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Superconducting quantum interference devices (SQUIDs) can detect tiny amounts of
magnetic flux and are also used to study macroscopic quantum effects. We employ a dc
SQUID as a linear detector of the displacement of an embedded micromechanical resonator
with a femtometer sensitivity. We discuss the measurement method, including operation
in high magnetic field and a cryogenic amplification scheme which allows us to reach a
resolution which is only a factor 4.4 above the standard quantum limit.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Les magnétomètres à base de SQUID (Superconducting QUantum Interference Device) sont
sensibles à de très faibles variations de flux magnétique et sont ainsi utilisés pour l’étude
d’effets quantiques à l’échelle macroscopique. Nous avons réalisé une mesure linéaire du
déplacement d’un microrésonateur mécanique enchâssé dans la boucle supraconductrice
d’un dc SQUID. En utilisant un fort champ magnétique et un amplificateur fonctionnant
en régime cryogénique, cette méthode de mesure nous a permis d’atteindre une résolution
qui n’est que 4,4 fois la limite quantique.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. Mesoscopic mechanics

Mechanical resonators are used as sensitive detectors of forces. Although they are typically macroscopic structures con-
sisting of many atoms and thus have many degrees of freedom, the eigenmodes with the lowest energies can be engineered
to be almost completely isolated from all other modes, even at the micro- and nanometer scale [1]. These modes then act
as one-dimensional harmonic oscillators. They can store mechanical energy for long times and react with a large change
in oscillation amplitude or resonance frequency to any applied force. The fundamental limits to the noise added by these
resonant mechanical force detectors to the force to be measured was explored early on by the gravitational wave commu-
nity [2].
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The mean-square displacement due to stochastic force noise is related to the potential energy of the resonator 1
2 kR〈u2〉,

where kR is the spring constant of the resonator mode and u is the displacement of the resonator with respect to its
equilibrium position. It is known from statistical mechanics that the expectation value for the potential energy in a harmonic
oscillator with frequency f R at temperature T R is
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At temperatures for which the thermal energy is much larger than the energy of a single phonon, i.e. kB T R � hf R , this
expression reduces to the equipartition theorem
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At absolute zero the only fluctuations that remain are the zero-point fluctuations with an average energy of half a phonon.
In order to use the resonator as a force sensor its displacement must be detected, typically by conversion to an output
voltage. If the position detector couples linearly to the deflection of the resonator, quantum mechanical analysis shows that
even an ideally coupled, quantum limited detector adds at least another half a phonon of noise energy [2,3]. This can be
understood as the contribution of the internal degrees of freedom in the detector when they are coupled to the resonator.
The total added noise consists of the imprecision noise of the detector, which shows as a white displacement noise floor
at the detector output and the back action force noise, which increases the amplitude of the Lorentzian noise peak of the
resonator. In this article only the detector resolution due to measurement imprecision is discussed, back-action noise is not
included. Although the resolution can be made arbitrarily small by increasing the coupling between the detector and the
resonator, the optimum coupling will yield a resolution on the order of the zero-point motion of the resonator:
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〉
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√
hf R

2kR
(3)

This is the mean-square displacement associated with half a phonon and is known as the standard quantum limit. Note that
these fluctuations only become significant once the resonator is cooled to a temperature such that kB T � hf R .

Position measurements of micro- and nanomechanical resonators in the quantum regime are of interest not only because
they reveal the quantum nature of a massive, macroscopic degree of freedom; a ground-state cooled resonator can also
be prepared in a non-classical state and subsequently used to transfer that state to for example a quantum information
element [4]. Resonators which are coupled to mesoscopic electronics allow investigation of the interaction between their
respective degrees of freedom. The resulting interesting physics has been investigated for devices such as the Single-Electron
Transistor (SET) [5,6], the Atomic Point Contact (APC) [7] and the Quantum Point Contact (QPC) [8]. Although most of these
devices have the potential for resolution beyond the quantum limit, optomechanical [9] and electromechanical [10] cavity
resonators are among the first micro-scale systems to reach this milestone.

We use a Superconducting Quantum Interference Device (SQUID) to detect the position of an integrated microres-
onator. SQUIDs are an important class of mesoscopic detectors which are primarily used for the detection of tiny magnetic
fields [11]. We use a magnetic field to couple the position of the integrated resonator to the flux that threads the loop. In
previous work, we achieved a position resolution of a factor 36 above the quantum limit for linear position detection [12].
In this article we focus on the position detection in more detail. We explain the measurement setup and electronics in more
detail and we report on improvements which have resulted in an order-of-magnitude improvement in the resolution to 4.4
times the standard quantum limit.

1.2. The dc SQUID position detector

We start with a short explanation of the operating principle of the dc SQUID (Fig. 1). A more comprehensive description
can be found in [11]. The basic element of the dc SQUID is the Josephson junction, through which supercurrent can flow up
to a maximum (critical) value I0. For bias currents I B beyond I0, a voltage develops across the junction due to a quasiparticle
current which runs through the normal-state resistance R of the junction.1

A dc SQUID consists of two Josephson junctions in parallel inside a superconducting loop which is contacted by two
leads. Due to the condition of phase continuity of the Cooper pair wave function around the loop, a supercurrent J will
run around the loop in response to an applied magnetic flux Φ through the inner part of the SQUID loop. The result is that
the dc SQUID acts as a single Josephson junction with a critical current IC which can be tuned between the sum of the
critical current of the two junctions, IMAX

C = I0,1 + I0,2 and their difference IMIN
C = |I0,1 − I0,2| by changing Φ by half a flux

quantum, Φ0 = h/2e = 2 fTm2. Φ0 is a tiny amount of magnet flux and this is the reason why the SQUID has a high flux

1 The device in this article is overdamped, which means that the V SQ –I B curves are non-hysteretic. This is a necessary condition for using the SQUID as
a continuous linear flux detector above its critical current, i.e. in the dissipative regime [11].
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Fig. 1. Colored SEM image of the dc SQUID, which consists of a 40 × 80 μm niobium loop with 4.5 μm wide arms (red), interrupted by two 300 nm long
indium arsenide junctions (marked X), contacted by gold pads (yellow) and situated on an insulating AlGaSb-on-GaAs substrate (blue) [19]. The mechanical
resonator has length � = 50 μm. It is defined by two windows which are etched through the AlGaSb into the GaAs (dark blue) and it is suspended by
removing the underlying GaAs. The resonator has a fundamental mode which moves perpendicular to the substrate plane with a coordinate u, whose
displacement is equal to the root-mean-squared displacement of the beam averaged over the beam’s length.

Fig. 2. (a) Measured dc SQUID output voltage V SQ as a function of bias current I B and stripline current I F . In the blue region the SQUID is superconducting.
The critical current varies periodically. A current of 125 μA through the stripline changes Φ by one flux quantum, which yields a mutual inductance
MSTRIP = Φ0/�I F = 16 pH between the stripline and the SQUID loop. (b) V SQ versus I F for two values of I B (horizontal dashed lines in (a)). (c) V SQ

versus I B for two values of I F : Left vertical white line in figure (a) corresponds to the red curve, the right line corresponds to the blue curve. The visible
fluctuations are due to flux interference. Note that the feedback loop which stabilizes the flux is not engaged during this measurement. On the other hand,
it is always used during measurements on the mechanical resonator.

sensitivity. If the SQUID is biased above IC , a voltage V SQ develops which also depends on Φ , making the SQUID a linear

flux detector for flux signals which are much smaller than Φ0. The flux responsivity is then defined as VΦ = ∂V SQ
∂Φ

, which is
tunable by Φ and I B . Φ is controlled by applying a current I F through a stripline next to the SQUID (see Fig. 1).

Fig. 2 shows the relationship between V SQ , I B and I F as measured for the device in this article. The device behavior
is consistent with the resistively shunted Josephson junction (RCSJ) model [11]. The largest values for VΦ are obtained for
I B < IMAX

C and V SQ → 0 V (Fig. 2(b)). In fact, in a noiseless SQUID model, VΦ goes to infinity for V SQ → 0. Flux noise
however strongly decreases the gain in this region, and this is why the maximum gain is found above V SQ = 0.

A description of the device is given in Fig. 1. In order to use the dc SQUID as a displacement detector, a section of the
loop forms a freely suspended beam and the SQUID is placed in a magnetic field B which is parallel to the substrate plane
and perpendicular to the length direction of the beam. In this way, Φ changes when the beam displaces. The displacement
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u of the fundamental eigenmode is defined as the root-mean-square (RMS) displacement of the modeshape u(x) along the
length � of the beam,

u =
(

�−1

�∫
0

u(x)2 dx

)1/2

(4)

With this definition, the spring constant of the mode is kR = m(2π f R)2, where m is the total mass of the beam. The
displacement u causes a change in flux of aB�u, where

a = (u�)−1

�∫
0

u(x)dx (5)

is the normalized change in loop area. For the fundamental mode of the buckled beam, a ≈ 0.9 [12]. If the SQUID is biased
above IC , it can thus act as a linear transducer for the motion of the beam with a responsivity

∂V SQ

∂u
= GHF VΦaB� (6)

where GHF is the gain of the high-frequency voltage amplifier which is discussed in the next section. In order to have
a large responsivity, it would seem that the largest possible B field is preferable. This is, however, not true, because the
critical current of the junctions and thus also the flux gain VΦ decrease rapidly for fields on the order of 100 mT due to
flux vortex formation [12]. All the measurements in this paper are performed at B = 60 mT, where the optimal displacement
responsivity was found for this device.

The motion of the resonator can be detected either by measuring the thermal and/or quantum mechanical position
fluctuations using a spectrum analyzer or by measuring the response of the resonator due to a driving force using a network
analyzer. To perform the driven measurement with the network analyzer, the resonator is mounted on a piezo actuator
which moves the entire substrate perpendicular to the substrate plane, thereby actuating the resonator. Using a driven
measurement, the fundamental resonance frequency f R of the beam is found at 2.1385 MHz. The beam has a calculated total
mass m = 6×10−13 kg [12], which gives a spring constant kR = 110 N/m. The resonator has a quality factor Q R = 3×104 at
15 mK. Note that at this temperature, the resonator is far in the limit kB T R/hf R > 100, where equipartition applies (Eq. (2)).

Due to the applied magnetic field, the circulating current J exerts a Lorentz force on the resonator which is proportional
to its displacement and its velocity. This back-action causes a tunable shift in the resonance frequency and damping rate of
the resonator, as we have measured recently [13]. Back-action may also enable cooling below the environmental tempera-
ture [14]. For the device in this article, the back-action is disregarded, as it is weak and the experiments are conducted at a
SQUID bias where its effects cannot be detected.

2. Measurement setup

Fig. 3 shows the physical setup and Fig. 4 shows a schematic of the measurement electronics. In this section we ad-
dress the two main measurement issues, which are the low-noise amplification of the dc SQUID output voltage and the
stabilization of the magnetic flux in the SQUID loop while operating it in a relatively large magnetic field.

2.1. Vibration control

Optimization of displacement detection requires a constant average magnetic flux in the SQUID loop. This is a highly
nontrivial task since small vibrations of the superconducting magnet with respect to the SQUID can already cause changes
in the magnetic flux through the SQUID loop of the order of Φ0. To clarify this point, we must examine the setup in more
detail. The device is connected to a cold finger which in turn is connected to the mixing chamber of a dilution refrigerator.
Fig. 3 shows the physical situation. The dilution unit is mounted at the end of a 5 cm diameter dipstick which is hanging
in a dewar of liquid helium. The dipstick is supported only at the neck of the dewar and is therefore able to vibrate in
directions perpendicular to its length. The superconducting magnet on the other hand is suspended separately in the dewar.
Considering the inner area of the SQUID loop, 40 × 80 (μm)2, a free length of 1 m for the dipstick and a typical coupling
field of 60 mT, a simple geometrical calculation yields a flux change of 1 Φ0 for every 10 μm of lateral displacement of the
end of the dipstick. Because of this extreme sensitivity to vibrations, the dewar is placed on a damped platform. It damps
most strongly in the direction of the pumping lines coming from the gas handling system, as they are the strongest source
of vibrations. Nevertheless, the remaining RMS amplitude of the vibration-induced flux interference is around 0.5Φ0 up to
1 kHz.

In order to further stabilize the amount of magnetic flux in the loop, we employ a proportional-integral feedback loop
which controls the current through the stripline to maintain a constant voltage setpoint, V SP , across the SQUID. Before
operating the feedback loop, all electronic interference which is not related to the magnetic flux must be removed, as it
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Fig. 3. The physical setup consists of the SQUID which is mounted on a dipstick-sized dilution refrigerator and placed in a helium dewar with a supercon-
ducting magnet to provide the magnetic field B . The SQUID is connected to custom-built, battery fed control and readout electronics which are optically
isolated from the mains-fed measurement equipment. Mechanical vibrations cause magnetic flux interference by changing the angle of the dipstick and
thus the SQUID with respect to the magnet. To minimize this interference, the dewar is placed on a mechanically damped platform and has only flexible
connections to the gas handling system and the mains-fed electronics. The remaining flux interference is compensated by operating the stripline in a
feedback loop which maintains a constant average output voltage across the SQUID.

Fig. 4. Schematic of the amplification stages and control electronics at the various temperatures. The dc SQUID is connected to the low-frequency biasing
electronics on the left side via 10 k� resistors and is connected to the high-frequency amplifier through capacitors to prevent dc currents from running
between the low- (<10 kHz) and high-frequency (MHz) sides. The first high-frequency amplification stage is a High Mobility Electron Transistor (HEMT),
mounted on the 1 K plate of the refrigerator. A 10 k� bleed resistor connects the gate to ground. A room temperature voltage source and tunable resistor
are used to bias the transistor in a common source configuration. The amplified voltage is measured using a second, room temperature amplifier connected
to the drain of the HEMT, with a bias-tee to separate the dc bias and the high-frequency signal.

will be coupled back into the SQUID by the feedback loop. The feedback loop operates at frequencies up to 1 kHz and thus
does not influence the high-frequency oscillations due to the micromechanical resonator (MHz range). The optimized setup
stabilizes the flux to a standard deviation of 0.01Φ0.

2.2. Cryogenic high-frequency amplifier

The measurement imprecision is determined by the total noise that is added to the displacement of the resonator by all
the amplification stages. Ideally the first transducer, the dc SQUID in this case, should be the dominant noise source. Note
that the dc SQUID can in principle be a quantum limited flux [15] and position [16] detector.

In previous work [12] the first voltage amplifier was at room temperature and its noise was dominant, with an equivalent
input noise level of 0.30 nV Hz at 2 MHz at the amplifier input. As this level is partly determined by Johnson noise of the
transistor channel, it should decrease when the operating temperature of the amplifier is lowered. Another important factor
is the signal loss from the SQUID to the amplifier due to the parasitic capacitance of the coaxial cable which was several
meters in length. The loss of gain was estimated to be almost an order of magnitude, which means that the actual equivalent
input noise level at the SQUID was around 3 nV/Hz1/2. This loss can be decreased by mounting the amplifier closer to the
SQUID. For these two reasons, we have mounted a High Electron Mobility (HEMT) amplifier on the 1 K stage of the dilution
refrigerator, using a phosphor-bronze core coaxial cable with a length of 0.4 m to connect the HEMT to the SQUID (Fig. 4).
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Fig. 5. (a) Map of the lock-in voltage V LIA as a function of I B and voltage setpoint V SP . V LIA is proportional to VΦ and is used to normalize the measured
resonator spectra. (b) The voltage swing V MAX − V MIN as a function of I B at temperatures ranging from 15 mK (blue) to 420 mK (red). IMAX

C is always at
the maximum voltage swing and IMIN

C is the lowest current at which the swing is non-zero.

The HEMT is used as a common-source, high-input-impedance amplifier [17]. The variable resistor in Fig. 4 is used to set
the bias current through the HEMT. The amplifier has a maximum signal-to-noise ratio when it is tuned to its maximum
gain point, which is found for a bias current of 0.8 mA. At room temperature the output of the HEMT is further amplified
by a high-impedance JFET amplifier with a gain of 1.7 × 103 V/V at 2 MHz. When the dilution unit is in operation and
the HEMT is cold (1–4 K) it has a gain of 10 V/V, which was determined by replacing the SQUID with a 1 k� resistor
and measuring its Johnson noise as a function of temperature. The SNS junctions of the SQUID cannot be used for this
purpose, even though they also produce Johnson noise. They have a normal-state resistance R on the order of 10 � and at
millikelvin temperatures, their contribution to the noise is much smaller than that of the HEMT amplifier. The total gain of
the high-frequency amplifiers is thus GHF = 1.7 × 104 V/V.

The noise power at the output of the JFET amplifier is S1/2
Vn

= 4.5 μV/Hz1/2, with the dominant noise contribution coming

from the HEMT. This gives an equivalent input noise of 0.26 nV/Hz1/2 at the SQUID, over an order of magnitude better than
the previous configuration [12]. Surprisingly, the noise floor at the HEMT input is similar to the same HEMT at room
temperature. The major improvement is thus due to a reduction of capacitive losses.

3. Motion detection

3.1. dc SQUID measurements

During acquisition of the mechanical resonator signal, the SQUID is operated in a feedback loop, which means that the
voltage setpoint V SP is specified instead of Φ . In order to find the optimum gain point and to measure other properties
such as the mechanical resonance frequency, we must first determine the values in V SP–I B space for which the feedback
loop produces a stable lock. This is done by taking the minimum and maximum voltage, V MIN and V MAX, as a function of
I B from measurements like that shown in Fig. 2. The feedback loop is operated within this region (between the red lines in
Fig. 5(a)), and at each bias point, the flux gain is measured in addition to either the driven response or the noise spectrum
of the resonator.

The flux gain VΦ is measured by applying a small sinusoidal current signal to the stripline at 5 kHz. The corresponding
response of the SQUID is measured using a lock-in amplifier which is connected to the low-frequency side of the measure-
ment circuit (Fig. 4). VΦ is related to the measured amplitude V LIA according to

V LIA = V IF MSTRIPGLF

AIF RIF
VΦ (7)

where MSTRIP = 16 pH is the mutual inductance between the stripline and the SQUID loop (Fig. 2(b)). V IF = 0.85 V is
the RMS output voltage of the lock-in amplifier which is attenuated by a factor AIF = 4 kV/V by the input circuit of the
battery-fed electronics (Fig. 3) and applied to a 1 k� resistor, RIF , which is placed in series with the stripline. This couples
a small flux signal of 6.5 mΦ0 into the loop. The SQUID output voltage is then amplified by the low-frequency amplifier
by a factor GLF = 10 kV/V. Since only VΦ depends on the SQUID bias parameters (and temperature), VΦ is determined by
measuring V LIA and using Eq. (7). Fig. 5(a) shows V LIA as a function of SQUID bias. The highest flux gain occurs at low
voltage setpoints, as expected from Fig. 2. By using the parameters mentioned above and the maximum V LIA = 3 mV from
Fig. 5, the maximum flux gain is found to be VΦ = 176 μA/Φ0.

The minimum and maximum critical currents, IMIN
C and IMAX

C decrease for increasing temperatures, Fig. 5(b). For the
temperature-dependence measurements, it is therefore important to track the critical currents and the voltage swing in
order to keep the setpoint of the feedback loop within the stable region. The flux gain VΦ depends on IC and thus also
decreases with increasing temperature. As the value of VΦ is needed to calibrate the displacement sensitivity, V LIA is
measured with each resonator spectrum. This calibration is described in the next section.
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Fig. 6. (a) Normalized voltage noise spectra at 15 mK (blue) and 420 mK (red). The Lorentzian peaks are due to the Brownian motion of the resonator
and the integrated area under the curves is proportional to the root-mean-square motion of the resonator which is in turn proportional to the substrate
temperature according to the equipartition theorem. The area under the red curve is clearly larger than under the blue curve. The measurement sensitivity
is determined by the flat noise floor away from the resonance peak and is also lower at decreased temperature. (b) Normalized integrated noise power
plotted as a function of refrigerator temperature. The noise power decreases linearly with temperature down to a saturation temperature of 70 mK (black
vertical line). A linear fit of the data above the saturation temperature (blue line) yields a slope which is used to calculate the displacement-to-voltage gain
of the SQUID position detector. This is in turn used to convert the measured noise spectra from voltage noise to displacement noise.

3.2. Displacement calibration

A reference is needed in order to calibrate the responsivity ∂V SQ
∂u of the combined dc SQUID position detector and

amplifier chain. Thermal energy is a natural choice because the equipartition theorem relates the mean-square position
fluctuations of the resonator 〈u2〉 to its temperature T R . By using Eq. (2), the integrated voltage noise power due to the
motion of the resonator becomes

〈
V 2

R

〉 = (
∂V SQ

∂u

)2〈
u2〉 = (

∂V SQ

∂u

)2 kB T R

kR
(8)

The total voltage noise has an additional white noise floor S Vn due to the detector and the amplifiers. When this noise is
referred back to the resonator displacement, i.e.

Sun = S Vn

(
∂V

∂u

)−2

(9)

it is known as the displacement sensitivity or imprecision noise. The imprecision noise is related to the displacement
resolution

√
〈u2

n〉 of the detector according to [6]

〈
u2

n

〉 = Sun

π f R

2Q R
(10)

In order to examine the quantum limit for linear detection, the resolution should be tunable to be less than
√〈u2〉QL

(Eq. (3)).
Fig. 6(a) shows the voltage noise spectrum around the resonance frequency, measured at two different temperatures.

As was mentioned in the previous subsection, the flux gain of the SQUID changes with temperature and therefore, to
compare displacement noise spectra at different temperatures, they must be normalized by VΦ . For this reason V LIA , which
is proportional to VΦ , is measured after each spectrum and the spectra are normalized by V LIA . As can be seen in Fig. 6(a),
the integrated area under the spectra, 〈V 2

R〉/V 2
LIA , is larger for the higher temperature, as is expected from Eq. (8). Another

observation is that the normalized noise floor is lowest at low temperatures. This is because the dominant noise source is
the HEMT amplifier and although its noise does not depend on the bath temperature T B , the flux gain VΦ decreases with
increasing T B , thereby increasing the noise level when it is referred back to the resonator displacement.

Although one could calculate ∂V SQ
∂u from a single spectrum by using Eq. (8), this assumes that the temperature of the

resonator T R is the same as the temperature of the bath T B , which is measured by a separate thermometer. At temperatures
below 1 K, this point is not trivial and many groups observe a saturation of T R , where it no longer follows T B for varying
reasons, such as on-chip power dissipation and back-action of the displacement detector [7,14]. The responsivity can be
more accurately determined by measuring 〈V 2

R〉/V 2
LIA as a function of T B . From Eq. (8), a linear relationship between these

two quantities is expected as long as T R = T B . Then, ∂V SQ
∂u can be determined by calculating the slope

d〈V 2
R 〉/V 2

LIA
dT B

and using

∂V

∂u
(T B) =

√
kR

k

(
d〈V 2

R〉/V 2
LIA

dT

)
V LIA(T B) (11)
B B
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Here, ∂V
∂u at temperature T B is stated explicitly as consisting of the parameters within the square root, which are approx-

imately temperature independent and V LIA , which depends strongly on T B . By combining Eqs. (3), (9), (10) and (11), the
position resolution with respect to the quantum limit can be expressed in terms of only measured quantities and natural
constants:√√√√ 〈u2

n〉
〈u2

Q L〉
=

√
kB S Vn

2h̄Q R

(
d〈V 2

R〉/V 2
LIA

dT B

)−1( 1

V LIA(T B)

)
(12)

Note that Q R and V LIA both depend on temperature and will be maximal at the lowest bath temperatures T B . This is where
the best resolution is achieved.

Fig. 6(b) shows the thermal calibration for the dc SQUID detector. The optimum bias point is determined by finding the
maximum gain in Fig. 5. The bias is defined in relative terms: I B = IMIN

C + 0.8(IMAX
C − IMIN

C ) and V SP = V MIN + 0.3(V MAX −
V MIN) because these values change with temperature and must be tracked, as was explained in the previous subsection.
For this purpose, the SQUID is calibrated at each temperature point. From a linear fit to the data in Fig. 6(b), the slope
d〈V 2

R 〉/V 2
LIA

dT B
= 0.25 K−1 is obtained. The resonator temperature saturates around T R = 70 mK, which corresponds to an average

occupation of 6.8 × 102 phonons. This is similar to what was observed in previous work [12]. At T B = 15 mK, we measure
V LIA = 3 mV and Q R = 3 × 104. Combined with the output noise floor

√
S Vn = 4.5 μV/Hz1/2 which was mentioned in

Section 2 and the spring constant kR = 110 N/m from Section 1, this yields ∂V
∂u = 4.2 μV/fm and

√
〈u2

n〉
〈u2

Q L 〉
= 4.4 or in absolute

terms,
√

Sun = 1 fm/Hz1/2. As discussed in Section 2, this is an order-of-magnitude improvement over previous work [12] is
achieved by placing the HEMT amplifier closer to the SQUID at the 1 K stage of the dilution refrigerator.

A further improvement of the displacement resolution is possible by increasing the flux responsivity of the SQUID and
by using an amplifier with an even lower noise floor, such as a second SQUID. With these improvements, one should be
able to push the SQUID displacement sensitivity beyond the standard quantum limit, where detector back-action becomes
the dominant source of fluctuations. Since the back-action in this SQUID-based detection scheme is tunable [13], it is an
interesting system to study in more detail. For example, it may become possible to go from a regime where the SQUID
is cooling the resonator to a regime where the resonator oscillation is amplified, possibly to the point of self-sustained
oscillation [18]. Because of their small mass and low dissipation, embedded micro- and nanomechanical resonators are an
excellent platform to study these effects.
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