to φa independently of V . In this note, we show that, during
directional solidification of a dilute alloy, φ deviates from φa, breaking the symmetry of the groove. Most importantly, φ

tends to zero as V approaches V c, irrespective of the strength of the anisotropy of the SB.

2. The cellular instability

The most basic model of thin directional solidification neglects the diffusion of solute in the solid, the rejection of latent
heat by the growing solid and the kinetic difference in thermodynamic potentials between liquid and solid at the interface.
The temperature distribution is assumed to be Θ = Θliq + Gz (Θliq: liquidus temperature). The “thermal length” lth = �Θ/D
(�Θ: solid–liquid thermal gap; D: diffusion coefficient of the solute in the liquid) is taken as a unit of length and l2th/D as

a unit of time. V and γsl are represented by the dimensionless control parameters μ = lth V /D and d0 = l−1
th �Θ−1�S−1

v γsl
(�Sv: entropy of fusion per unit volume), respectively. The unknowns are the profile of the solid–melt interface, denoted
by z = ζ(x), and a reduced concentration field u(x, z) defined such that u(x, z = 0) = 1 and u(x, z = +∞) = 0 in the planar
steady state of the system. The equations for the solidification in the absence of grain boundary are three in number. They
include the diffusion equation at z > ζ :
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(∂xx + ∂zz + μ∂z)u = ∂t u (3)

and two equations at z = ζ , namely, the mass conservation equation:

∇u.n = −[
K + (1 − K )u

]
(μ + ∂tζ )z.n (4)

and the Gibbs–Thomson equation:

ζ = 1 − u + d0κ (5)

where κ is the curvature of the interface and K is the partition coefficient. These equations admit a planar stationary
solution denoted by a superscript “0”, which reads:{

ζ 0 = 0

u0 = exp(−μz)
(6)

The linear stability analysis of this solution was famously performed by Mullins and Sekerka [2] and was studied in greater
detail by several authors afterwards [7,8]. We give an outline of this analysis. A perturbed solution of the form ζ 0 + Re(δζ ),
u0 + Re(δu), where:{

δζ = Z exp(ikx + ωt)

δu = U exp(−qz)exp(ikx + ωt)
(7)

is plugged into the equations for the solidification. The constant Z is the amplitude of the surface deformation and U is
the amplitude of the perturbation to the concentration field. As the system under consideration is infinite in the x and z
directions, the wavevector k must be real, entailing that ω and q are real, and q must be positive. We may assume k to be
positive without loss of generality. Eq. (3) leads to:

ω = q2 − μq + k2 (8)

After linearization with respect to the perturbation, Eqs. (4) and (5) lead to a homogeneous linear system for Z and U ,
which reads:{(

ω + Kμ2)Z − [
q − (1 − K )μ

]
U = 0(

μ − 1 − d0k2)Z − U = 0
(9)

The characteristic equation for system (9) is

ω = [
q − (1 − K )μ

](
μ − 1 − d0k2) − Kμ2 (10)

The concentration-to-deformation amplitude ratio is given by

M = U/Z = [
q − (1 − K )μ

]−1(
ω + Kμ2) (11)

The problem is now solved, at least implicitly. An elementary calculation leads from Eqs. (8) and (10) to an algebraic
equation for q as a function of k (more precisely, k2) and μ, and then to the function ω(k,μ). The planar solution is stable
against those modes, for which ω < 0 and unstable against those, for which ω > 0. The neutral (ω = 0) modes, denoted by
a subscript “n”, are solutions of the system of equations:{

q2
n − μqn + k2

n = 0[
qn − (1 − K )μ

](
μ − 1 − d0k2

n

) − Kμ2 = 0
(12)

The calculations show that neutral modes are represented by a closed curve in the (μ,k) plane. Planar solutions are stable
against any perturbation outside that “neutral curve”, and unstable against some set of perturbations inside it. Let (μc,kc) be
the lower critical point of the neutral curve. μc is the cellular-instability threshold of the system, and kc the wavevector of
the critical mode. When d0 � 1, as is generally the case in the experiments, kc ≈ (K/2)1/3d−1/3

0 and μc ≈ 1+3(K/2)2/3d1/3
0 .

The speed at which μ = 1 is called the “constitutional supercooling” speed. It is the speed above which the solute concen-
tration gradient overcomes the stabilizing effects of G , but not yet those of γsl.

3. Isotropic grain boundary surface grooves

We wish to calculate δζ(x) and δu(x, z) below the cellular threshold for a stationary solid–melt interface intersected by
a grain boundary at x = 0 (Fig. 2). As the emergence of the grain boundary generates a slope discontinuity of the interface,
δζ(x) and δu(x, z) must be sought in the form of piecewise-defined (R or L) functions. Let us first consider an isotropic
GB. This problem was dealt with by Coriell and Sekerka [3], as already mentioned, but we use here a more straightforward
approach consisting of replacing the equations for the solidification by the linearized Eqs. (8) to (12) from the outset.
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Fig. 2. Steady-state surface grooves during directional solidification. Left panel: isotropic grain boundary (GB). Right panel: anisotropic subboundary (SB).
The groove is drifting towards the left. The deformation of the solid–melt interface has been strongly exaggerated.

Fig. 3. Subcritical (μ � μc) and supercritical (μ � μc) neutral modes calculated with K = 0.75 and d0 = 6.5 × 10−3. Left panel: wavevector kn. Hatched
area: instability range of the planar steady solution. Right panel: deformation amplitude Zn (top graph) and amplitude ratio Mn (bottom graph).

Naturally, the exact solution could be found numerically using, for instance, a boundary-integral method [10]. However, our
approach is likely to yield a good approximation of the exact solution in the limit of small p, i.e. for shallow surface grooves.
Moreover, it can be used as a method for constructing trial functions for the numerical calculations.

When μ < μc, the perturbation due to the GB grove must vanish at large x. Therefore, the wavevector in (7) must be
complex, as well as the amplitudes. To be more explicit, the R-side of the interface profile should be written as

Re(δζR) = exp(−kix)
[

Zr cos(krx) − Z i sin(kix)
]

(13)

with ki > 0, where the subscripts “r” and “i” designate the real and imaginary parts, respectively. On the L-side, we have
ζL(x) = ζR(−x), or equivalently, kL = −kR. The calculation of δζ(x) and δu(x, z) at fixed μ can be performed in two stages.
Firstly, qn and kn are calculated using Eqs. (12). Note that a solution with ki > 0 always exists, since only k2 appears in
the equations. Secondly, the amplitudes Zn and Un are calculated using Eq. (11) and the boundary conditions at x = 0.
Fig. 3 shows kn(μ) calculated with values of K and d0 corresponding to the model transparent alloy CBr4–C2Cl6 at a
concentration of 0.15 mol% C2Cl6 under a thermal gradient of 10 km m−1 [9]. As could be expected, kn equals the (real)
critical wavevector kc at μ = μc, and tends to ka = id−1/2

0 (i.e. the purely imaginary wavevector of surface grooves at rest) as
μ → 0. The evolution of Z and M with μ also deserves attention (right panel of Fig. 3). Note, in particular, that Re(Mn) and
Im(Mn) increase very slowly as μ varies from 0 to a value of about 1. Above this value, Re(Mn) increases almost linearly,
while Im(Mn) goes through a maximum to fall back to zero as μ → μc. This crossover is linked to the crossing of the
constitutional-supercooling threshold.

The boundary conditions at x = 0+ include the Young–Herring one, which reads:

−ki Zr − kr Z i = p (14)

or, in a compact form,

Im(kn Zn) = −p (15)
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where p (which is independent of μ and positive) is derived from Eq. (1) with σ = γ z. Other equations are provided by
the continuity conditions. In fact, as the continuity of ζ and u is already assured by symmetry, it only remains to meet the
condition of continuity on ∂u/∂x, which reads:

Im(knMn Zn) = 0 (16)

The solution of the system formed by Eqs. (15) and (16) is:

Zn = p
M∗

n

knMni
(17)

where M∗
n is the complex conjugate of Mn. By expanding Eqs. (12) in powers of δμ = μ − μc, it can be shown that

ki ∼ |δμ|1/2 and Mi ∼ |δμ|1/2, while Mn tends to a real value as δμ → 0. Thus Eq. (17) predicts that Zr diverges like
|δμ|−1/2 as μ → μc. Simultaneously, ki Zr and kr Z i both tend to constant values, allowing Eq. (14) to be fulfilled until
μ = μc. This means that, if the existence of a GB groove greatly affects the nature of the transient, leading to the cellular
instability, it leaves unchanged the value of the instability threshold, as previously noted by Coriell and Sekerka [3].

4. Anisotropic subboundary surface grooves

When the grain boundary that intersects the interface has a strong surface energy anisotropy, the mirror symmetry
between the two sides of the surface groove is broken, and the groove travels along the surface (right panel of Fig. 2). We
must therefore look for solutions to the equations for the solidification, which travel as a whole at a constant velocity V T ,
where T = tan φ, along the x axis. By making the change of variable x → x − μT t in Eq. (7), it can be seen that traveling
modes (designated by a subscript “t” if useful) correspond to ω = ikμT . Plotting this relation into Eqs. (8) and (10) leads to:{

q2
t − μqt + k2

t = iktμT[
qt − (1 − K )μ

](
μ − 1 − d0k2

t

) − Kμ2 = iktμT
(18)

which replaces the neutral-mode equations (12). The rhs terms break the mirror symmetry and entail that ktL 
= −ktR and
qtL 
= −qtR. The calculations show that a R-L pair of solutions with kRi > 0 and kLi < 0 exists at any value of μ below μc
for sufficiently low values of T . Once kD and kL are known, the amplitudes can be determined using the Young–Herring
equation and the continuity conditions at x = 0, as explained above. However, U t is related to Zt by U t = Mt Zt, where
Mt = [qt − (1 − K )μ]−1(iμktT + Kμ2). There are thus only four independent unknowns, for instance, the real and imaginary
parts of ZR and ZL. On the other hand, the Young–Herring equation now yields two independent equations (for the R- and
L-flanks of the groove, respectively), which, added to the three continuity conditions, bring to five the number of conditions
at x = 0. Therefore, the problem has no solution, except perhaps for a particular value of T , which, if it exists, depends on
μ. This is the central conclusion of this report. At this point, it should be noted that, as qR 
= qL, the continuity between uR
and uL can only be ensured at z = ζ , but not at z > ζ along the x = 0 line. This imperfection is inherent in the linearized
theory. While its quantitative consequences are unknown, its is clear that it cannot affect the fact that the lateral drift
velocity is uniquely determined at given control parameters, which is a general property symmetry-broken one-dimensional
out-of-equilibrium patterns [11–13].

We shall now proceed with the calculation of T as a function of μ. The five above-mentioned conditions at x = 0 are:

Im(kR ZR) = −pR (19)

Im(kL ZL) = −pL (20)

Re(ZL) = Re(ZR) (21)

Im(MR ZR) = Im(ML ZL) (22)

Im(kRMR ZR) = Im(kLML ZL) (23)

As mentioned, they represent a system of five linear equations for the four unknowns ZRr, ZRi, ZLr and ZLi. Elementary but
lengthy calculations show that the condition for this system to have a solution can be written in the form:

Fsym(pR + pL) + Fanti(pR − pL) = 0 (24)

where:

Fsym = (|kR|2 + |kL|2 − 2kDikLi
)
MDiMLi −

(|MR|2 + |MR|2 − 2MRrMLr
)
kDrkLr (25)

and

Fanti = (|kR|2 − |kL|2
)
MDiMLi +

(|MR|2 − |MR|2)kDrkLr + 2(kDrMDrkLiMLi − kLrMLrkRiMRi (26)
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Fig. 4. Left panel: Tilt angle of an anisotropic SB with respect to the direction of growth as a function of the solidification speed. For the values of the
material parameters assumed in the calculation, see the text. Right panel: Profile of the surface (ζ ) and perturbation to the solute distribution along the x
axis (δu) at μ = 0.15. aniso: same SB as in the left panel. iso: isotropic SB, everything else equal. The scales of the x and ζ axes are in a ratio of 2000:1.

The functions Fsym and Fanti are symmetrical and antisymmetrical with respect to permutations of R and L, respectively,
hence their names. The quantities kR, kL, MR and ML are functions of T and μ via System (18) while pR and pL are
functions of T via Eq. (1). Therefore Eq. (24) can be viewed as an equation for T at given μ. This equation can be shown
to have a single solution, provided that the SB has a moderate, non-singular (without facet or unstable orientation range)
anisotropy. A calculated T (μ) curve is shown in Fig. 4. The anisotropy function taken for the calculation was γ /γsl =
1 − 0.5 × 10−2 cos(4φ − π/4). With this anisotropy, pa ≈ 0.05 and Ta ≈ φa ≈ 1.4 × 10−2rad. The values of K and d0 were
the same as in Fig. 3. It can be seen that, as μ increases from 0 to μc, T first remains close to Ta over a large range of μ,
and then falls rapidly to zero. Most of the decrease occurs between μ = 1 and μ = μc. The right panel of Fig. 4 illustrates
the amplification and shift of δu linked to the lateral propagation of the SB groove.

Knowing that T → 0 as μ → μc, we can study in more detail the behavior of the T (μ) function in this limit. By
expanding Eqs. (18), (25) and (26) in powers of T , it can be shown that Fsym ≈ 4 f (0)

sym and Fanti ≈ 4 f (1)

antiT , where

f (0)
sym = M2

ni|kn|2 (27)

and

f (1)

anti = knr Re
(
m′k∗

nM∗
n

) + Mni Im
(
κ ′k∗

nM∗
n

)
(28)

where m′ and κ ′ depend on δμ = μ − μc, but not on T . At small T , Eq. (1) can be written in the form pR(T ) ≈ pR0 + p′
RT

and pL(T ) ≈ −|pL0| + p′
LT . Plugging these expressions into Eq. (24), we obtain:

T ≈ f (0)
sym(pR0 − |pL0|)

f (1)

anti(pR0 − |pL0|) + f (0)
sym(p′

R + p′
L)

(29)

By expanding Eqs. (27) and (28) in powers of δμ it can be shown that f (0)
sym ∼ |δμ| and f (1)

anti ∼ |δμ|−1/2. Thus, we can finally
rewrite Eq. (29) in the form:

T ≈ −A
pR0 − |pL0|
pR0 + |pL0| (μc − μ)3/2 (30)

where A only depends on K and d0. In the limit of small d0, A reads:

A ≈ 24/33−1/2 K −1/2d−1/6
0 (31)

and generally is of the order of magnitude of unity. It should be noted that the ratio (pR0 − |pL0|)/(pR0 + |pL0|) may be
termed “strength of anisotropy” of the SB near φ = 0. Eq. (30) indicates that φ → 0 as μ → μc independently of the strength
of anisotropy of the SB.

Finally, it should be reminded that the steady state of a SB-free interface in the limit of small μ is different from its state
at rest. Therefore the finding (displayed in Fig. 4) that, in the presence of a SB, T → Ta as μ → 0 is not quite obvious and
requires justification. We have seen that Mnr → 0, Mni → 0, knr → 0 and kni → d−1/2

0 as μ → 0. The fact that T does not
tend to zero imposes that mRi → T and mLi → −T . An elementary calculation shows that, as a consequence, Fsym contains
a term that does not tend to zero as μ → 0 (namely, the term 4k2

nimDimLi → −4d−1
0 T 2), while Fanti has none. Therefore,

according to Eq. (24), the SB must approach an orientation such that pR + pL = 0 as μ → 0. In other words, this proves that,
at low V , the tilt angle of the SB is close to the symmetrical configuration corresponding to T = Ta.
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Fig. 5. Directional-solidification front in a shallow-cell regime (V slightly higher than V c) with a SB attached to an inter-cellular groove. Sketch from Fig. 4
of Ref. [4].

5. Conclusion

The theory presented in this study predicts that, during the directional solidification of a dilute alloy, the tilt angle of
a SB should vary from a finite value (corresponding to the symmetrical configuration of its surface grooves and therefore
depending on the strength of the anisotropy of the SB) to zero as the solidification speed varies from 0 to the cellular-
instability threshold of the system. More specifically, it has been established that most of the decrease in the tilt angle takes
place in the interval between the constitutional-supercooling velocity and V c, indicating that the process is mostly linked
to the overcoming of the surface energy barrier by the concentration gradients ahead of the interface. The experimental
data about this phenomenon are not very numerous, although the question of the interaction between solute and SBs
can be traced back to the origins of modern solidification science [14]. It seems to be established that the tilt angle of
the SBs is essentially V -independent at low V and that SBs run essentially parallel to the growth direction above the
cellular-instability threshold [4]. However, little is known about the transition between these two extreme regimes from
the experimental standpoint. We conclude with a remark about SBs in the cellular regime. Several authors have noted that,
on crossing the cellular-instability threshold, the SBs become attached to inter-cellular grooves and then run parallel to z,
as mentioned. We wish to point out that those inter-cellular grooves, which contain a SB, generally exhibit asymmetric
comma-shaped profiles that contrast with the symmetrical profiles of perfect inter-cellular grooves. As explained in Fig. 5,
this means that the angles between the SBs and their σ vectors are large, which clearly supports the basic presuppositions
(strong capillary anisotropy of the SBs, local equilibrium at the junctions of the SBs with the solid–melt interface) of this
work.
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