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The insufficient understanding of the generation of small scales in turbulent flows results
in serious impediment when trying to describe numerous physical problems, of natural
or applied significance, and therefore, calls for new approaches. Here, we discuss the
insight that can be gained by following the motion of a few points in a turbulent flow.
This approach, which has shown its power in the context of the problem of dispersion
of a passive scalar transported by turbulence, has led to new insight into some of the
intriguing phenomena observed in turbulent flows, such as the alignment of vorticity with
the eigenvectors of the rate of strain tensor. Recent work has focused on the motion of four
points, forming initially a regular tetrad of size r0. In particular, the modeling perspective
inspired by the tetrad approach will be discussed here.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

La connaissance trop partielle des mécanismes de génération des petites échelles dans les
écoulements turbulents est une sérieuse entrave à la compréhension et à la prédiction
quantitative de nombreux problèmes physiques, appliqués ou fondamentaux, et nécessite
donc d’utiliser de nouvelles approches. Nous passons en revue les informations qui
peuvent être obtenues en suivant le mouvement de quelques traceurs dans un écoulement
turbulent. Cette approche, qui a montré son efficacité dans l’étude de la dispersion d’un
scalaire passif transporté par la turbulence, a conduit à un éclairage nouveau sur quelques-
uns des phénomènes surprenants observés dans des écoulements turbulents, tels que
l’alignement de la vorticité avec les vecteurs propres du tenseur de taux de déformation. De
récents travaux ont porté sur le mouvement de quatre particules formant initialement une
tétrade régulière de taille r0. Les perspectives de modélisation inspirées par cette approche
sont présentées et discutées.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Turbulent flows at high Reynolds numbers are characterized by the existence of a broad range of scales. In all applications
and/or laboratory experiments, fluid is set into motion at large scales, through a variety of forcing mechanisms, and the
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energy injected in the flow is ultimately dissipated by viscosity at much smaller scales. The turbulent motion observed in
the range of intermediate (inertial) scales merely transfers energy from large to small scales, and is therefore crucial to the
understanding and modeling of the turbulence dynamics.

From a fundamental point of view, the observation of turbulent motion over a wide range of length scales suggests
enticing scaling descriptions [1], which have been successful in many other scientific fields [2]. Early experimental work has
rested on the measurement of (mostly) one velocity component of the velocity field in flows with a strong mean velocity [3],
thus allowing to relate the time and space dependences of the velocity by the Taylor-frozen hypothesis approximation.
Increasingly precise measurements of the scaling properties of the flow at very large Reynolds numbers have been obtained,
and heuristic approximations have been proposed to describe the scaling exponents [4,5].

Beyond such a description in terms of scaling laws, much effort has been devoted to derive a proper theory directly from
the equations describing the motion of the fluid, namely the Navier–Stokes equations:

∂tu + (u · ∇)u = −∇p + ν∇2u (1)

∇ · u = 0 (2)

where ν is the viscosity, and p the pressure divided by the fluid density.
One of the cornerstones of turbulence theories has been provided by the (exact) relations, obtained directly from Eqs. (1),

(2), which, under the mild assumption of local homogeneity and isotropy, relates the third moment of the component of
the velocity difference along the x-axis, �ux(r), to the distance r:

〈
�ux(r)

3〉 = −4

5
εr + 6ν

d

dx

〈
�ux(r)

2〉 (3)

where ε is the dissipation of kinetic energy per unit mass of the fluid. Relatively few exact results have been obtained since
Kolmogorov’s seminal work (see, however, [6]).

The objective of deriving a consistent description of the statistical properties of the flow directly from the Navier–Stokes
equations remains the objective of several approaches (including [7]).

The present work is aimed at describing several important properties of the velocity fluctuations. Our approach is ar-
guably less ambitious, in the sense that it does not aim at obtaining a full theory, but mostly at expliciting some of the
important properties of the flow. One of the important aspects of the so-called tetrad approach is that it is based on
the simultaneous measurement of the position of several points in a turbulent flow, which is now feasible, thanks to the
developments in Particle Tracking Velocimetry techniques.

In this short review, recent work, based on following the motion of several points in turbulent flows, will be reviewed,
in particular concerning the modeling aspects.

2. The tetrad approach: motivations and elementary considerations

The approach discussed in this short review is based on the following remarks:

(i) In the Navier–Stokes equations, the velocity gradient tensor, mij ≡ ∂iu j , plays a crucial role. This remark is particularly
important when trying to understand how small scales are generated via vortex stretching [8–10]. In the last decades,
several models have been proposed to describe the Lagrangian dynamics of the m tensor [11–16].

(ii) Whereas a direct measurement of the velocity derivative in a turbulent flow remains, in view of the available ex-
perimental techniques, very difficult to carry out [17,18], recent progress in Particle Tracking Velocimetry allow us to
investigate the motion of several particles in a turbulent flow, thus enabling a determination of the “perceived velocity
gradient tensor”, determined from a fluid tracer particle with respect to neighbor particles. Elementary geometric con-
siderations, to be detailed below, show that the knowledge of the positions and velocities at n � 4 points are sufficient
to determine the “perceived velocity gradient tensor”, denoted M in the following. We will restrict ourselves here to
the case of tetrads, i.e., n = 4 points.

Another motivation to follow more than one point in a turbulent flow comes from the remark that in general, multi-point
correlation functions are a priori sensitive to possible structures in the flow. The work on the dynamics of a passive scalar in
the presence of a mean gradient [19] has demonstrated that the three-point correlation function is indeed sensitive to the
observed structures of the passive scalar field, namely the sharp jumps (“cliffs”) seen both in experiments and in numerical
simulations [20,21].

From a theoretical point of view, the statistical description of the velocity field of a turbulent flow is given by all the
moments

Mi1,i2,...,in (x1,x2, . . . ,xn) ≡ 〈
ui1(x1)ui2(x2) · · · uin(xn)

〉
(4)

Attempts to obtain the moments M directly from the Navier–Stokes equations lead to the closure problem: moments of
order n cannot be determined without previous knowledge of the (n+1)th moment. In this context, the study of the velocity



A. Pumir, A. Naso / C. R. Physique 13 (2012) 889–898 891
simultaneously measured at four points is merely a way to obtain directly information on the four point correlation function
of the velocity field u. In fact, the assumptions made while proposing a modeling approach are effectively equivalent to a
closure of the moment hierarchy. The work described here however is based on a number of physical approximations, which
can be justified, based on previous empirical knowledge [22], or confronted directly with direct numerical simulations (DNS)
or experimental results.

One of the lessons learned while investigating the correlation functions for a passive scalar, in particular in the simplified
case of the Kraichnan model [23–25] is that the Lagrangian point of view provides a very useful way to think about the
correlation functions. In the case of a passive scalar, the scalar field is conserved along Lagrangian trajectories (up to the
effect of the large scale forcing), which reduces the study of the correlation functions to the properties of the trajectories.
Generalizing these ideas to the velocity field is one of the motivations, and challenges, of the approach reviewed here.

3. Tetrads and the perceived velocity gradient tensor: definitions and notation

3.1. Construction of the perceived velocity gradient tensor

The construction of the perceived velocity gradient tensor is based on the knowledge of the position, xi , as well of the
velocity ui of four tracer particles, simply moving with the flow velocity, u:

d

dt
xi(t) = u

(
xi(t), t

) = ui(t) (5)

As we are considering a statistically homogeneous flow, the motion of the center of mass is immaterial; we therefore focus
here to the motion of the four points with respect to the center of mass, or equivalently, to the relative motion between
two vertices of the tetrad, xi − x j . More specifically, we introduce the reduced set of three vectors:

ρ1 = (x2 − x1)/
√

2

ρ2 = (2x3 − x1 − x2)/
√

6

ρ3 = (3x3 − x1 − x2 − x3)/
√

12 (6)

In the following, we denote the ath component of the vector ρ i by ρi,a . The vectors ρ i allow us to investigate the shape of
the tetrads. Indeed, the geometry of the set of points can be conveniently parametrized by introducing the tensor g, defined
by its coordinates:

gab =
3∑

i=1

ρi,aρi,b (7)

The tensor g is symmetric, and as such, can be diagonalized in an orthonormal basis. Clearly, the three eigenvalues of g,
denoted gi , are all positive; without loss of generality, we rank them in decreasing order: g1 � g2 � g3 � 0. The trace of g
is essentially equal to the square of the radius of gyration of the set of points.

The shape of the tetrads can be characterized by the ratios between the eigenvalues gi . A very elongated, “needle-like”
object, has an eigenvalue g1 much larger than the two other eigenvalues. A flat, “pancake” like object, is characterized by a
third eigenvalue, g3 much smaller than the two larger values g1 and g2. We note in this respect that when the eigenvalue
g3 is very small, then, the four points defining the tetrad are nearly co-planar. In this case, not much information can be
obtained concerning the velocity gradient in the direction perpendicular to the plane of the tetrad.

To define the perceived velocity gradient tensor, M, we define, by analogy to ρ , the velocities:

v1 = (u2 − u1)/
√

2

v2 = (2u3 − u1 − u2)/
√

6

v3 = (3u3 − u1 − u2 − u3)/
√

12 (8)

(we also denote the ath component of the vector vi by vi,a). With these variables, M is defined by minimizing the quantity:

Q =
3∑

i=1

3∑
a=1

(vi,a − ρi,b Mb,a)
2 (9)

with the constraint that tr(M) = 0. This leads immediately to a simple prescription for the determination of M. Without the
constraint of incompressibility, the solution of the minimization problem can be readily obtained:

M = ρ−1 · v (10)

provided the matrix ρ is invertible. Special care has to be taken when the tensor g becomes singular, which happens when
the four points of the tetrads are co-planar, and when the information obtained from the four points of the tetrads is not
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sufficient to determine the velocity derivative in the direction perpendicular to the plane containing the points of the tetrad.
In such a case, standard Single Value Decomposition methods can be readily used [26].

We are interested here in the evolution of tetrads initially regular, with equal distance between two vertices
(|ri − r j | = r0). Such configurations are characterized by one length scale only, which can be varied, thus allowing to
characterize the properties of the velocity field as a function of scale. This provides insight on the properties of the flow,
when studied at a given scale r0. In particular, we expect that when r0 is very small, of the order of (or smaller than) the
Kolmogorov scale of the flow, η ≡ (ν3/ε)1/4, the properties of M will reduce to those of the velocity gradient tensor, m. At
very large scales, when r0 is comparable, or larger than the integral length scale of turbulence, the matrix M is not expected
to have any special property. Significant variations of the properties of M are therefore expected when the scale r0 varies
from dissipative to integral scales.

These changes are expected to have a significant impact both on the structure of M, and on the evolution of the geometry
of the tetrad. We consider these two aspects in the two following sections.

3.2. Characterization of the flow in terms of the perceived velocity gradient tensor

The construction of the perceived velocity gradient tensor allows us to obtain insight on the flow structure.
The matrix M is characterized by the two invariants R and Q , defined as Q = − 1

2 tr(M2) and R = − 1
3 tr(M3). In fact,

the values of R and Q entirely determine the eigenvalues of M. This is a consequence of the fact that the three eigenvalues
of M are the three roots of the characteristic polynomial:

λ3 + Q λ + R = 0 (11)

Elementary considerations show that these roots can be either all real, or that one of them only can be real and the two
other ones complex conjugate. Incompressibility imposes that the sum of these roots is equal to zero, but two cases can
be distinguished: two roots (or their real part) can be positive and the third one negative, or two roots (or their real part)
can be negative and the third one positive. Which configuration is seen depends on the sign of R , and of � = 4Q 3 + 27R2.
Thus, it has been found interesting to investigate the probability distribution function (PDF) of R and Q . Previous studies,
starting with [27], have shown that the PDF in the (R, Q ) plane, constructed with the velocity gradient tensor, is strongly
skewed, with a characteristic “tear-drop” shape.

It is also interesting to decompose M into its symmetric, S ≡ 1
2 (M+MT ), and its anti-symmetric components, 1

2 (M−MT ),
whose three non-zero components can be conveniently parametrized in terms of the vorticity �, defined such as Ωa =
εabc Mbc . The alignment of the vorticity with respect to the three eigenvectors of the strain, S, associated with the three real
eigenvalues λi sorted in decreasing order: λ1 � λ2 � λ3, is also instructive about the structure of the turbulent flow.

4. Numerical and experimental results on tetrad dynamics

4.1. Tetrad geometry

To characterize the evolution of the tetrad geometry, we focus on the eigenvalues gi of the tensor g. By considering
initially regular tetrads, the eigenvalues of g at time t = 0 are equal to each other, and g1 = g2 = g3 = r2

0/3 (with our
conventions, see Eqs. (6), (7)). The problem of the geometry of tetrads can be viewed as a natural extension of the problem
of Richardson dispersion. Indeed, turbulent motion not only leads to a separation of two neighbor particles, but also to a
deformation of a set (cloud) of particles, which reflects the structure of the flow.

The deformation of the tetrads can be conveniently monitored by measuring the (dimensionless) ratio between eigenval-
ues. More specifically, the ratios

Î1 = g1

g1 + g2 + g3
(12)

Î2 = g2

g1 + g2 + g3
(13)

Î3 = g3

g1 + g2 + g3
(14)

have been recently investigated, both in DNS [28,29,31] and in experiments [30], at Reynolds numbers up to Rλ ≈ 1000 [31]
(note that the sum Î1 + Î2 + Î3 = 1).

At moderate Reynolds numbers, the early observations [28] have shown a strong flattening of the tetrads, in such a way
that Î2 decreases very fast, and tends to reach an asymptotic value at large times, when the size of the tetrad becomes
larger than the integral size. One important remark is that the evolution of the deformation of the tetrad scales with the
time t0 = (r2

0/ε)1/3, which is the characteristic time at scale r0 in the Kolmogorov theory [30].
One of the questions one may ask in this respect is whether the deformation becomes statistically independent of r0

when the range of scales becomes very large, or equivalently, when the Reynolds number Rλ → ∞. Theoretical argu-
ments supporting this possibility were presented in [28]. Suggestive evidence was provided by the numerical work at
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Rλ � 300 [29]. The most recent simulation at Rλ ≈ 1000 brings very strong evidence that at very high Reynolds number,
the deformation of the tetrads becomes independent of time and scale provided that the separations between the vertices
of the tetrads are all in the inertial range [31].

A very strong reduction of the third eigenvalue of g, as measured by Î3, Eq. (14), has also been observed in [29,31,30].
One of the most significant lessons of these studies is that strong deformation is occurring over a fraction of the Kol-

mogorov time scale in the problem, namely t0. It is remarkable that the evolution seems to be to a large extend self-similar,
in the sense that the various moments investigated so far seem to be functions of the ratio t/t0. In the inertial range, at
very large Reynolds numbers, the average of the ratio 〈g2/ tr(g)〉 reaches a steady state, which suggests that the shape dis-
tribution reaches a steady state, reflecting the local structure of the turbulent flow. Last, it has been observed that tetrads
tend to become strongly flattened with a significant probability, suggesting that the matrix g is in fact quite likely to be
singular.

4.2. Evolution of M: alignment of the vorticity and strain

One of the very puzzling observations concerning the small scale properties of turbulent flows concerns the alignment
between vorticity, ω ≡ ∇ × u and the rate of strain, s, defined by si j = 1/2(∂iu j + ∂ jui) [32,35]. In fact, vorticity is known
to grow due to vortex stretching, according to:

d

dt
ω = s · ω + ν∇2ω (15)

The growth of vorticity is due to the term s · ω in Eq. (15). This term can be simply expressed in the basis of the three
orthogonal vectors ei , i = 1, 2 and 3 that diagonalizes s (we assume that the eigenvalues of s, λi , are sorted in descending
order λ1 � λ2 � λ3). A natural expectation would be that ω grows mostly in the direction of e1, corresponding to the largest
eigenvalue of s. However, vorticity also induces a rotation of the eigenframe of s that counteracts its growth in the e1
direction [33,34]. This could explain the numerical results of [35–37], that show that vorticity preferentially aligns with e2
(which corresponds also predominantly to a positive value of λ2). These properties concern the velocity derivative tensor,
and have been confirmed many times numerically. Although accurate measurements of the velocity derivatives are very
demanding in terms of spatial resolutions, experiments using multi-wire probes have confirmed the numerical observations.

The tetrad approach allows us to study the problem from another point of view. Namely, once the tetrad based matrix M
has been determined, one can also study the vorticity �, associated with the anti-symmetric component of M, and the rate
of strain S = 1

2 (M + MT ).
As it was the case with the velocity derivatives, it has been found that the vector � does not show any particular

alignment with the eigenvector e1 of S corresponding to the largest eigenvalue. However, the dynamics of M obtained
experimentally and numerically [38], shows that vorticity does tend to align with e1, although with a delay. To quantify this
effect, the correlation function:

Ci(t) = 〈(
ei(0)eΩ(t)

)2〉
(16)

was introduced, where i = 1, 2 or 3 refers to the eigenvalues of strain in decreasing order. In particular, the function
C1(t) measures the alignment between e1 and � at some later time. Direct numerical simulations, as well as results from
laboratory experiments [38–40] do show a significant increase from C1 ≈ 1/3 at t = 0, up to a maximum of C1 ≈ 0.43 at
t ≈ 0.25 × t0. Remarkably, the curves representing the evolution of C1(t) superpose very well, once time has been expressed
in units of t/t0 [38]. Furthermore, the data show an almost perfect superposition of the probability distribution functions
(PDF) of the cosine (e1(0)eΩ(t)), at similar values of t/t0, both at different values of r0 at a fixed Reynolds number, and
also at different Reynolds numbers [38,40]. As it was the case in the study of the deformation of tetrads, the quantities
characterizing the alignment of vorticity with the eigenvector associated with the largest eigenvalue of strain thus all seem
to evolve in a self-similar way as a function of t/t0.

An appealing interpretation of these results, based on the notion of conservation of angular momentum, has been pro-
posed to explain the observed alignment between eΩ(t) and e1(0). The size of the tetrad increases most in the direction
parallel to the largest eigenvector of the rate of strain tensor, e1, and much less in the two other perpendicular directions.
Thus, the components of the tensor g in the directions parallel to the eigenvalue e1 of the rate of strain is much larger than
the components parallel to e2,3. This implies that the projection of the moment of inertia tensor, familiar in the context of
solid mechanics, and defined as:

I = tr(g)Id − g (17)

diminishes in the direction parallel to e1.
We notice that the angular momentum of small fluid volume contained in an individual tetrad is the product of the

moment of inertia tensor I times the vorticity vector [38]. In the directions where the component of I diminishes, the
component of vorticity has to increase in order to conserve angular momentum. Therefore, in the direction parallel to e1,
where the eigenvalue of the tensor I decreases most, the component of vorticity is most amplified. Thus, conservation of
angular momentum, together with the fact that the tetrad grows most in the direction of the eigenvector corresponding to
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the largest eigenvalue of the rate of strain, leads to the alignment of vorticity with e1. It was indeed found that angular
momentum conservation is indeed a good approximation for the evolution of tetrads in a turbulent flow [38].

Similar arguments for the amplification of vorticity had been suggested in the classical textbook [41]. In the case of finite
tetrads studied here, however, the equations describing the evolution of the system are not known, preventing the casual
use of simple models.

Further results concerning the alignment between vorticity and strain are discussed in [40], and suggest the interesting
possibility that the dynamics of alignment of vorticity with the eigenvectors of strain could be essentially self-similar in the
inertial range, at least at high enough Reynolds numbers.

5. Modeling issues

A model for the Lagrangian dynamics of M has been proposed by Chertkov, Pumir and Shraiman [22]. The so-called
“tetrad model” is based on a particle representation of the velocity of four fluid particles. The model is formulated in terms
of two coupled stochastic differential equations, modeling the evolution of M, the coarse-grained velocity gradient tensor,
along with the three vectors ρ i (i = 1,2,3), which describe the shape of the tetrad with respect to its center of mass,

dMab

dt
+ (1 − α)

(
M2

ab − Πab Tr
(
M2)) = ηab (18)

dρi,a

dt
+ ρi,b Mba = ξi,a (19)

Πab = ki,aki,b

Tr(kkT)
(20)

where the matrix k is the inverse of ρ . With the notation used here, the indices a, b, . . . refer to the spatial coordinates,
whereas the indices i, j, . . . refer to the index of the vectors (“isospin”), as defined in Eq. (6). The deterministic parts of
equations (18), (19) (left-hand side of the equations) represent the effects of the dynamics induced by scales of order |ρ|.
The matrix �, defined by Eq. (20), is symmetric with a trace equal to 1; it provides a coupling of the geometry with the
dynamics of M. Lastly, the stochastic terms η and ξ in Eqs. (18), (19) represent the random effect of the small scales of
motion. They are represented by Gaussian, white-in-time noise terms, with a scale dependence prescribed by dimensional
considerations, consistent with Kolmogorov scaling,

〈
ηab(0)ηcd(t)

〉 = Cηδ(t)
ε

ρ2

(
δacδbd − 1

3
δabδcd

)
(21)

〈
ξi,a(0)ξ jb(t)

〉 = Cξ δ(t)
√

Tr
(
MMT

)(
δabρ

2δi j − ρi,aρ j,b
)

(22)

where ρ2 = Tr(ρρT ). The noise term acting on ρ , ξ , is assumed here to act only in the direction transverse to the
nine-dimensional vector ρ which is not expected to be a significant restriction. The parameter α represents the effective
reduction of the nonlinearity, already identified many times in simulations of the Navier–Stokes equations. It is represented
here by a dimensionless parameter, satisfying 0 � α � 1. The two other parameters in the problem are the amplitudes of
the noise terms: Cη and Cξ .

The solution of this stochastic model, written as a set of 14 coupled stochastic ODEs, can be formally expressed in
terms of path integrals, suggesting that it can be solved using Monte Carlo methods, by simply starting from an isotropic
tetrad of radius of gyration r0 and integrating equations (18)–(20) backwards in time, up to the time −T where the norm
of |ρ| reaches L, the integral scale. It was found, however, that the use of straightforward Monte Carlo methods is vastly
inefficient, due to the fact that few configurations contribute significantly to the solution. In practice, sampling randomly
the phase space leads in the overwhelming majority of cases to insignificant contributions, the problem becoming more
significant as one is interested in smaller scales.

To address this difficulty, the first attempts to solve the model used semiclassical approximation [42], with some subse-
quent improvements [43]. A full Monte Carlo treatment of the tetrad model has been obtained only very recently [44]. The
methods used in [44] rest on the ideas of importance sampling, as well as on the “Pruned-Enriched” algorithm introduced
in the context of statistical physics [45]. The main physical idea consists in identifying, as they are generated, configurations
(trajectories in phase space) that are giving rise to important contributions to the computed observable, expressed as a path
integral, and in sampling more in the corresponding phase space region. On the contrary, configurations that are giving
very small contributions are selectively eliminated. Such methods have been successfully used in several statistical physics
problems (see e.g. [46]).

We found in this problem that such methods allow us to determine efficiently the spatial dependence of the solution.
Fig. 1 shows an example of the joint probability distribution function in the plane of the two invariants of the 3 × 3
traceless matrix M: Q = − 1

2 tr(M2) and R = − 1
3 tr(M3). The location of the points where � = 0 is shown in Fig. 1 as a

dashed line; below this line, all eigenvalues of M are real; whereas above this line, one eigenvalue is real, and two are
complex conjugate. This shows that regions where the flow locally rotates are above the � = 0 line. In addition, for R � 0
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Fig. 1. Probability distribution function of the two invariants R = − 1
3 tr(M3) and Q = − 1

2 tr(M2) at three values of the scale r0 of the tetrad: r0 = L/4
(upper panel); r0 = L/16 (middle) and r0 = L/64 (lower panel). Isoprobability contours, logarithmically separated by a factor 10, are shown by the dashed-
dotted lines. The zero discriminant line 4Q 3 + 27R2 = 0 is shown as a dashed line. The solution does not evolve much when the scale decreases. The
values of the parameters are α = 0.5, Cη = 0.5 and Cξ = 0.15.

(R � 0), two eigenvalues are positive (negative), or have positive (negative) real parts, and the third eigenvalue is negative
(positive).

Fig. 1 shows the skewness already observed in DNS studies both for the velocity gradient tensor, and for the perceived
velocity gradient tensor M. In addition, Fig. 1 shows little evolution of the PDF of R and Q when the scale r0 diminishes.
This is very suggestive of a behavior of the self-similar behavior of the flow in the inertial range of scales of the flow. The
solutions of the tetrad model are shown here for one set of the parameters α, Cη and Cξ . It was shown in [44] that the lack
of symmetry R → −R of the PDF, related to the growth of probability along the R > 0 side of the separatrix 4Q 3 +27R2 = 0,
was increasingly visible for values of α decreasing from 0.9 to 0.5, and was saturating for α � 0.3. This lack of symmetry
R → −R is also strongly reduced for increasing values of Cη . The dependence of the model’s solutions with respect to Cξ

has been shown to be much weaker. By using this numerical method, Pumir and Naso also found that the moments of order
n � 4 of the solutions of the tetrad model scale with the coarse-graining length and that the scaling exponents are very
close to the predictions of the Kolmogorov theory [44]. In comparison with the available (experimental or numerical) data,
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Fig. 2. Statistical properties of the vorticity and strain predicted by the model Eqs. (18), (19), (20). The upper panel shows the probability distribution of
the cosines between the eigenvectors of strain, ei , and vorticity (r0 = L/4). It shows that vorticity aligns equally well with the two eigenvectors e1 and e2.
The middle panel shows the pdfs of β for three values of the tetrad size (r0/L = 1/2, 1/4 and 1/8). For comparison, the pdf of β in the case of a Gaussian
ensemble of traceless matrices M is shown (dotted curve). Thus, the pdf of β deviate systematically from the distribution obtained in the Gaussian case,
but these deviations appear to be scale independent. Last, the lower panel shows the average of β as a function of scale, and shows a slight increase of 〈β〉
(� 0) when r0 decreases. The values of the parameters are α = 0.5, Cu = 0.15 and Cη = 2.

the model qualitatively reproduces quite well the statistics concerning the local structure of the flow. It is however found
that the model generally tends to predict an excess of strain compared to vorticity.

The model also allows us to determine the properties of the strain, S = 1
2 (M + MT ) and of the vorticity, Ωa = εabc Mbc . In

fact, it has been noticed for a long time that vorticity, ω = ∇ × u is mostly aligned with the eigenvector corresponding to
the intermediate eigenvalue λ2 of the strain [32,35]. In addition, the intermediate eigenvalue λ2 is mostly positive. This can
be seen by investigating the parameter β , defined by:

β ≡
√

6λ2√
λ2

1 + λ2
2 + λ2

3

(23)

The value of β is in the range −1 � β � 1 when λ1 � λ2 � λ3.
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Fig. 2 quantifies the alignment properties of the vorticity � with the eigenvalues of the rate of strain S, as well as the
probability distribution function of β , and its scale dependence. The upper panel shows that the model predicts a slight
alignment between vorticity and the two eigenvectors of the rate of strain, corresponding to the two largest eigenvalues,
which can be seen by the enhanced probability for values of |ei · eΩ | close to 1. In comparison, vorticity is mostly per-
pendicular to the strain eigenvector corresponding to the smallest eigenvalue, e3. The fact that vorticity � aligns as much
with the first as the second eigenvectors of strain is a-priori surprising, as standard arguments suggest that � should have
aligned strongly with e1, and not so much with e2. However, observations both at very small scales, and more recently for
r0 in the inertial range [40], indicate that � and e1 do not show any alignment at all, in the sense that the PDF of e1 · eΩ

is flat. On the other hand, a much stronger alignment is observed between e2 and eΩ . The PDF shown in Fig. 2 therefore
demonstrate that while the model does not quite reproduce quantitatively the observed alignment property, it does indicate
that the usual casual argument that � should be more aligned with e1, than with e2, than with e3 is not correct. It would
be interesting to understand in more detail the alignment properties observed in the model, as it is very likely to shed light
on those observed in turbulent flows.

The intermediate panel of Fig. 2 shows the PDF of β , defined by Eq. (23), for several values of the size r0 of the tetrad,
whereas the lower panel shows the averaged value 〈β〉 as a function of r0. Both pictures show that β is predominantly
positive: the PDF of β is skewed towards positive values. Fig. 2 also reveals that the distribution of β does not change much
as a function of r0. This very weak evolution of the statistical properties of the quantities computed with the help of the
model, Eqs. (18), (19), (20), is consistent with the results obtained in [44]. More importantly, it is also indicative of the fact
that the properties of alignment observed in experiments at relatively high Reynolds number (Rλ ≈ 350) also suggest a very
weak dependence of the properties of M as a function of r0 [40].

6. Summary and conclusions

The approach discussed in this short review, based on following Lagrangian tetrads in turbulent flows, provides new
insight on the structure of turbulence. In particular, varying the size r0 of the tetrads allows us to obtain insight on the scale
dependence of the flow, on its structure and topology, as well as on some important aspects of the dynamics. In relation
to this approach, the model proposed originally in [22] can be solved numerically by using refined Monte Carlo techniques,
using importance sampling methods. While not all the properties of the flows are quantitatively reproduced by the solutions
of the model, we find that the model correctly captures some important aspects observed in experiments and in DNS, in
particular those concerning the topology, and the lack of strong alignment between vorticity and the eigendirection of the
rate of strain corresponding to the largest eigenvalue of S. As observed in experiments and in DNS, the model predicts a
very weak dependence of the flow properties as a function of the scale r0 in the inertial range.

The approach presented here thus has the potential to shed light on some of the surprising properties of turbulence,
and to give new information on the structure of the flow, thus providing a better understanding of the generation of small
scales.
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