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Even although organic conductors have complicated crystalline structures with low
symmetry and large unit cells, band structure calculations predict a multiband quasi-
two-dimensional electronic structure yielding a very simple Fermi surface in most cases.
Although few puzzling experimental results have been observed, data for numerous
compounds are in agreement with calculations, which make them suitable systems for
studying magnetic quantum oscillations in networks of orbits connected by magnetic
breakdown. The state of the art of these problematics is reviewed.
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r é s u m é

Bien que les conducteurs organiques présentent des structures cristallines complexes et
de basse symétrie, les calculs prédisent une structure électronique multibande quasi-bi
dimensionnelle conduisant généralement à une surface de Fermi très simple. Bien que
quelques résultats expérimentaux déroutants soient observés, les données de nombreux
composés sont en accord avec les calculs, ce qui fait de ces derniers des systèmes modèles
pour la physique des oscillations quantiques dans les réseaux d’orbites couplées par la
rupture magnétique. L’état de l’art de cette problématique est passée en revue.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Quasi-two-dimensional (q-2D) organic metals have generally complicated crystalline structures with unit cell involving
hundreds of atoms and cell parameters as large as a few dozens of nm. Nevertheless, band structure calculations predict very
simple Fermi surface (FS) which allow one to view these compounds as model systems for quantum oscillations physics.
The interplay between atomic arrangement and electronic structure is studied in Ref. [1]. Briefly, donor organic molecules
such as BEDT-TTF (bis-ethylenedithio-tetrathiafulvalene, further abbreviated below as ET), BEDO-TTF (bis-ethylenedioxy-
tetrathiafulvalene) or BEDT-TSF (bis-ethylenedithio-tetraselenofulvalene) build up conducting planes with various packing
types, so-called α, β , κ , etc. as reported in Ref. [2]. These planes are separated from each other by insulating, generally
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Fig. 1. (Color online.) Fermi surface (FS) of (a) θ -(ET)4CoBr4(C6H4Cl2) [3], (c) β ′′-(ET)4NH4[Fe(C2O4)3]·(C3H7NO) [4], (d) (ET)8[Hg4Cl12(C6H5Br)2] [5],
(e) (TMTSF)2NO3, in the temperature range between the anion ordering and the spin density wave condensation [6] and (f) (BEDO)4Ni(CN)4·4CH3CN [7].
These FS achieve networks of hole-type (pink solid lines) and electron-type (green solid lines) orbits. Arrows indicate the quasiparticles path in magnetic
field. Labels α, β , a, b, b − a and

⊙
stand for few classical orbits. δ and � are FS pieces corresponding to forbidden orbits. (b) Energy dispersion of

θ -(ET)4CoBr4(C6H4Cl2) [3].

inorganic, acceptor planes. Each donor molecule bears a positive charge controlled by the anion acceptor charge and the
stoichiometry. In numerous cases, which are of interest in what follows, the unit cell involves 4 donor molecules with
a +1/2 charge yielding two holes per unit cell. The FS of these compounds, which bears similarity to the 3D alkaline-earth
metals, originates from one hole-type orbit (labeled

⊙
in the following) with area equal to the first Brillouin zone (FBZ)

area, that can be approximated as an ellipse in most cases. In the extended zone scheme,
⊙

orbits overlap and gap open-
ing is observed at the crossings due to lifting of degeneracy. Depending on, e.g. the strength of π–π interactions between
donor molecules, overlap occurs along either one or two directions, yielding networks of orbits liable to be connected to
each other by magnetic breakdown (MB) in high enough magnetic field. In the first case, we deal with a linear chain of
coupled 2D hole orbits. Such a network, an example of which is given in Fig. 1(a), is an experimental realization of the
famous model proposed by Pippard in the early sixties to study MB [8,9]. In the second case, a 2D network of compensated
orbits is observed. This latter network involves two hole-type orbits labeled a and b − a in Fig. 1(f) and one electron-type
orbit labeled b. Intermediate case is depicted in Fig. 1(c) where

⊙
orbits come close together in one direction. In such

a case, a large gap opens around the FBZ boundary and the network is composed of one hole-type and one electron-type
orbit (labeled a) with the same cross section. Analogous type of network is also observed in (BEDO-TTF)2ReO4·H2O [1,10]
and in compounds with less trivial FS genesis due to e.g. FBZ folding [5,11] as reported in Fig. 1(d). It can also be ob-
served in the Bechgaard salt (TMTSF)2NO3 (where TMTSF stands for tetramethyl-tetraselena-fulvalene). This q-1D metal at
room temperature becomes q-2D at temperatures below the anion ordering (TAO = 41 K). In-between TAO and the spin
density wave condensation temperature (TSDW = 9.4 K), its FS achieves the linear chain of compensated orbits displayed in
Fig. 1(e) [6].

Nevertheless, even not to mention structural phase transitions that can strongly affect the electronic structure, ex-
perimental data can hardly be reconciled with the calculations of Fig. 1 in few cases. This is mainly due to the ex-
treme sensitivity of organic metals to tiny structural details [1] that can be modified by external parameters such as
temperature or moderate applied pressure. In this respect, high magnetic field-induced quantum oscillations are power-
ful tools for the study of such FS’s. Otherwise, in the numerous cases where the calculations reported in Fig. 1 hold,
MB yields oscillatory features, not predicted by the semiclassical models, the quantitative interpretation of which is still in
progress.

In Section 2, we report on a few examples of puzzling features of the oscillation spectra observed in organic metals
with predicted FS such as those reported in Figs. 1(c) and (f). The linear chain of coupled orbits, such as that displayed
in Fig. 1(a), and compensated electron–hole networks, such as reported in Figs. 1(d) and (e), are considered in Sections 3
and 4, respectively, from the viewpoint of the quantum oscillation physics in connection with MB.



A. Audouard, J.-Y. Fortin / C. R. Physique 14 (2013) 15–26 17
2. Puzzling oscillations spectra

The Shubnikov–de Haas (SdH) effect, i.e. conductivity oscillations, and the de Haas–van Alphen (dHvA) effect, i.e. magne-
tization oscillations, of multiband organic metals are generally studied in the framework of the Lifshits–Kosevich model [12,
13]. For a single quadratic band η of a q-2D system, Landau levels are given by

Eη,n = h̄ωη

(
n + 1

2

)
+ τ⊥ cos(kza⊥) (1)

where n is the Landau level index, ωη = eB cos θ/mη is the cyclotron frequency (e = |e| being the electron charge), mη is
the effective mass, τ⊥ is the interlayer energy transfer integral, a⊥ is the distance between conducting planes and θ is the
angle between the direction of the magnetic field B and the normal to the conducting layers. The oscillatory part of the
Kubo conductivity, in the approximation of independent collisions, and magnetization are then given by the semiclassical
formulae

σ − σ0

2σ0
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and
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respectively, for SdH and dHvA oscillations, where σ0 = e2τ 2⊥a⊥mη/(8π2h̄3kB T D) is the zero-field conductivity (a detailed
calculation is given e.g. in Refs. [14–16]), mosc is the oscillatory part of the magnetization [17]. T D is the Dingle temper-
ature (T D = h̄/(2πkBτ ), where τ is the relaxation time). The factor (h̄ωη/πτ⊥ + 2π pkB T D/τ⊥) appearing in Eq. (2) is
a contribution from the imaginary part of the retarded Green function |�Gη,n(E)|2 coming from the Kubo formula, where
Gη,n(E) = (E − Eη,n + i�η,n(E))−1. The squared term, when expanded, has one pole of first order, giving a contribution
in 1/|�η,n(E)|, and a pole of second order, giving the second contribution equal to 2π p/(h̄ωη). In the usual Born ap-
proximation the imaginary part |�η,n(E)| is replaced by its averaged value 〈|�η,n(E)|〉 = πkB T D which defines the Dingle
temperature. Moreover, the oscillating part of the self-energy, which can be included as corrections of πkB T D , is neglected.
In the three-dimensional limit where τperp � h̄ωη , these oscillations may give a significant contribution to the SdH effect.
In the clean limit, h̄ωη � kB T D , they can be discarded. The oscillation frequency Fη = μmη/(h̄e) of the classical orbit η,
where μ is the chemical potential, is proportional to the cross section area Aη of the orbit Fη = h̄ Aη/(2πe), which is
physically the quantum flux h/e through Aη divided by 4π2. The damping factor Rη,p can be factorized as

Rη,p(T , B) = RT
η,p R D

η,p RMB
η,p Rs

η,p (4)

where the thermal, Dingle, MB and spin damping factors are given by the expressions:

RT
η,p = u0T pmη

B cos θ sinh[u0T pmη/(B cos θ)] (5)

R D
η,p = exp

[−u0T D pmη/(B cos θ)
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(6)
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η,p = cos

(
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2 cos θ
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(8)

respectively, [9], where u0 = 2π2mekB/(eh̄) = 14.694 T/K. In the following, effective masses mη are expressed in units of
the electron mass me . Integers nt

η and nr
η are the number of MB tunnelings and reflections, respectively, encountered by

the quasiparticle along its closed trajectory. g∗ is the effective Landé factor. The MB tunneling and reflection probabilities
are given with a good approximation by p0 = exp(−B0/2B) and q2

0 = 1 − p2
0, respectively, where B0 is the MB field. The

exact semiclassical expression for the tunneling parameters can be evaluated by considering more generally the Riemann
surface of the band structure [18] which is constructed from a polynomial in the complex plane C

2. The singularities of
this polynomial are essential in determining the genus of the Riemann surface and its homotopy group. Each element in
the group is associated to a unique complex quantity Sη (which is a semiclassical action on this surface) whose real part
corresponds to Fη and imaginary part to the MB field B0, respectively. Even though direct application of this method is
difficult in multiband systems (see few examples in Ref. [18]), it gives a nice framework and clear picture of the tunneling
process.

Furthermore, FS warping can lead to beating features in the oscillatory spectra due to the interlayer transfer integral τ⊥
entering the Landau spectrum (see Eq. (1)). Warping is accounted for by the warping factors involving τ⊥ in Eqs. (2) and (3).
However, detailed analysis of its contribution to SdH oscillations has demonstrated that τ⊥ values of a few tenth of a meV,
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Fig. 2. (Color online.) (a) Oscillatory part of the magnetoresistance data at ambient pressure and (b) corresponding Fourier spectra of β ′′-
(ET)4(H3O)[Fe(C2O4)3]·C6H4Cl2. As displayed in the inset of (b), SdH oscillations are still observed at 32 K. Curves in main panels of (a) and (b), are shifted
down from each other by a constant amount. (c) Temperature dependence of the b oscillations amplitude at 30 T and 34.3 T (i.e. 30 T/ cos(29◦)), respec-
tively, for SdH and dHvA data collected at ambient pressure. Solid squares are SdH data deduced from (a); solid triangles are dHvA data for θ = 29◦ . Solid
lines are the best fits of the LK model assuming either only one closed orbit contributes to the amplitude (dHvA data) or the coexistence of a closed orbit
and a quantum interferometer with a zero-effective mass and a temperature-dependent scattering rate (SdH data). Each of these two contributions are
displayed as dashed lines. From Refs. [37,38].

such as it is observed in β-phase compounds [19], yield oscillatory spectra that cannot be explained by the simple addition
of a reduction factor [16,20–22]. Nevertheless, τ⊥ is by one order of magnitude smaller in numerous q-2D organic metals,
leading to warping factor values close to 1, as far as dHvA oscillations are concerned, and/or slowly varying with the
magnetic field.1

Finally, it should be mentioned that SdH oscillations are generally measured through interlayer magnetoresistance (Rzz)
oscillations. In the case where oscillations amplitude is small compared to the background resistance Rbg , it can be assumed
that −�σ/σ0 
 �Rzz/Rbg . Besides, contrary to magnetization which, as a thermodynamic parameter, is only sensitive to
the density of states, magnetoresistance oscillations may originate from quantum interference phenomena (QI) [24,25] as
early reported for κ-(BEDT-TTF)2Cu(NCS)2 [26–28]. In such a case, Eqs. (2) and (5) to (8) still hold, except that the effective
mass entering Eqs. (5) and (6) is the difference and sum, respectively, of the two partial effective masses of each of the
interferometer arms. This can lead to small and even zero-effective masses for a symmetric interferometer. In such a case,
oscillations are observed up to high temperature, in a range where the oscillations amplitude damping, still accounted for
by R D

η,p , is due to temperature-dependent relaxation time governed by inelastic collisions.
In the following, we will consider a family of organic conductors illustrating the sensitivity of the electronic structure,

hence of the quantum oscillations spectra, of organic metals to small changes of the atomic structure induced by either
chemical substitutions or moderate applied pressure.

Charge transfer salts with the generic formula β ′′-(ET)4(A)[M(C2O4)3]·Solv (where A is a monovalent cation, M is a triva-
lent cation and Solv is a solvent) have raised great interest for many years [29]. These salts which share the same β ′′
packing of the ET molecules can be either orthorhombic, in which case they are insulating, or monoclinic q-2D metals.
Among these latter salts (denoted as A, M, Solv hereafter), many different ground states, including normal metal, charge
density wave, superconductivity, and temperature-dependent behaviors can be observed. The FS of (NH4, Fe, C3H7NO) is
displayed in Fig. 1(c) where the area of the compensated orbits amounts to 8.8% of the FBZ area [4]. Analogous FS is also
predicted for (H3O, Fe, C6H5CN) [30]. In qualitative agreement with these calculations, only one Fourier component with
frequency F = 230 T, corresponding to 6% of the FBZ area, is observed in SdH spectra of (H3O, Ga, C6H5NO2) [31]. How-
ever, the FS of other compounds of this family can be more complicated since four frequencies corresponding to orbits
area in the range 1.1 to 8.5% of the FBZ area are observed for (H3O, M, C5H5N) where M = Cr,Ga, Fe [32]. In this latter
case, a density wave ground state, responsible for the observed strongly non-monotonous temperature dependence of the
resistance, has been invoked to account for this discrepancy. In contrast, only two frequencies are observed for (H3O, M,
C6H5NO2) where M = Cr,Ga [33]. Besides, moderate applied pressure has a drastic effect on the SdH oscillations spectra
of (NH4, Cr, C3H7NO), namely, whereas up to 6 Fourier components corresponding to orbit area in the range 0.1 to 7% of
the FBZ area are observed at ambient pressure, the spectrum simplifies under moderate pressure since only 3 components
(F1 = 68 ± 2 T, F2 = 238 ± 4 T, F3 = 313 ± 7 T) corresponding to orbits area in the range 1.7 to 7.8% of the FBZ area are
observed at 1 GPa [34]. These scattered results demonstrate the sensitivity of the electronic structure of organic metals,
hampering any interpretation in the framework of the band structure calculations. The last result could nevertheless be
interpreted on the basis of the data in Fig. 1. Indeed, as pointed out in Ref. [4], the

⊙
orbits of Fig. 1(c) may also intersect

along the small axis, leading to one additional orbit as reported in Fig. 1(f). In such a case, 3 Fourier components linked by
a linear combination settled by the orbits compensation, Fb = Fa + Fb−a , should be observed. This picture holds not only
for the above compound under pressure for which F3 = F1 + F2 within the error bars, but also for (NH4, Fe, C3H7NO) in the
applied pressure range from ambient pressure to 1 GPa [35,36] and for (H3O, Fe, C6H4Cl2) [37–39].

1 For τ⊥ = 0.04 meV and mη = 3.3, which hold for the α orbit of κ-(ET)2Cu(NCS)2 [23], J0(2πτ⊥/h̄ωη) varies from 0.88 to 0.98 as the magnetic field
increases from 30 to 60 T.
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Fig. 3. (Color online). (a) Fourier analysis in the field range 35–55.3 T of the magnetic torque data, relevant to θ -(ET)4CoBr4(C6H4Cl2), reported in the insert.
Solid triangles are marks calculated with Fα(θ = 0) = 0.944 kT and Fβ (θ = 0) = 4.60 kT. Data have been shifted down from each other by a constant
amount. (b) Temperature dependence (mass plot) of the 2α amplitude. Symbols are data deduced from torque measurements of (a) at 48.3 T. Solid lines
are deduced from Eq. (13) with mα = 1.81, mβ = 3.52, T D = 0.79 K and B0 = 35 T. Spin damping factor (see Eq. (8)) is either neglected (Rs

p = 1, p = 1 to
3) or accounted for by various g∗ values. All the data are normalized to their values at 12 K.

Further information can be obtained from the field and temperature dependence of the oscillatory spectra (see Eqs. (2)
to (8)). SdH and dHvA oscillations of the latter compound have been considered, as displayed in Fig. 2. Whereas a and
b − a SdH oscillations follow the LK behavior, a kink is observed in the mass plot of the b oscillations at ∼ 7 K. As a result,
despite a rather large Dingle temperature (T D = 4±1 K), SdH oscillations are still observed at 32 K which, to our knowledge,
constitutes a world record for an organic metal. In contrast, the dHvA oscillations are in agreement with the LK formula in
all the explored temperature range as displayed in Fig. 2(c). Keeping in mind that dHvA oscillations are only sensitive to the
density of states, it has been shown that both the field and temperature dependence of the b oscillations are consistently
accounted for by the coexistence of a closed b orbit and a quantum interferometer with the same cross section [37–39].
Unfortunately, existence of a QI path is not consistent with the FS of Fig. 1(f) and this amazing result therefore remains
unexplained.

Otherwise, the frequency Fb+a is observed both for (NH4, Fe, C3H7NO) [35,36] and (H3O, Fe, C6H4Cl2) under pres-
sure [38,39]. Taking into account the opposite sign of the a and b orbits, the b + a component cannot correspond to an MB
orbit [40] in the framework of the FS of Fig. 1(f). In addition, its effective mass is lower than both ma , mb−a and mb which
is at odds with the Falicov–Stachowiak model as well. Therefore, this component has not a semiclassical origin and can be
attributed to the frequency combination phenomenon considered in the next sections.

3. The linear chain of coupled orbits

MB phenomenon has been intensively studied in 3D alkaline-earth metals over the sixties and seventies (see [9] and
references therein). In order to compute MB, Pippard introduced the linear chain of coupled orbits in the early sixties [8].
The energy spectrum of this model FS, i.e. the density of states in magnetic field in which all the allowed classical orbits
contribute, can be computed analytically. In contrast to the semiclassical picture, a set of Landau bands broadened by co-
herent MB is obtained instead of discrete Landau levels, due to the traveling of quasiparticles on the non-quantized q-1D
sheets of the FS. However, the Falicov–Stachowiak semiclassical model [40], based on the LK model and involving discrete
Landau levels, yielded analytic tools that successfully accounted for the field and temperature dependence of the oscillations
spectra of these multiband metals [9]. This success outshone the Pippard result until the discovery of frequency combina-
tions, ‘forbidden’ in the framework of the Falicov–Stachowiak model, in magnesium [41] and, later on, the experimental
realization of the FS proposed by Pippard in the starring compound κ-(ET)2Cu(NCS)2 [42]. Many other organic metals share
this FS topology, an example of which is given in Fig. 1(a). The main feature of the dHvA spectra of these compounds is the
presence of the forbidden Fourier component β − α [43–45]. Furthermore, depending on the field and temperature range
explored, effective masses relevant to frequency combinations linked to MB orbits can be at odds with the predictions of
the Falicov–Stachowiak model, both for dHvA [44,45] and SdH [28,46] oscillations, even taking into account QI in the latter
case. Numerical and analytical analysis of this spectrum yields, through numerical resolution, a non-LK behavior of the os-
cillations amplitude [47–49]. Besides, the forbidden Fourier components observed in these compounds result not only from
the formation of Landau bands but are also due to the oscillation of the chemical potential enabled by the 2D character of
the FS [47,49–54].

Comprehensive analytical calculations of the oscillation amplitude, taking into account both coherent MB and oscillation
of the chemical potential, have been reported in Refs. [55,56] and implemented in dHvA data of κ-(ET)2Cu(NCS)2. How-
ever, easy to handle analytic tools necessary to quantitatively account for the experimental data were still lacking. Indeed,
as pointed out in Ref. [56], the equations are complex and the data could be analyzed only numerically. In Ref. [3], a model
based on the field-induced chemical potential oscillations, yielding analytical non-LK expressions for the Fourier components
amplitude is proposed. This model accounts for the temperature- and field-dependent quantum oscillations spectra of the
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strongly two-dimensional charge transfer salt θ -(ET)4CoBr4(C6H4Cl2) with an excellent agreement. Remarkably, the unit cell
of this compound involves two different donor layers [57]. One of them is insulating whereas the FS of the other, displayed
in Fig. 1(a), is an illustration of the Pippard’s model. Fourier spectra of the dHvA oscillations displayed in Fig. 3(a) reveal the
existence of both classical orbits α, β , 2β − α and forbidden frequencies such as β − α and its harmonics.

Considering a two band system with effective masses m0(1) and band extrema �0(1) , as displayed in Fig. 1(b), the grand
potential Ω of a 2D slab with area A is given by a series of harmonics p of classical frequencies Fη

Φ0

A
u0

kB
Ω(T ,μ) = Ω̂(T ,μ) = −m0

2
(μ − �0)

2 − m1

2
(μ − �1)

2

+ (B cos θ)2

2

∑
p�1

∑
η

Cη

π2 p2mη
Rη,p(T , B) cos

(
2π p

Fη

B cos θ
+ pϕη

)
(9)

in the low temperature limit and within the semiclassical approximation. The chemical potential μ and energies �0(1) are
expressed in Tesla. The universal coefficient Φ0u0/kB (where Φ0 = h/e is the quantum flux), in units of which the physical
quantities are expressed for simplification, is equal to 4π3me/e2 
 4.4 × 109 T2 m2/J. η stands for the fundamental closed
orbits that are not harmonics but can be composed of different parts of the FS thanks to MB. In particular, two fundamental
orbits with frequencies Fα = m1(μ−�1) (i.e. mα = m1) for the smallest and Fβ = m0(μ−�0)+m1(μ−�1), which can be
written as Fβ = mβ(μ − �β), for the largest are defined (see Fig. 1(a)). Within this framework, m0 + m1 is identified with
the effective mass mβ of the MB orbit β . Each orbit η has an effective mass mη and yields the frequency Fη = mη(μ − �η)

where mη and �η are combinations of the fundamental parameters m0,1 and �0,1. ϕη is the phase or Maslov index de-
termined by the number of turning points on the trajectory η. At each turning point is associated a value π/2, yielding
ϕα = ϕβ = π for orbits α and β of Fig. 1(a), which is the value for a parabolic band model near the Fermi energy. For
more complicated orbits, ϕη is a multiple of π . For example the phase of the fundamental orbit α + β is ϕα+β = 2π . Cη

is the symmetry factor of the orbit η, which counts the number of non-equivalent possibilities for an orbit to be drawn
on the FS. For example, Cα = Cβ = C2β−α = 1 and Cβ+α = 2. For an FS composed of a single orbit, Cη = 1. We notice that
frequencies Fη depend explicitly on the chemical potential μ. Indeed, a frequency physically represents a filling factor pro-
portional to the orbit area in the Brillouin zone or, equivalently, the occupation number of the quasiparticles. For example,
Fβ corresponds to the total area of the FBZ. Eq. (9) can be easily extended to more complex multiband systems. It is derived
from the usual semiclassical technique using the Poisson formula applied in the case where h̄ωc is small compared to the
chemical potential μ [17]. The oscillating term proportional to B2 in Eq. (9) contains all the possible contributions of MB
between the bands. In the Grand Canonical Ensemble, the chemical potential is independent of the magnetic field, leading
to the expression of the magnetization m = −∂Ω̂/∂(B cos θ), hence Eq. (3). In the case where the electron density is fixed,
which is common in dHvA experiments, the chemical potential generally depends on the magnetic field and oscillates. These
oscillations can be damped if the system is connected to a reservoir of uniform electron density [47]. The electron density
per surface area ne is defined by dΩ̂/dμ = −ne . In zero-field, Eq. (9) yields ne = (m0 + m1)μ0 − m0�0 − m1�1 where μ0 is
the zero-field chemical potential. In the presence of a magnetic field, μ satisfies instead the following implicit equation:

μ = μ0 −
∑
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∑
η

B cos θ

mβπ p
Cη Rη,p(T , B) sin

(
2π pFη

B cos θ
+ pϕη

)
(10)

The small oscillating part of the magnetization can be computed systematically by inserting Eq. (10) in the μ-dependent
terms of Eq. (9), in particular the frequencies, and computing m = −∂Ω̂/∂ B cos(θ). A numerical resolution of this resulting
implicit equation could be done to obtain recursively the field dependence of μ. Nevertheless, a more user-friendly con-
trolled expansion in powers of the damping factors Rη,p can be derived systematically at any possible order. Up to the
second order, the following analytical expression is obtained for the oscillating part of the magnetization:

mosc = −
∑
η

∑
p�1

FηCη

π pmη
Rη,p(T ) sin

(
2π pFη

B cos θ
+ pϕη

)
+

∑
η,η′

∑
p,p′�1

FηCηCη′

π p′mβ

Rη,p(T )Rη′,p′(T )

×
[

sin

(
2π

pFη + p′ Fη′

B cos θ
+ pϕη + p′ϕη′

)
− sin

(
2π

pFη − p′ Fη′

B cos θ
+ pϕη − p′ϕη′

)]
+ · · · (11)

where frequencies Fη = mη(μ0 − �η) are evaluated at μ = μ0. Eq. (11) can be written as a sum of periodic functions
mosc = ∑

i Ai sin(2π Fi/(B cos θ)) where the index i stands for either classical orbits η or forbidden orbits such as β − α.
For the most relevant amplitudes, from the experimental data viewpoint, we obtain the following expressions:

Aα = Fα

πmα
Rα,1 + Fα

2πmβ

Rα,1 Rα,2 + Fα

6πmβ

Rα,2 Rα,3 + 2Fα

πmβ

Rβ,1 Rα+β,1 (12)

A2α = − Fα

2πm
Rα,2 + Fα

πm
R2

α,1 − 2Fα

3πm
Rα,1 Rα,3 (13)
α β β
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Fig. 4. (Color online). Forbidden (left side) and MB-induced (right side) δ orbit relevant to the Fermi surface of (ET)8[Hg4Cl12(C6H5Br)2] [5]. Numbers on the
right side indicate the successive steps of the quasiparticles starting from an (arbitrary) origin marked by the open circle. Arrows mark the quasiparticles
path. Pink and green arrows correspond to hole and electron parts, respectively, of the Fermi surface. Black arrows and circles mark the magnetic breakdown
tunneling junctions and reflections, respectively. Taking into account the opposite sign of the compensated electron and hole basic orbits (labeled a), the
considered MB orbit yields a frequency corresponding to the area of δ.

Aβ = Fβ

πmβ

Rβ,1 + Fβ

2πmβ

Rβ,1 Rβ,2 + Fβ

6πmβ

Rβ,2 Rβ,3 + 2Fβ

πmβ

Rβ,1 Rα+β,1 (14)

A2β = − Fβ

2πmβ

Rβ,2 + Fβ

πmβ

R2
β,1 − 2Fβ

3πmβ

Rβ,1 Rβ,3 (15)

Aβ−α = − Fβ−α

πmβ

Rα,1 Rβ,1 − Fβ−α

πmβ

Rα,2 Rα+β,1 − Fβ−α

πmβ

Rβ,2 Rα+β,1 (16)

Aβ+α = − 2Fβ+α

πmβ+α
Rβ+α,1 + Fβ+α

πmβ

Rα,1 Rβ,1 (17)

A2β−α = F2β−α

πm2β−α
R2β−α,1 + F2β−α

2πmβ

Rα,1 Rβ,2 + F2β−α

6πmβ

Rα,3 Rα+β,2 (18)

These equations differ from the LK model in the sense that a basic orbit such as α, which should involve only one
damping factor Aα = Fα Rα/(πmα) according to Eq. (3), involves additional terms which are power combinations of dif-
ferent damping factors. However, deviations from the LK behavior due to the high order terms are significant only in the
low temperature and high field ranges. This statement also stands for the classical orbit 2β − α since R2β−α is significantly
higher than the product Rα,1 Rβ,2 (see Eq. (18)). Eq. (11) brings out forbidden frequencies such as β − α (see Eq. (16)).
The amplitude of such Fourier components arises from the combinations of classical orbits α and β , hence only at the
second order, through the damping factor product Rα,1 Rβ,1. More generally, the main rule that can be derived is that
products of damping factors involved at a given order represent algebraic combinations of frequencies. For example, the or-
bit β in Eq. (14) can be viewed as the combinations 2β − β , or 3β − 2β , yielding the factors Rβ,2 Rβ,1 and Rβ,3 Rβ,2,
respectively, as additional factors entering the amplitude Aβ . As a consequence, forbidden frequencies arise from the or-
der two since they cannot be due to any single classical orbit. Algebraic sums of damping terms in Eqs. (13) and (17)
may possess minus signs which account for π dephasings, and may cancel at field and temperature values, depending
strongly on the effective masses, Dingle temperature, MB field, etc. as displayed in Fig. 3(b) relevant to 2α. This point has
already been reported for the second harmonic of the basic orbits both for compensated [58] and uncompensated [54]
metals.

Finally, even taking into account the contribution of QI, stronger deviations from the semiclassical model are reported in
the case of SdH spectra of several compounds with this FS topology [3,47,46]. These features are not accounted for by the
above calculations, which therefore requires a specific model.

4. Networks of compensated orbits

Let us consider now the other class of FS’s, widely encountered in organic metals, which are built up with compensated
electron and hole orbits (a few examples are reported in Figs. 1(c)–(f)). Depending on MB gaps value, either isolated orbits,
1D or 2D networks are observed. As mentioned in Section 2, a few hints of forbidden frequency combinations are ob-
served in SdH spectra of β ′′-(ET)4NH4[Fe(C2O4)3]·C3H7NO. Besides, QI which requires MB gaps crossing as well, have been
tentatively inferred to account for the oscillatory data of β ′′-(ET)4(H3O)[Fe(C2O4)3]·C6H4Cl2 reported in Fig. 2. However,
to our knowledge, the only compounds studied from this viewpoint belong to the family (ET)8[Hg4X12(C6H5Y)2] (where
X,Y = Cl,Br) [5,59–63]. Indeed, due to moderate MB gaps, compounds with X = Cl achieve 2D networks as reported in
Fig. 1(d). In addition, small scattering rate (T D = 0.2 ± 0.2 K) is observed [61]. In line with the Falicov–Stachowiak model,
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Fig. 5. (Color online.) (a) Oscillatory part of the magnetoresistance and (b) corresponding Fourier spectra of (ET)8[Hg4Cl12(C6H5Br)2] at various tempera-
tures [61]. Fourier spectra of (c) magnetoresistance and (d) de Haas–van Alphen oscillations for various directions of the magnetic field [62]. Data in (c)
and (d) have been measured simultaneously. Labels a and δ correspond to closed and forbidden orbits, respectively, depicted in Fig. 1(d). Contrary to
magnetoresistance oscillation spectra which exhibit forbidden frequency combinations, all the observed dHvA components are accounted for by the Falicov–
Stachowiak semiclassical model.

Fourier components are linear combinations of the frequencies linked to the compensated closed orbits a and to the ‘for-
bidden’ orbits δ and � [5,60–62]. This is the case of e.g. 2a + δ which is observed both in SdH and dHvA spectra. Regarding
magnetoresistance, components linked to QI such as a + δ and 2a + δ +� are also observed in the spectra. Strictly speaking,
there is no forbidden orbit in a 2D network of compensated orbits. For example, keeping in mind that electron and hole
orbits have opposite signs, an MB-induced orbit with the frequency corresponding to δ can be defined for the FS of Fig. 1(d)
as displayed in Fig. 4. However, according to the Falicov–Stachowiak model, its amplitude should be very small. Indeed,
this orbit involves 6 MB tunnelings and 10 reflections leading to small RMB values (see Eq. (7)). Besides, its effective mass
mδ should amount to 4ma leading to small R D and RT values, as well. In violation of these statements, ‘forbidden’ orbits
such as δ or 4a + δ, with a small effective mass (mδ 
 0.4ma , m4a+δ 
 0.3ma [61]) and a large amplitude, are observed.
As a result, these two Fourier components which should not be observed in the framework of the semiclassical model, are
preponderant above few kelvins at moderate fields (see Fig. 5).

Contrary to magnetoresistance data, the whole dHvA spectrum is quantitatively accounted for by the Falicov–Stachowiak
model in the field range up to 28 T [62]. This latter point is at variance with the data for the linear chain of coupled
orbits considered in Section 3. In order to solve this discrepancy, a linear chain of compensated orbits, i.e. the 1D network
which accounts for the FS in Fig. 1(e), has been considered as a first step in Refs. [58,64]. Indeed, its energy spectrum
can be easily deduced from the Pippard’s method [8]. In this model the effective masses linked to the electron me and
hole band mh are taken to be independent. For simplicity, two quadratic potentials have been considered to model the FS,
i.e. quadratic functions of the quasi-momenta are assumed for the bands dispersion, as within the free-electron model in
two dimensions. The bottom of the electron band is set at zero energy while the top of the hole band (inverse quadratic
potential) is at � > 0, with the possibility for the quasiparticle to tunnel through the gap between two successive orbits
by MB, i.e. between the pink and green parts of the FS in Fig. 1(e). Given an energy E , the k-space areas of the closed
electron and hole orbits are respectively given by Se = 2πme E and Sh = 2πmh(� − E), which are both quantized. The zero-
field Fermi energy E F is given by the condition of compensation Se(E F ) = Sh(E F ) or E F = [mh/(me + mh)]�. The unique
fundamental frequency of this system is therefore equal to Fa = Se(E F )/2π = Sh(E F )/2π = memh�/(me + mh).

Strikingly, the field-induced chemical potential oscillation, calculated by extremizing the free energy is strongly damped
compared to the uncompensated case of Section 3 [58,64]. For this reason, Fourier amplitudes can be calculated within the
LK formalism. Nevertheless, it is important to notice that, in systems with compensated bands, there is an infinite number
of classical orbits contributing to any given Fourier component since a semiclassical trajectory around a successive electron
and hole pockets has a zero area. Here orbits with zero area can be classified by their increasing masses (l−1)me +(l−1)mh ,
where l > 1 is an integer. The amplitude Aa of the Fourier component with frequency Fa is therefore not only dependent
on the orbits composed of one electron or one hole orbit with effective mass me or mh , respectively, but also on a series of



A. Audouard, J.-Y. Fortin / C. R. Physique 14 (2013) 15–26 23
Table 1
First values of the coefficients S(l,n) representing the number of non-equivalent orbits for a given mass me(h)(l) with 2n magnetic breakdowns, 1 � n �
2(l − 1).

l\n 1 2 3 4 5 6 7 8 9 10 11 12

2 2 1
3 2 9 8 1
4 2 23 68 63 18 1
5 2 43 264 610 584 228 32 1
6 2 69 720 3080 6132 5930 2800 600 50 1
7 2 101 1600 10 925 36 980 66 374 64 952 34 550 9650 1305 72 1

Fig. 6. (Color online.) (a) Fourier spectra of the dHvA oscillations, displayed in the insert, of a linear chain of compensated orbits, for various values
of the magnetic breakdown field B0. The data are calculated from numerical resolution of the field-dependent free energy equation with � = 1 and
effective masses me = 1 and mh = 2.5 (see the text and Ref. [58]). Fa = 7/2 is the fundamental frequency for this model. (b) B/T dependence of the first
harmonic amplitude Aa for various values of the tunneling probability (hence of the magnetic field). Solid symbols come from numerical resolution of the
semiclassical spectrum, which fall onto the solid lines corresponding to the Lifshits–Kosevich approximation given by Eq. (19) including contributions of
zero-area orbits. Dashed lines correspond to the first order term l = 1 in Eq. (19) or equivalently to Eq. (3).

additional multiple orbits composed of l − 1 electron and l − 1 hole orbits plus one electron or one hole orbit, with effective
mass me(l) = lme + (l − 1)mh or mh(l) = (l − 1)me + lmh , respectively. Aa can be computed exactly in this model, within the
LK theory, and is given by the expression

Aa = Fa

π

[
q2

0 R(me)

me
+ q2

0 R(mh)

mh
+

∑
l�2

(
R(me(l))

me(l)
+ R(mh(l))

mh(l)

)
×

2(l−1)∑
n=1

(−1)n p2n
0 q4l−2n−2

0 S(l,n)

]
(19)

where the combinatorial quantities can be defined by the summations

S(l,n) = 2

n

n/2∑
i=0

i∑
j=0

n/2− j∑
k=0

(−1) j

22k
×

(
n
2i

)(
i
j

)(
n − 2 j

2k

)(
2k
k

)(
l + k − 1

l − n + j + k

)(
l + k − 2

l − n + j + k − 1

)
(20)

These positive integers count the number of non-equivalent orbits for a given mass me(h)(l) visiting 2n pockets on
the path. Table 1 displays the numerical values of S(l,n) computed directly from Eq. (20). Damping factors are given by
R(mi(l)) = RT

i,l R
D
i,l R

s
i,l , where i = e,h. p0 and q0 are the MB tunneling and reflection probabilities (see Eqs. (5) to (8)). Even

though the contribution of large masses is usually negligible at low field or high temperature, it can be significant in the
large B/T limit in which case they have to be taken into account, provided the Dingle temperature is small [58]. Indeed,
the temperature-dependent factors are close to unity in this limit.

Technically, the summation over all the orbits with zero area is evaluated using an analogy to an Ising model on a linear
chain in magnetic field. Indeed, it is useful to view each quasiparticle traveling on the linear chain represented by the FS of
Fig. 1(e) as a particle performing a one-dimensional random walk. A set of positions on the chain {xi}i=0,2n can be defined
for a given periodic orbit, with boundary conditions x0 = x2n = 0. These coordinates take integer values (negative and
positive) and define the pocket inside which the quasiparticle is located. In what follows, xi with i even (odd) is the position
of a quasiparticle in one electron (hole) band. A closed path has an even number of steps 2n. Given xi , the particle can also
orbit a number ni � 0 of times around the surface before going to the next band by MB. We can rewrite coordinates xi
with mean of forward/backward variables σi = ±1 such as xi = xi−1 + σi(xi−1 − xi−2). Here σi = 1 when the particle is
going forward and σi = −1 when it is going backward. An adequate set of variables is given by yi = xi − xi−1 = ±1 which
satisfy yi = σi yi−1 or σi = yi yi−1. All the possible orbits contributing with a given effective mass can then be counted by
summing over all the possible yi = ±1 restricted to the boundary conditions. It can then be proved that this combinatorial
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number is equal to the partition function of an Ising model in a (complex) magnetic field and which is solvable, leading to
Eq. (20). In two dimensions, compensated networks such as the FS reported in Fig. 1(d) could also lead to non-negligible
contribution of zero-area orbits, but their explicit evaluation is difficult since a similar analogy with the previous calculation
would lead equivalently to the computation of the partition function for a two-dimensional Ising model in magnetic field.

The relevance of Eq. (19) is evidenced in Fig. 6(a). Oscillations data in this figure are calculated from numerical resolution
of the field-dependent free energy equation given in Ref. [58]. As expected, Fourier analysis exhibits only one frequency Fa
and harmonics. Fig. 6(b) compares the temperature dependence of Aa deduced from numerical resolution (solid symbols)
to the predictions of Eq. (3), which neglects any contribution of orbits with l > 1 (dashed lines). A growing discrepancy is
observed as the temperature decreases, except in the absence of MB (q0 = 1) in which case only the basic closed orbits
contribute. In contrast, an excellent agreement with Eq. (19) (solid lines) is observed. Shortly speaking, at variance with
uncompensated orbits networks, the LK formula accounts for the quantum oscillations in a linear chain of compensated
orbits (one-dimensional network), provided the contribution of all MB orbits is taken into account for each frequency.

5. Conclusion

Although a few puzzling results are observed, as reported in Section 2, numerous organic conductors achieve Fermi
surfaces that can be regarded as model systems for the study of quantum oscillations in networks of orbits coupled by
magnetic breakdown. Two types of networks can be distinguished, namely the linear chain of coupled orbits and the net-
works of compensated orbits (see a few examples in Fig. 1). These networks are considered in Sections 3 and 4, respectively.

A user-friendly analytical tool, taking into account the chemical potential oscillations in a magnetic field, has recently
been proposed to account for dHvA oscillation spectra of the linear chain of coupled orbits [3]. The main feature of the
derived formulae is, besides standard Lifshits–Kosevich terms, the presence of second order corrections liable to account
for the observed Fourier components that are ‘forbidden’ in the framework of the semiclassical Falicov–Stachowiak model.
This model has been successfully implemented in the dHvA oscillations data of θ -(ET)4CoBr4(C6H4Cl2). Obviously, this en-
couraging result needs to be confirmed in the case of other relevant compounds. In addition, even stronger deviations are
observed for SdH spectra which are still unexplained.

Regarding compensated orbits, either one- (see Fig. 1(e)) or two-dimensional (see Figs. 1(d), (f)) networks can be ob-
served. At variance with the above case, oscillations of the chemical potential are strongly damped in one-dimensional
networks and the Lifshits–Kosevich theory applies in this case, provided multiple orbits are taken into account. Unfortu-
nately, to our knowledge, no experimental data relevant to one-dimensional networks are available to check this result.
Nevertheless, dHvA oscillations spectra of the two-dimensional network achieved by the (ET)8[Hg4Cl12(C6H5Br)2] compound
are nicely accounted for by the Falicov–Stachowiak model in magnetic fields below 28 T which is in line with the above
reported damping of the chemical potential oscillations. However, SdH oscillations evidence strong deviations from the
Lifshits–Kosevich model, including the presence of ‘forbidden’ Fourier components with high amplitude, besides the contri-
bution of quantum interference. These results still require interpretation.

Regarding new problematics, promising perspectives are brought about by organic metals with two different donors
planes, few examples of which can be found in the literature. In few cases, a metal–insulator transition is observed as
the temperature decreases [65,66] suggesting two insulating planes at low temperature. Compounds with one metallic and
one insulating layer with either compensated orbits [67] or, as reported in Section 3, linear chains of coupled orbits [3,
57] have also been reported. In these cases, a strongly two-dimensional behavior is observed. More appealing case is pro-
vided by unit cell with two different metallic layers [68–70], hence with two different Fermi surfaces [69]. Such a structure
could be relevant to the bilayer splitting phenomenon reported for cuprate superconductors [71] and addresses the ques-
tion of a three-dimensional Fermi surface definition. To our knowledge, quantum oscillations data at high field have only
been reported for θ -(BEDT-TSF)4HgBr4(C6H5Cl) for which complicated spectra, with no clear frequency combinations are
observed [69]. In any case, the oscillatory data cannot be interpreted on the basis of a mere addition of the contributions of
the two Fermi surfaces pertaining to each of the two donors planes. Synthesis of other compounds and further experiments
are needed to get a better insight on this issue.
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