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The quantum Hall effect (QHE) discovery has revolutionized metrology by providing
with a representation of the unit of resistance, RK, that can be reproduced within
a relative uncertainty of one part in 109 and is theoretically only linked to Planck’s
constant h and the electron charge e. This breakthrough also results from the development
of resistance comparison bridges using cryogenic current comparator (CCC). The QHE
experimental know-how now allows the realization of perfectly quantized Quantum Hall
Array Resistance Standards (QHARS) by combining a large number of single Hall bars. In the
context of an evolution of the Système International (SI) of units by fixing some fundamental
constants of physics, the determination of the von Klitzing constant RK through the use
of the so-called Thompson–Lampard calculable capacitor and the realization of refined
universality tests of the QHE are of prime importance. Finally, the fascinating graphene
material might be a new turning point in resistance metrology.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

La découverte de l’effet Hall quantique (EHQ) a révolutionné la métrologie en fournissant
une représentation de l’unité de résistance, RK, qui peut être reproduite avec une
incertitude relative de 10−9 et est théoriquement reliée seulement à la constante de
Planck h et la charge de l’électron e. Cette révolution s’est également appuyée sur
le développement de ponts de comparaison de résistances équipés de comparateurs
cryogéniques de courants (CCC). Le savoir-faire expérimental en EHQ permet désormais la
réalisation d’étalons de résistance combinant de nombreuses barres de Hall élémentaires
en réseaux (QHARS) offrant des valeurs parfaitement quantifiées. Dans le contexte d’une
évolution du Système International (SI) d’unités fondée sur la fixation de certaines
constantes de la physique, la détermination de la constante de von Klitzing RK, qui
utilise l’étalon calculable de capacité de Thompson–Lampard, et la réalisation de tests
d’universalité de l’EHQ plus précis sont essentiels. Enfin, le graphène, nouveau matériau
fascinant, pourrait marquer un nouveau tournant de la métrologie des résistances.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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Fig. 1. a) Bilateral comparisons of resistance between several NMIs and BIPM from Ref. [3]. b) Drawing of a Hall bar sample based on a GaAs/AlGaAs
heterostructure.

1. Impact of the QHE on the SI units

1.1. The QHE as a representation of the ohm

Before 1990, the ohm was maintained in each country by a set of wire resistors the resistance of which was deduced
from the henry or the farad by use of a quadrature bridge. The relative dispersal of the ohm representations was amounting
to about one part in 106. Only ten years after the discovery of the quantum Hall effect (QHE) by K. von Klitzing in 1980 [1],
the Comité international des poids et mesures (CIPM) recommended the maintaining of the unit of resistance by use of the
QHE [2]. Fig. 1a gathers the results of bilateral comparisons [3] of resistance realized between BIPM and several National
Metrology Institutes (NMIs) equipped with QHE setups and cryogenic current comparators (CCC). These data reveal a degree
of equivalence of NMIs as low as some parts in 109, i.e. three orders of magnitude better than previously. This is a direct
consequence of the universality property of the QHE.

This quantum phenomenon appears in a two-dimensional electron gas (2DEG) placed in a perpendicular magnetic field.
Let us consider a sample of the typical shape which is a bar with lateral contacts, as shown in Fig. 1b. One can define the
so-called Hall resistance RH and the longitudinal resistance Rxx by:

RH = V H/I and Rxx = V xx/I (1)

The QHE gives rise respectively to plateaus for the Hall resistance and to oscillations of the longitudinal resistance (the
Shubnikov–de Haas oscillations) when varying the magnetic induction, as shown in Fig. 2a. The quantized values of RH on
the plateaus are given by:

RH = RK/i (2)

i is the plateau index, it is an integer, RK is the von Klitzing constant, theoretically equal to h/e2 where h and e are the
Planck’s constant and the electron charge respectively. Whereas RH is quantized on a plateau Rxx simultaneously drops to
zero. This latter feature reveals a dissipation-less state of the 2DEG without any backscattering. These quantum properties
can be observed in a sample based on a 2DEG fabricated from a GaAs/AlGaAs semiconductor heterostructure for instance,
pierced by a strong magnetic flux density (≈ 10 T) and cooled down to low temperature (1.5 K). Although the reproducibility
of RK was checked within some parts in 1010, its determination in the Système International (SI) of units has an uncertainty
of one part in 107. It is the value of the Hall resistance quantized on the plateau which is used as a reference to calibrate
resistances. The calibration of a resistor consists in comparing the Hall resistance RK/i (the i = 2 plateau is usually used)
with that of the resistor by using a resistance comparison bridge. The resistance is thus determined in terms of RK. However,
because of the universal property of the QHE and for practical reasons, the RK uncertainty (10−7) is conventionally dropped
out in calibration certificates. Thus, resistors are calibrated in terms of an officially agreed exact value of RK, presently
named RK-90, which was set taking into account experimental determinations of RK and of the h/e2 ratio. Fig. 2b shows the
tracking of a 100 � wire resistance standard realized by QHE: around a linear drift the standard resistance can be stable
within some parts in 109.
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Fig. 2. a) Magneto-resistance curves of GaAs/AlGaAs Hall bar samples. b) Tracking of a 100 � wire resistor in terms of RK-90.

1.2. The QHE as a corner stone of the new SI

The QHE, as well as the Josephson effect [4–6] which provides a quantum representation of the volt based on the
phenomenological constant K J , the Josephson constant theoretically equal to 2e/h, have revolutionized the representation of
electrical units. The possibility to directly link the ampere to the electron charge e by means of electron pumps, based on the
Coulomb blockade [7,8], another major quantum effect in condensed matter, is even extensively investigated. These electron
pumps deliver a quantized current equal to Q X (the tunneling charge, theoretically equal to e or 2e) times a pumping
frequency f . The breakthrough lies on the universality and high reproducibility of these quantum effects, intrinsically related
to h and e constants. Moreover, they have inspired metrologists thinking about the evolution of the SI towards a “natural”
system in which, more precisely, all base units should be defined by fixing some constants of physics (h, e, c,kB , . . .) [9].
One unit particularly draws the attention of metrologists and is a great stake: the kilogram. Actually, in the present SI, it is
the unique unit still defined using a material artefact: the international prototype of the kilogram. From comparisons with
mass of copies fabricated also in 1875, it is believed that the kilogram could drift in an ineluctable way (about 5 parts
in 1010 per year). One of the proposed routes to redefine the kilogram is to link it to the electrical units by means of
the watt balance which consists in comparing an electrical power to the mechanical power of a moving mass in a gravity
field (Fig. 3a) [10–12]. This route has the big advantage of benefiting from the high-quality quantum representations of
the electrical units. If the relationships for the von Klitzing constant RK = h/e2 and for the Josephson constant K J = 2e/h
are validated, this experiment would lead to the redefinition of the kilogram in terms of the Planck’s constant h. This
“electrical” kilogram would symbolize a crowning achievement for the quantum electrical metrology and particularly for the
metrological application of the QHE. Before establishing such a new SI, several challenging objectives have to be reached.
One of the major issue is the validation of the relation RK = h/e2. This implies the independent SI determinations of h/e2,
which are nothing else but determinations of the fine structure constant α, and of the von Klitzing constant RK. The latter
is based on the use of the Thompson–Lampard capacitor [13]. The determination of some fundamental constants of physics
is also an issue before fixing them. The QHE will contribute to the determination of the Planck’s constant h through the
watt balance experiment, and also to the determination of the electron charge e in closing the metrological triangle. This
experiment (Fig. 3b) can be reduced to the implementation of Ohm’s law where the voltage is derived from the Josephson
effect, the resistance is measured in the QHE regime and the current is delivered by electron pumps. Considering the crucial
role that QHE is expected to play in all these projects, it is of prime importance to improve its experimental mastery,
to deepen its understanding, and in other words to reinforce the confidence in it. For that purpose, quantization tests of
the QHE in peculiar materials like graphene, and/or with an accuracy never reached so far (a few part in 1012) are very
interesting and fruitful [14]. Such tests are also nothing else but tests of the fundamental aspects of the QHE theory. The
above described experiments are the new challenges that QHE metrology and, more generally, quantum electrical metrology
has to take up.

2. The QHE: from the theory to the practical metrological implementation

2.1. Theoretical basis of the QHE

The quantization of the Hall resistance of a two-dimensional electron gas is related to the quantization of the density of
states in Landau levels in presence of a magnetic field. The Landau levels occur at energies which are the eigenvalues of the
Hamiltonian of an electron including a potential vector:

H = 1
∗ (p + e A)2 (3)
2m
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Fig. 3. a) Drawing of the LNE watt balance (under construction) by courtesy of F. Bielsa (e-mass project meeting at PTB). b) Sketch of the principle of the
quantum metrological triangle experiment.

Fig. 4. Landau levels and density of states for one spin value in absence and presence of disorder in GaAs.

A is the potential vector associated to the magnetic field, p is the momentum operator, m∗ the effective mass of the electron.
To simplify this introduction to QHE, the Zeeman effect, which lifts the degeneracy of Landau levels, is not considered. This
Hamiltonian can be reduced to that of a harmonic oscillator. The energy of the nth Landau level is:

εn = h̄ωC (n + 1/2) (4)

with ωC = eB/m the pulsation of the cyclotron motion of the electron.
The density of states (Fig. 4) is a semi-infinite Dirac comb with positive energies and an energy step h̄ωC (the cyclotron

energy). Landau levels are highly degenerated with respect to the center of guidance of the cyclotron orbit. In fact, the
area occupied by a state (electron) in each Landau level is 2π l2B where lB = √

h̄/(eB) is the magnetic length. This area
corresponds to the area threaded by one magnetic flux quantum:

2π l2B = h

eB
= φ0

B
(5)

This emphasizes the fact that the phase space corresponds to the physical plane in the QHE regime. From the area of an
electron state in a Landau level, it is straightforwardly deduced that the density of states per surface unit of one Landau
level for one spin value is the density of flux quanta nB :



W. Poirier et al. / C. R. Physique 12 (2011) 347–368 351
Table 1
Numerical values of QHE-relevant quantities in GaAs at B = 10 T.

ωC h̄ωC lB nB

2.65 × 1013 rad s−1 17.5 meV 8.1 nm 2.42 × 1015 m−2

Fig. 5. a) Hall bar sample with two current contacts behaving as electrons reservoirs at chemical potential μi . Representation of the confining potential.
b) Bending of Landau levels and chiral edges states for ν = 2.

1

2π l2B
= eB

h
(6)

This is nothing else but the degeneracy of the Landau level. A finite energy h̄ωC is necessary to add one additional electron
in a higher Landau level: this makes the electronic fluid incompressible. It is useful to introduce the filling factor ν defined
by the ratio ν = nS/nB , with nS the density of electrons. For ν = 1, all states of the first Landau level (n = 0) at energy
h̄ωC /2 are occupied, there is one flux quantum per electron. For ν = 2, states of both the two first Landau levels (n = 0 and
n = 1) are filled, there are two electrons per flux quantum. In order to vary the filling of Landau levels it is possible to tune
either the magnetic field or the carrier density.

Table 1 gives numerical values considering B = 10 T and m∗ = 0.067me (GaAs). The magnetic length is therefore the
smallest characteristic length of the problem. At 1.5 K, the cyclotron energy is two orders of magnitude larger than the
thermal energy.

The formation of Landau levels being established, a finite quantity of disorder has to be introduced to explain the
existence of quantized Hall plateaus and simultaneous drop to zero of the longitudinal resistance with a finite width when
varying the filling factor. In presence of a magnetic field, the disorder which breaks the translation invariance symmetry lifts
the degeneracy of the Landau levels, the value of which was previously calculated to be eB/h. Landau levels are broadened
and localized states appear in between them. Fig. 4 shows the energy spectrum consisting of localized states between
Landau levels and delocalized (or extended) states at the center of the Landau peaks. Both kinds of states play a crucial
role in QHE. Delocalized states carry the current and localized states ensure the existence of a gap of mobility. It results
that the Fermi level can vary continuously between two Landau energy levels without any change of the Hall resistance.
When considering finite size systems with realistic boundaries, extended states appear close to the edges of the device.
They are located in the region where the Landau levels bent by the confining potential (Fig. 5a) at the edges intercept
the Fermi energy. They are the so-called edge states (Fig. 5b). On each edge of the sample, their number corresponds to
the number of filled Landau levels. These one-dimensional states carry electrons in only one direction which depends on
the direction of the magnetic field (edge states are chiral). Moreover, the group velocities of states of opposite edges have
opposite signs. Consequently, edge states with opposite momentum are spatially separated. The backscattering of electrons
filling the edge states is therefore canceled since the probability that an electron crosses the sample by tunneling effect
is negligible. It should be mentioned that not only “edges states” but also “bulk states” at energy close to the center of
Landau levels are important in quantum Hall systems. Both types of extended states have to be considered to determine
the local density of current in the sample. However, referring to the Einstein’s relationship, the conductance in the QHE
regime can be deduced from the diffusion currents which are carried by electrons in edges states only. The net Hall current
in response to the Hall voltage drop thus results from the non-equilibrium occupancy of edge states. The transport in the
QHE regime can be described using the edge state picture by means of the Landauer–Büttiker formalism [15]. In such a
picture, each edge state is thus a perfect ballistic one-dimensional conduction channel with a transmission probability equal
to unity because of the absence of backscattering. Although the disorder can mix edge states of the same edge, scattering
backwards is forbidden beyond distances large compared to lB . The conductance of each one is e2/h (one spin direction).
From this description, one deduces again that RK, the quantized value of RH on the first plateau, is h/e2. The quantization
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Fig. 6. a) Drawing of a Wheatstone bridge. b) Picture of an integrated on-chip Wheatstone bridge defined by lithography in GaAs/AlGaAs 2DEG.

of RH therefore appears as a direct consequence of the absence of backscattering, or in other words of dissipation in the
conductor. This explains the simultaneous drop to zero of the four-terminal longitudinal resistance Rxx . Reversely, a finite
Rxx value is related to the existence of backscattering between the opposite edge states via, for instance, tunneling processes
and leads to a deviation of RH from the quantized value. This absence of backscattering conjugated with the scale invariance
property of the resistance in 2D makes the Hall resistance independent of the particular shape of the sample in the QHE
regime. This is an essential character of the universality of the quantum Hall resistance standard.

Beyond, the fundamental universality property of the QHE, which emerges also in the fact that RK only depends on
e and h, is supported by very strong theoretical arguments [16]. Laughlin [17] first demonstrated that it was a direct
consequence of the Hamiltonian gauge invariance property. The robustness of the equality RK = h/e2 was then generalized
by showing that the Hall conductance is a topological invariant [18] and is not sensitive to any gravitational field [19].
As previously pointed out, edge states theory of Büttiker emphasizes that quantization accuracy is a direct consequence
of absence of backscattering. More generally, QHE relies on Pauli and Heisenberg principles, combined with the chirality
property due to magnetic field. The edge states theory also shows that QHE is a macroscopic quantum effect since phase
coherency is required only over the magnetic length scale: inelastic scattering reinforces the quantization by equilibrating
the chemical potentials of edge states. Nevertheless, very recently, theoretical quantum electrodynamics (QED) calculations
have predicted a deviation of RK to the ratio h/e2 related to the screening of the electron charge under high magnetic
field [20]:

R−1
K = e2

2π h̄

[
1 + 2α

45π

(
h̄eB

c2m2

)2]
(7)

Even if the deviation is very tiny, amounting to one part in 1020 under magnetic inductions as high as 40 T, this work
demonstrates that non-universal correction may exist. It confirms the interest for performing QHE universality tests. It also
worth noting that a similar correction has been predicted for the Josephson effect [21].

2.2. The QHE quantization tests

Before recommending the QHE to maintain the ohm unit, testing its universality property was an inescapable pre-
requisite. To test this universality property, metrologists carried out many comparisons of the Hall resistance obtained
with different semiconductor samples. One of the most relevant universality tests consisted in measuring the ratio of
the Hall resistances on the ν = 2 plateau in GaAs/AlGaAs sample and on the ν = 4 plateau in Si-Mosfet samples [22]:
RH (ν = 2,GaAs)/RH (ν = 4,Si-Mosfet) = 2[1 − 0.22(3.5) × 10−10]. A similar degree of agreement was obtained for the Hall
resistances of GaAs and Si-Mosfet samples both measured on the ν = 4 plateau [23]. No significant deviation was observed
as well between standards based on GaAs/AlGaAs and InGaAs/InP heterostructures [24] within a relative uncertainty of
2.4 parts in 108. The robustness of the universality property was also tested in GaAs/AlGaAs 2DEG by varying several pa-
rameters: channel size of the Hall bar, electronic mobility of the 2DEG or index plateau number [25]. The conclusion of all
these works is that there is no lack of universality of the QHE realized in semiconductor 2DEG within some parts in 1010.
More recently, a new technique has been developed which enable very accurate comparisons of quantized Hall resistances
having close values: the quantum Wheatstone bridge (Fig. 6a). The idea is quite obvious: by connecting four multiterminal
Hall bars in a Wheatstone bridge structure and measuring the unbalance current (voltage) Iub (V ub) of the bridge it is
possible to compare the four Hall resistances since:

Iub/I = V ub/V ≈ 1

4

[
(α1 + α3) − (α2 + α4)

]
(8)

where α j ( j = 1, . . . ,4) is the relative deviation of the jth Hall resistance to its nominal value.
Any discrepancy can be described, with a simple model, by the relative resistance deviation of one resistor among the

others:
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Fig. 7. a) Connection scheme and measurement set-up of a quantum Wheatstone bridge. b) Measurements of the relative unbalance current Iub/I when the
device works on the ν = 2 Hall plateau with I = 78 μA rms.

	R/R = 4 × (Iub/I) = 4 × (V ub/V ) (9)

The accuracy of the technique is based on the multiple connection technique [26]. This technique is described in more
details in Section 3.3. Based on fundamental properties of the QHE (drop to zero of the longitudinal resistance on the Hall
plateaus, 2-terminals resistance of any system in the QHE regime equal to RH, chirality of the edges states, etc.), it consists in
connecting multiterminal QHE devices with redundant links. It allows the interconnection resistance effect to be canceled:
the higher the number of redundant connections, the lower the resistance effect of links. Consequently, this technique
allows the combination of several Hall bars in arrays, the resistance of which is quantized with a very high accuracy (some
parts in 109 or better). The quantum Wheatstone bridge technique has several advantages. Firstly, the comparison takes
place in situ in a single cryostat, thus avoiding noisy lengths of cables. Secondly, it reduces the resistance comparison to
the measurement of an electrical current which can be performed favorably by using a cryogenic current comparator (CCC,
see Section 4 for description) equipped with a SQUID. As a proof of this concept of measurement, the technique was firstly
implemented in a fully integrated device fabricated in a GaAs/AlGaAs 2DEG.

Fig. 6b shows a picture of this on-chip Wheatstone bridge [27]. The device, a two series array of two Hall bars set
parallel to each other, consists of four 400 μm wide connected using the quadruple connection technique. Fig. 7a shows a
drawing of the whole measurement set-up. By biasing the bridge with a low frequency (0.5 Hz) voltage and using lock-in
techniques, the unbalance current is detected at the terminal-pair (W + , W −) with a CCC used as a current amplifier. With
a CCC having a sensitivity of 13.6 μA turns/φ0 fitted with an RF SQUID (white noise amounts to 10−4φ0/Hz1/2) and a 3436
turns detecting winding, the current resolution is 400 fA/Hz1/2.

Quadratic frequency corrections are applied to extrapolate measurements to DC regime. Fig. 7b shows several measure-
ments of Iub/I carried out with a supplying current of 78 μA rms. Allan variance analysis proves that the experimental noise
is dominated by the white noise throughout the experiment time (insert Fig. 7b). So, the following resistance deviation was
deduced: 	R/R(I = 78 μA) = (29.6 ± 7.6) × 10−11. None of the four quantum resistances departs from the others by more
than 30 × 10−11 with a standard uncertainty, never achieved so far, of 7.6 × 10−11. Complementary work showed that the
significant discrepancy observed was probably due to an underestimated correction linear in frequency. This work validated
the multiple connection technique and beyond demonstrated the ability of the quantum Wheatstone bridge technique to
implement accurate Hall resistance comparisons. In a more recent experiment [28], this technique was successfully used to
check the reproducibility of the QHE in GaAs/AlGaAs 2DEG with the record standard uncertainty of 4 parts in 1011 [article
in preparation]. These works demonstrate that a QHE Wheatstone bridge made of three identical Hall bars and a fourth one
of different nature should allow the realization of universality tests of the QHE with uncertainties down to some parts in
1012 using a less noisy CCC. Such experiments are very interesting in the context of the SI redefinition.

2.3. Experimental conditions for the metrological implementation of the QHE

Because experimental conditions of the QHE operation discard from theory, the reproduction of RK with a relative uncer-
tainty less than 10−9 is obtained only if specific criteria of quantization are fulfilled. These criteria are defined in technical
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Fig. 8. a) QHE breakdown current measured as a function of the width of the conduction channel in GaAs samples from Ref. [30]: the breakdown current
increases with the width of the channel. b) Relative deviation 	ρxy/ρxy versus ρmin

xy /ρxy from Ref. [31].

Fig. 9. Energy bands in a GaAs/AlGaAs heterostructure.

guidelines [29] that were deduced from a large number of metrological characterizations of QHE samples. These guidelines
include recommendations about the geometry of the samples. A wide Hall bar channel increases the breakdown current of
the QHE (Fig. 8a) and allows the sample to be biased with a large current while preserving the quantization of RH and im-
proving the signal to noise ratio of its measurement [30]. It is also recommended that samples have Hall voltage terminals
with narrow arms perfectly aligned transversely to the current flow, as well as long conduction channels to favor the equili-
bration of the edge states occupancy. Low values of the contact resistances (< 10 �) and longitudinal resistances (typically
less than 100 μ� per square) are particularly crucial. Quantization is indeed related to the absence of backscattering, so in
other words of dissipation. Fig. 8b displays a linear relationship between 	RH and Rxx over more than three decades [31].
An effective misalignment of voltage terminals resulting from the residual inhomogeneity [32] of the density of electrons or
to the finite width of the probes combined with chirality of the edges states [33] explains this observation. In principle, RH
accurately reproduces RK by extrapolation to the zero dissipation state.

3. Quantum resistance standards

3.1. Two-dimensional electron systems

The two-dimensional conductors required for the implementation of the QHE are usually two-dimensional electron gases
(2DEG) obtained from different semiconductor technologies: Si-Mosfet, III–V or II–VI heterostructures. For now, samples
based on GaAs/AlGaAs heterostructures are particularly appropriate to ohm metrology applications. These semiconductor
systems also take benefit from a refined fabrication mastery acquired over more than forty years of development efforts.
Fig. 9 explains the formation principle of a potential well. Two semiconductor layers with different energy gaps and doping
levels are considered. The balance of their chemical potentials which occurs when the two layers come into contact requires
that some electrons supplied by the Si-doped AlGaAs layer are transferred towards the GaAs layer. This transfer bends the
valence and conduction bands and a potential deep with a triangular shape is formed at the layer interface on the GaAs
side in which the electrons are caught. At the Fermi energy, the confining transverse width is approximately 10 nm, thus
well below the Fermi wavelength (more than 50 nm).

The momentum quantization of the electrons in the well for a motion perpendicular to the interface leads to a sequence
of 2D (surface) subbands. The energy level spacing between subbands, of the order of 0.1 eV, is much larger than the
thermal energy corresponding to the cryogenic temperature at which QHE experiments are performed. Hence, only the
lowest electronic subband is occupied. The dynamics of electrons is therefore two-dimensional. Fig. 10 shows an example
of the vertical layer stacking which can be realized by molecular beam epitaxy (MBE) or metal organic chemical vapor
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Fig. 10. Vertical stacking of layers in a GaAs/AlGaAs heterostructure.

Fig. 11. a) Typical design of a Hall bar for the metrological application of quantum resistance standard. b) Photography of such a Hall bar fabricated in
GaAs/AlGaAs 2DEG with Au/Ge/Ni ohmic contacts.

deposition (MOCVD). The spacer layer is used to increase the electronic mobility of the 2DEG by moving away the electrons
from the ionized donor atoms. Electrical connection with the 2DEG is realized by annealing AuGeNi contacts. Obtaining
ohmic contacts with very low resistances (about 10 �) as recommended by the technical guidelines is very challenging.
For metrological applications, a density and a mobility of electrons in the range of 3 to 5 × 1015 m−2 and 10 to 50 T−1

are required respectively. These densities allow the ν = 2 filling factor to be reached at large magnetic induction (about
10 T). This leads to a sufficiently higher cyclotron energy (energy spacing between Landau levels) than the thermal energy
(T = 1.5 K) that ensures a quantization of RH at the ppb level. The mobility range targeted gives an amount of disorder
giving rise to large Hall plateaus (it has clearly been observed a shrinking of the Hall plateau when increasing the 2DEG
mobility too much as shown in Fig. 2a). Finally, samples with Hall bar shapes can be fabricated by using optical lithography
techniques [34]. The design is chosen to follow at best the metrological guidelines.

Even if GaAs/AlGaAs 2DEGs allow the fabrication of ppb-accurate quantum resistance standards, these devices require
high magnetic field (10 T) and low temperature (1.5 K) for their operation, that is to say very costly experimental techniques.
That is why the quest for a novel material enabling a more practical quantum resistance standard operating at higher
temperature and lower magnetic field while keeping the accuracy is still continued. Graphene could lead to significant
progress in this quest.

3.2. Single Hall bars

The simplest and historically the first system used for the metrological implementation of the QHE is the single Hall bar,
which consists of a circuit with a rectangular aspect ratio and equipped with lateral contacts in addition to the contacts
at the extremities. Such a sample is represented in Fig. 11. These elementary devices fabricated in GaAs/AlGaAs 2DEGs
with properties as described above allow the practical realization of only two values of RH sufficiently quantized to be
used as references with an accuracy of the order of the ppb: the Hall resistance on the ν = 2 plateau giving the reference
RK-90/2 = 12 906.4035 � and on the ν = 4 plateau giving the reference RK-90/4 = 6453.20175 �.

3.3. Quantum Hall Array Resistance Standards (QHARS)

With the aim of having quantum resistance standards with more various values extending over a wide range (100 �

to 1 M�), a particular engineering based on very fundamental properties of the QHE has been developed to design arrays



356 W. Poirier et al. / C. R. Physique 12 (2011) 347–368
Fig. 12. a) Two simply series connected multiterminal Hall bars. b) Two doubly series connected multiterminal Hall bars.

combining a large number of Hall bars in series and/or parallel. This approach has been inspired by the same philosophy
as that which led to the development of the Josephson Arrays Voltage Standards (JAVS). It has resulted in the development
of Quantum Hall Arrays Resistance Standards (QHARS) which are acknowledged as being the core of the next generation of
quantum resistance standards.

The basic principle of the realization of the QHARS is the multiple connection technique [26]. This technique consists in
connecting multiterminal QHE devices with redundant links. It allows one to cancel the interconnection resistance effect and
consequently to define the four-terminal resistance of any array made of several Hall bars while keeping the fundamental
properties of the QHE. Let us consider two Hall bars connected by only one resistive link L1 the resistance of which is
expressed relatively to RH by ε1 (ε1 � 1) (Fig. 12a). The voltage V 2a-6b is given by:

V 2a-6b = V 3a-7b = V 3a-5a + V 4a-0b + V 1b-7b = RH I + ε1 RH I + RH I = 2RH(1 + ε1/2) (10)

The discrepancy to 2RH is thus proportional to ε1. Due to the specific shape of equipotentials which results from chirality
property, the voltage drop V 5a-1b is equal to V 4a-0b . Short-circuiting 5a and 1b terminals by a second link L2 (see Fig. 12b)
makes circulate a small current i which is only a small fraction of the main current I because the resistance seen between
5a and 1b terminals is approximately 2RH (the two-terminal resistance is RH in QHE regime). Finally, the voltage V 2a-6b is
given by:

V 2a-6b = V 3a-7b = V 3a-5a + V 5a-1b + V 1b-7b = RH I + ε2 RHi + RH I = 2RH I(1 + ε1ε2/4) (11)

The discrepancy to 2RH is thus proportional to ε1ε2 in case of double connection. Deviations to quantized value due to
interconnection resistance effect are of order O (εn), where n is the number of links. Considering interconnection resistance
of 1 �, triple connection technique is enough to realize Quantum Hall Array Resistance Standards (QHARS) accurate [35,36]
with an uncertainty of less than one part in 109.

The realization of QHARS mainly relies on the two-dimensional electron gas (2DEG) properties, notably its homogeneity,
and on the quality of the electrical contact to it, like for the single Hall bars. In order to obtain operational QHARS, all the
Hall bars must be in the same non-dissipative quantum state over a common magnetic field range. Unlike the Josephson
Array Voltage Standards (JAVS), the design of the QHARS circuit based on the multiple connection technique is rather sim-
ple. However, the fabrication needs at least seven steps, all based on lithography: deposition of the contacts, realization of
the vertically stacked redundant metallic links between the multiterminal Hall bars according to the multiple connection
technique, etching of the 2DEG to define the Hall bars, etc. The quality of the layer which ensures the electrical insulation
between two vertically stacked levels of metallic connections is particularly crucial: any short-circuit due to pinholes makes
the device unusable. Its deposition has also to be without damage for the electronic properties of the 2DEG. A first gener-
ation of QHARS has been fabricated with values ranging, on the ν = 2 Hall plateau, from about 100 � to about 1.29 M�,
including 1.29 k� or 129 k� for example. Fig. 13a shows the picture of a QHARS129 sample [37]. It is composed of 100 Hall
bars, 200 μm wide, placed in parallel by triple connections. Fig. 13b shows the magnetoresistance curves of two different
arrays. The quality of the traces (both Shubnikov–de Haas oscillations for Rxx and Hall plateaus for RH) is similar to that
observed for a single metrological Hall bar. The accuracy of QHARS has been tested by several NMIs [38]. Following detailed
investigations, it has been found that especially parallel low resistance QHARS could be perfectly quantized within 2 or 3
parts in 109. The accuracy of the Hall resistance of a series 50RK (∼1.29 M� on the ν = 2 plateau) QHARS has been verified
with a measurement uncertainty of 20 parts in 109. Another way to realize a QHARS made of a large number of Hall bars
connected in parallel consists in etching the array in a heterostructure with two stacked 2DEGs provided they have similar
electronic densities (within a few %). A QHARS of RK/100 nominal value fabricated in this way was accurate within 1 part
in 108 [39]. The fabrication of such vertically stacked double 2DEG is still an issue and has been recently reproduced [40].
Thus, QHARS should open as many prospects to ohm metrology as JAVS brought to volt metrology. The wide range of the
resistance values offered by these standards much better match the industrial needs. Low resistance value QHARS (for ex-
ample RK/200) stay quantized within an uncertainty of some parts in 109 with the bias currents of a few mA which make
them compatible with commercial room temperature resistance bridges. Both features make QHARS very useful for the
simplification and the shortening of the resistance calibration chain which are favorable to the reduction of the final mea-
surement uncertainties. Arrays technology should also greatly improve the reproducibility of high-value resistance standards
(for example 50RK). The QHARS have also been proved to be very useful for the test and calibration of all the resistance
comparison bridges, including the commercial ones and the more specific CCC based bridges. High resistance value QHARS
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Fig. 13. a) Picture of a QHARS129 (100 Hall bars set parallel to each others). b) Magnetoresistance curves for QHARS129 and QHARS100.

Fig. 14. a) Pictures of CCCs. b) Drawing of a CCC.

are particularly useful for the measurement of the bridge leakages. Finally, with QHARS more accurate international resis-
tance comparisons are expected: their universal and dematerialized nature, inherent to any quantum standard, reduces to
zero the uncertainty component related to the instability of a traveling standard, which can be huge for a material resistor
(>10 ppb). Thus, uncertainties of some parts in 109 as low as those obtained with direct comparisons can be targeted in
such international comparisons, while avoiding the transportation of the QHE setup. More generally, the multiple connection
technique allows the realization of many electrical circuits based on QHE like Wheatstone bridges and voltage dividers.

4. Calibration of resistance in direct current (DC) mode

Once the quantum standard is realized, wire resistors are calibrated by the use of resistance comparison bridges. De-
pending on the target uncertainty of the calibration, different bridges can be operated: commercial bridges based on direct
current comparator, potentiometric bridges or specific bridges equipped with Cryogenic Current Comparator (CCC). The latter
class of equipment gives the lowest measurement uncertainties. The cryogenic current comparator is a perfect transformer
with a superconducting shield operating in DC [41] (Fig. 14). Its principle of operation is based on the Ampere theorem
application and Meissner effect.

Fig. 14b shows a drawing of a CCC. Two windings of number of turns N1 and N2 fed by currents I1 and I2 respectively
are placed in a superconducting torus which overlaps itself without electrical contact so that the screening current ICCC is
obliged to circulate from inside surface to outside surface along a close path. By this way, ICCC can be detected by the pick-
up coil connected to a Superconducting Quantum Interference Device (SQUID) throughout a flux transformer [42]. Applying
Ampere theorem along a path within the superconducting material where B = 0 gives:

ICCC = N1 I1–N2 I2 (12)
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Table 2
CCC current resolution.

Sopt
CCC = 4 μA turn/φ0 Current white noise Current white noise

(N = 2000 turns) (N = 20 000 turns)

SQUID RF: 10−4φ0/Hz1/2 200 fA/Hz1/2 20 fA/Hz1/2

SQUID DC: 3×10−6φ0/Hz1/2 6 fA/Hz1/2 0.6 fA/Hz1/2

Fig. 15. a) Drawing of a resistance comparison bridge based on a CCC and a current divider. b) Drawing of a resistance comparison bridge based on a CCC,
including an additional feed back between the auxiliary winding and the null detector.

A feedback technique which sets ICCC = 0 by servo-controlling the current I2 leads to N1 I1 = N2 I2. The ratio I1/I2 is
therefore perfectly known in terms of the ratio N1/N2. In practice, the number of turns ratio can be accurate with a relative
uncertainty lower than one part in 1010. The sensitivity of the CCC is the supercurrent ICCC circulating on the surface of
the overlapping tube which creates, throughout a superconducting flux transformer, one flux quantum φ0 across the SQUID
ring. An optimal sensitivity as low as 4 μA turn/φ0 can be experimentally achieved. Table 2 gives several current resolutions
in fA/Hz1/2 depending on the number of turns of the detecting winding and on the SQUID white noise level. With regards
to these values, the CCC appears as a perfect amplifier in quasi DC regime with a current resolution which can be as low as
1 fA/Hz1/2.

Fig. 15 shows drawings of two QHE resistance bridges based on a CCC [43]. For both bridges, two servo-controlled current
sources supply the resistors R P and R S to be compared. The ratio of these currents I P and I S is roughly adjusted so that the
difference between the voltages at the resistors terminals, measured by the null detector, is less than 10−5 of the voltage
drop at the terminals of one resistor. I P and I S circulate across windings of number of turns N P and N S respectively. N P

and N S are chosen so that the ratios N P /N S and R P /R S are close within some parts in 105. This choice ensures a low ICCC
current. In bridge of Fig. 15a, an auxiliary winding of number of turns N A is supplied with a fraction ε of the current I S by
using a current divider. In external feedback mode I S is regulated so that the supercurrent ICCC is maintained to zero and ε
is chosen so that the null detector measures zero voltage. This operation is described by two equations:

R P I P = R S I S and N P I P = N S I S(1 + εN A/N S) (13)

Thus:

R S

R P
= N S

N P

(
1 + ε

N A

N S

)
(14)

The accuracy of this bridge technique is mainly based on the accuracy of the winding ratio and the current divider calibra-
tion. In bridge of Fig. 15b, the small current flowing in the auxiliary winding can also be provided by a feedback electronics
controlled by the null detector signal instead of a current divider (Fig. 15b) [44]. By using such resistance comparison
bridges, it is possible to calibrate a 100 � wire resistor in terms of RK-90 with a relative uncertainty of 1 part in 109. To
achieve such low uncertainties, it is essential to carry out measurements in a temperature regulated room which is also
shielded against electromagnetic perturbations.
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Fig. 16. a) Drawing of a resistance bridge used in AC regime from Ref. [48]. b) Shielding of a Hall for the application as quantum impedance standard in AC
regime from Ref. [51].

5. Calibration of resistance in alternating current (AC) mode

Since no deviation of the Hall resistance from quantization is theoretically expected within one part in 109 [45,46] in
the kilohertz range, metrologists work to operate the QHE in alternating current (AC) to realize an impedance standard. The
implementation of the AC-QHE relies on the development of terminal-pair resistance bridges and quadrature bridges that
are based on the coaxial measurement techniques [47]. However, it turns out that specific techniques have to be operated
to preserve a perfect quantization of the Hall resistance. Firstly, the Hall bar is implemented using the multiple series
connection technique. On one hand, this technique cancels large quadratic frequency dependencies due to series inductance,
but also simplifies the bridge since zero current requirement in the voltage arm of the QHR is automatically ensured [48,
49] (Fig. 16a). Moreover, active equalizers are recommended to ensure a good coaxiality because of the high impedance
of the shielding conductors connecting the QHR at low temperature. Despite of these precautions, several works show
deviation 	RH of the Hall resistance from quantized value linearly increasing with frequency and measurement current [50].
A linear relationship between 	RH and Rxx is observed in AC as in DC regime except that the coupling factor is larger. This
discrepancy is attributed to losses of AC charging current in internal capacitances of the Hall bar and in external capacitances
of coupling with ground. Although some works propose that dielectric losses of samples layers are responsible for this
phenomenon, the microscopic mechanism of dissipation remains not well understood. However, it is possible to cancel their
impact on the Hall resistance to within about one part in 109 per kilohertz by using a double-shielding technique of the
Hall bar (Fig. 16b) [51]. The operation of the QHE in AC regime at frequencies of some kilohertz therefore opens up the way
towards a quantum standard of impedance [52,53]. It allows the calibration of the frequency correction of wire resistors or
capacitances [54] without referring to calculable resistors [55,56]. Moreover, the measurement chains used for determining
capacitance and RK, which are based on quadrature bridge, should be shortened by starting from the AC-QHE instead of the
DC-QHE (Fig. 21).

6. Direct determination of the von Klitzing constant, RK, in the SI base units

6.1. Is RK equal to h/e2?

The present value of RK in SI units as officialized by the CIPM is RK-90 within a relative uncertainty of 1 part in 107,
thus three order of magnitudes larger than the reproducibility uncertainty of the QHE. This uncertainty was set in order to
cover the discrepancies to RK-90 of the determinations of h/e2 and of RK directly calibrated with the Thompson–Lampard
calculable capacitor [13]. An enlightening way to discuss the present agreement degree of the RK and h/e2 values consists
in comparing all together the determinations of the fine structure constant α. Fig. 17 gathers the significant determinations
of α as calculated by the CODATA group [57]. On one hand, h/mat measurement [mat is an atomic mass (Cs or Rb)] by
atomic interferometry techniques [58] or measurement of the magnetic moment of the electron ae introduced in quantum
electrodynamics calculations [59] gives direct determinations with the lowest uncertainties of α = μ0c/(2h/e2). On the
other hand, RK determinations give an estimator α(RK) = μ0c/2RK of α known with a relative uncertainty of 1.8 × 10−8.
Given their definitions, the agreement degree of the α and α(RK) values determines the verification level of the relationship
RK = h/e2. As observed in Fig. 17, more accurate determinations of RK are needed in order to check the equality within
an uncertainty below 10−8, which is the target uncertainty defined by an international consensus before proceeding to any
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Fig. 17. CODATA 2006 determinations of α from Ref. [57].

Fig. 18. a) and b) Four electrodes assemblies verifying the Thompson–Lampard theorem.

evolution towards an SI based on fundamental constants [60]. This requirement leads to the development of new Thompson–
Lampard calculable capacitors by several national metrology institutes, and among them the LNE. Next subsections describe
the LNE project of determination of RK which is representative of those developed by others NMIs (NRC, CSIRO, BIPM, NIST)
[61]. Although different, all experiments are built taking account of similar mechanical and electrical requirements.

6.2. The Thompson–Lampard theorem

A Thompson–Lampard calculable capacitor generates a calculable capacitance variation proportional to the displacement
of a movable guard in its cross section, allowing one to link the farad to the meter. This result comes from the implementa-
tion of a theorem in electrostatics demonstrated by A. Thompson and D. Lampard in 1956 [13,62]. This theorem stipulates
that for a cylindrical system composed of four isolated electrodes of infinite length and placed in vacuum (Fig. 18a), the
direct cross capacitances per unit of length γ13 and γ24 between two opposite electrodes verify the relation:

exp(−πγ13/ε0) + exp(−πγ24/ε0) = 1 (15)

where ε0 is the permittivity of vacuum. This remains true whatever the shape of the inside cross section of the electrode
assembly as the generating lines remain parallels. Moreover, in case of a perfect symmetry, the cross capacitances per unit
of length are equal and it results that:

γ13 = γ24 = γ = (ε0 ln 2)/π ≈ 1.953 549 043 pF/m (16)

and then a value of the electrical capacitance can be directly linked to a length measurement. On theoretical and practical
point of views, electrodes of circular cross section is the best choice (Fig. 18b).

The Thompson–Lampard theorem has been extended to a system of five electrodes by N. Elnékavé in 1973 [63]. In
such a configuration if one connects successively two adjacent electrodes, the five electrodes system is equivalent to five
different four electrodes Thompson–Lampard capacitors by circular permutation (Fig. 19). In practice this leads to have an



W. Poirier et al. / C. R. Physique 12 (2011) 347–368 361
Fig. 19. Cross section of a five electrodes Thompson–Lampard capacitor with electrodes 3 and 4 connected.

over abundant number of equations to describe the system and the capacitance of the capacitor can be calculated with five
different systems of equations.

The comparison of the five capacitance values obtained, which should be equal, gives information about the degree of
perfection of the capacitor.

6.3. The new LNE Thompson–Lampard calculable capacitor

The last determination of RK performed at LNE in 2000 has an uncertainty of 5.3 parts in 108. The uncertainty attributed
to the calculable capacitor is about 4 parts in 108 and that of the measurement chain linking the calculable capacitor to dc
resistance is about 2.5 parts in 108 [64]. In order to continue to actively take part in the necessary improvement of the SI,
the LNE started in late 2005 a project aiming to build a new Thompson–Lampard calculable capacitor and to improve its
comparison bridges in view of determining RK with the target relative uncertainty of 10−8 [65].

The new LNE calculable capacitor has five cylindrical electrodes in vertical position arranged so that they stand at the
vertices of a regular pentagon. They are made of non-magnetic stainless steel and their length and diameter are respectively
450 and 75.5 mm. These dimensions should allow capacitance variations up to 1 pF to be produced. The two prevailing
uncertainty components among those due to the mechanical imperfections of the capacitor are: (1) the cylindricity defects
of the cavity due to the departure of the electrodes shape from perfect cylinders and to their mispositioning with respect
to each other; and (2) the coaxiality defect between the capacitor axis and the trajectory of the moving guard. It may be
shown that, to reach the overall target uncertainty, the electrodes cylindricity and positioning defects must remain below
100 nm and that the movable guard trajectory may be controlled within 50 nm or less. These two points constitute obvi-
ously the main difficulties in designing and realizing such a capacitor. The mechanical structure of the new LNE calculable
capacitor [66] is shown in Fig. 20. The electrodes (part (1)) are assembled vertically in a stiff frame (part (2)) equipped
with positioning systems (part (3)) that allow the adjustment of their relative position with respect to the others so that
they stand at the vertices of a regular pentagon within ±50 nm. Specific fabrication and measurement processes had to
be implemented to realize electrodes with cylindricity defects less than 100 nm [67]. The electrodes are prolonged at both
ends with cylindrical parts of same diameter (part (4)) but larger cylindricity defects. The usable length of the capacitor is
then increased from 200 to 400 mm, thereby allowing capacitance variations between 0.3 pF and about 1 pF depending on
the displacement length of the moving guard electrode (part (5)). An accurate measurement of this length is carried out
with a Michelson interferometer not shown in Fig. 20. In order to make possible the alignment of the electrodes within
50 nm, a measuring machine (part (6)) is integrated in the capacitor structure. It allows to measure in situ the position of
the electrodes during the alignment procedure with an accuracy better than 20 nm. The capacitor assembly is fitted on the
main frame (part (7)) equipped with a lift system (part (8)) that enables to translate either the measuring machine along
the electrodes or the moving guard electrode within the inter-electrode cavity. The whole parts of the mechanical structure
are made of non-magnetic materials as well as the vacuum enclosure in which the whole assembly is located (10−3 Pa
vacuum).

6.4. Direct measurement method of RK

Several coaxial AC comparison bridges are used for the direct determination of RK. The overall view of the successive
measurements is shown in Fig. 21. The AC measurements are carried out at 3 angular frequencies ω = 2500 rad/s, ω =
5000 rad/s and ω = 10 000 rad/s [64]. Firstly, a 1 pF capacitor (C1 pF) is compared to the Thompson–Lampard calculable
capacitor with a two terminal-pair bridge [47] the ratio of which being adapted to the capacitance variation produced by
the calculable capacitor. Then two 10:1 ratio bridges (two and four terminal-pair) are used successively to link two 10 000 pF
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Fig. 20. a) Calculable capacitor structure. b) Main frame with the lift used to translate either the integrated measuring machine or the moving guard elec-
trode. c) Complete mechanical assembly of the Thompson–Lampard capacitor. (1) Electrodes, (2) capacitor frame, (3) positioning systems of the electrodes,
(4) electrode extensions, (5) moving guard electrode, (6) integrated measuring machine, (7) main frame, (8) lift system.

Fig. 21. Measurement method for the SI realization of the ohm and the determination of RK.

capacitors (home made invar plates in vacuum capacitors) to the C1 pF capacitor. The 1000 pF transfer standard is nitrogen
sealed capacitor placed in oil bath while the 100 and 10 pF transfer standards are thermoregulated fused silica capacitors
(Andeen–Hagerling capacitors). Next, a quadrature bridge allows one to compare with a very high accuracy the impedances
of the 10 000 pF capacitors (C1 and C2) to that of pair of resistors R1 and R2. Three couples of resistors are used with
values of 40, 20 and 10 k�, the bridge being balanced (R1 R2C1C2ω

2 = 1) for the three angular frequencies mentioned above
ω = 2500,5000 and 10 000 rad/s, respectively. After correction of their frequency variations, by means of AC/DC calculable
resistance standards, the resistances are compared to the quantum Hall resistance standard in DC. This comparison is made
using a CCC based resistance bridge (LNE). For the last determination of RK, the more penalizing uncertainty components
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Fig. 22. a) Graphene layers on a Si/SiO2 substrate: monolayer (1L), bilayer (2L), a few layers (FLG), graphite rock (G). b) Triangular Bravais lattice of graphene
with a two-atom (A and B) basis: a is the atom spacing.

associated to the measuring chain are those related to the knowledge of the ratios of the AC bridges (≈1.5 × 10−8) and
of the frequency dependence of the transfer resistors (≈1.1 to 1.7 × 10−8). A big work has already been carried out to
reduce the effect of the frequency dependence [68], and new two-stage voltage transformers with appropriate electrostatic
and magnetic shields are being built. The uncertainty attributed to the measurement chain is expected to be decreased to
a level close to 5 × 10−9 which should make possible a new determination of the von Klitzing constant with the targeted
overall relative uncertainty of 10−8.

7. Graphene and resistance metrology

7.1. Introduction

Graphene is a 2D crystallized carbon atoms monolayer with a honeycomb lattice [69]. This one atom thick material can
be produced by mechanical exfoliation of natural graphite. Fig. 22a shows an optical picture of graphene monolayer, bilayer
and a few layers obtained by this technique and then deposited on a Si/SiO2 wafer. The number of layers can be determined
by optical contrast or Raman spectroscopy analysis. The Si-doped layer can be used as a back gate to set the density of
carriers in graphene layers by field effect. Graphene material can also be produced by chemical vapor deposition on metal
[70] (like copper) or by annealing of silicon carbide [71].

The Bravais lattice of graphene is triangular with 2 carbon atoms per unit cell named A and B (Fig. 22b). Nearest to
atoms A are three atoms B. The energy spectrum determined by tight-binding calculation gives two energy bands, the
valence band (VB; α = −1) and the conduction band (CB; α = +1) which touch each other at zero energy at the corners
of the hexagonal First Brillouin Zone (FBZ) [69,72,73] (Fig. 23a). There are only two inequivalent points K− and K+ named
Dirac points. For undoped graphene, the valence band (lower energy) is full, the conduction band is empty, so the Fermi
energy is at zero energy. Thus, undoped graphene is a semiconductor with a zero energy gap and two valleys. Around the
K points, the band structure is conical. A low energy expansion valid for energies much lower than the nearest neighbor
hoping energy t (ε � t = 2.7 eV) gives a linear energy dispersion

εp,α = α
3ta

2
|p| = ανF |p| with p impulsion and νF = 3ta

2h̄

(
νF ≈ 106 m/s

)
(17)

Because of the two different sites A and B, the low energy effective Hamiltonian expanded around K+ (valley index
ξ = +1) and K− (valley index ξ = −1) Dirac points has a 2 × 2 structure:

ih̄∂t |ψ〉 = Hξ |ψ〉, |ψ〉 =
(

ψA

ψB

)
, Hξ (p) = ξνF

(
0 px − ip y

px + ip y 0

)
= ξνF p.σ (18)

where σ = (σx, σy) are Pauli matrices.
This particular low energy physics is responsible for the relativistic character of quasi-particles involved in the transport

properties [74–76]. The Fermi velocity v F plays the role of the “speed of light”. The effective mass of electrons is zero at
Dirac points. Carriers behave like massless Dirac fermions with chirality property characterized by a Berry’s phase π . Physics
around these points can be explored moving the Fermi energy by biasing the backgate. At the charge neutrality point a peak
of resistivity occurs and simultaneously the charge sign of carriers reverses as displayed by Hall resistance measurement (see
Fig. 23b). Carrier mobilities up to 20 000 cm2 V−1 s−1 were measured in exfoliated graphene deposited on Si/SiO2 substrate.
The record mobilities have been measured in freely suspended graphene layers where they approach 200 000 cm2 V−1 s−1
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Fig. 23. a) Electronic band structure of monolayer graphene. b) Typical variations of the Hall and longitudinal resistances in a graphene sample as a function
the charge carriers density (varied by electrical field effect).

Fig. 24. a) QHE in monolayer graphene and bilayer graphene (insert) from Ref. [80]. b) Observation of the QHE at room temperature from Ref. [82].

at room temperature, thus overcome those measured in any semiconductor. The fractional quantum Hall effect was recently
observed in such suspended graphene layers [77,78]. In graphene bilayer which consists of two graphitic monolayer arranged
according to Bernal stacking, the low energy dispersion relation becomes parabolic and carriers behaves like massive chiral
Dirac fermions (effective mass m∗ = 0.033me) with Berry’s phase 2π . This 2DEG system offers a unique physics which is
the object of intensive fundamental research in itself. More generally, graphene systems are of great interest for high speed
electronics applications due to high Fermi velocities. The opportunity to have an energy gap in nanoribbons (also in bilayer
graphene by applying an electrical field) could be even exploited for digital transistors [79].

7.2. Quantum Hall effect in graphene

The QHE in monolayer and bilayer graphene produced by exfoliation was observed in 2005 by two different groups
[80,81]. Fig. 24a shows the transverse conductivity σxy and longitudinal resistivity ρxx versus carrier density at T = 4 K
and B = 14 T. The QHE is half-integer for monolayer graphene and the resistivity curve exhibits a peak of finite height at
zero density which indicates a zero energy Landau level. Although the integer quantum Hall effect is recovered in bilayer
graphene, a zero energy Landau level also manifests itself (see insert Fig. 24a). The QHE in graphene layers is so robust
that under magnetic field density higher than 29 T the first plateau is still observable at 300 K [82] as shown in Fig. 24b.
These specific features of the QHE reflect the chirality property of Dirac carriers in graphene systems. They can be explained
by considering the Landau level energies. They are given by calculating the eigenvalues of the graphene (monolayer or
bilayer) Hamiltonian in presence of a magnetic field [69,83,84] which is obtained by introducing a vector potential A in the
Hamiltonian without magnetic field (Eq. (18)) through the substitution p → ∏ = p + e A.

Table 3 sums up the main features of the physics of graphene systems and GaAs in presence of magnetic field in case
of spin and valley (for graphene) degeneracy. In monolayer graphene, the energy of Landau levels varies as the root square
of Bn instead of B in semiconductors. Thus, the energy gap between Landau levels reduces with the index number n.
The degeneracy of each Landau level is 4eB/h (two spin directions and two valley values). The anomalous half integer
sequence of Hall plateau is related to the fact that the zero energy Landau level is half filled for zero carrier density
ns = 0. In bilayer graphene, the energy of Landau levels scales linearly with B as in semiconductors and energy gaps quickly
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Table 3
Comparison of the QHE in monolayer, bilayer graphene and GaAs 2DEG.

Fig. 25. Energy gap (in meV and in equivalent temperature) between the two first Landau levels in monolayer graphene, bilayer graphene and in GaAs
based 2DEG.

tend to h̄ωC for increasing n index. Moreover, n = 0 and n = 1 Landau levels are degenerated which results in a 8eB/h
degeneracy at zero energy. Numerical values indicated in Table 3 show that the energy spacing between first Landau levels
in monolayer graphene is much larger than in GaAs, particularly at low magnetic induction. This explains the observation
of the QHE quantization at 300 K, and generally speaking suggests that the Hall quantization in graphene should be very
robust. Graphene material appears particularly suitable for developing a quantum resistance standard working at higher
temperature, under lower magnetic induction, and with higher measurement current (compared to GaAs). Bilayer graphene
also seems to be very promising for resistance metrology since the energy gap between first Landau levels is larger than in
GaAs although it is lower than in monolayer (see Fig. 25). Therefore, it appears crucial to test the merit of both graphene
materials as candidate for the QHE metrology. Moreover, the underlying physics in both 2DEG systems being very different
from that of semiconductors, a comparison of quantum resistance standards fabricated with these different materials would
give a stringent test of the QHE universality. Furthermore the verification of the universal character of the von Klitzing
constant RK (theoretically equal to h/e2) would considerably support the setting up of a Système International (SI) of units
based on fundamental constants of physics [14].
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Fig. 26. a) Photography of a graphene Hall bar connected with metallic contacts. The width of the channel is 3 μm. The contour is emphasized by red lines.
b) Typical variations of the Hall and longitudinal resistances in a graphene sample as a function the charge carriers density (varied by electrical field effect)
at high magnetic field. The Hall plateaus ν = ±2 and ±6 are clearly visible. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

7.3. First metrological works

Metrological studies of the QHE in graphene has started in samples fabricated by mechanical exfoliation of graphite [84]
since this quantum phenomena was unobservable in epitaxial graphene until recently [85–88]. It turns out to be a challenge
to develop a graphene based quantum resistance standard that fulfills metrological requirements. As discussed in Section 2.3,
a perfect quantization at the 10−9 level, which is the target, relies on several properties of the Hall bar sample: good
contacts (typically below 100 �), largest channel width to benefit from a large breakdown current, a geometry of voltage
and current terminals that ensures a weak coupling between the Hall resistance and the longitudinal resistance. Fulfilling
these requirements using the exfoliation technique, notably implies to select only biggest graphene layers and to develop
an adequate sample design for each selected layer. Fig. 26a shows a typical design of Hall bar dedicated to metrological
characterization. After exfoliation and optical location, the sample is realized using e-beam lithography techniques combined
to Cr/Au, Ti/Au or Pd contacts deposition and oxygen plasma etching of graphene. Fig. 26b shows measurements of the Hall
resistance RH and longitudinal resistance Rxx versus carrier density performed in a graphene Hall bar under high magnetic
induction. It displays ν = ±2 and ν = ±6 Hall resistance plateaus which are typical of monolayer graphene.

The first accurate measurements of the QHE which was performed with a Hall bar device made of exfoliated monolayer
graphene found an agreement of the Hall resistance with RK/2 (ν = 2 plateau) within an uncertainty of 15 parts in 105

[89]. This uncertainty is large with regards to the use of a CCC based resistance bridge for the measurement. It was mostly
caused by the high contact resistance (some k�) of the metal electrodes attached to the graphene and to the low breakdown
current (< 2 μA). The small size of the sample (about 10 μm2) which is typical of exfoliated graphene devices, contributes
to both the high contact resistance and the low breakdown current. This is a major disadvantage of the exfoliation technique
for resistance metrology application.

Besides, all NMIs carrying out studies of the QHE in exfoliated graphene have been faced with bad and fragile contacts,
but also strong inhomogeneity of the carrier density, both altering the quantization. Nevertheless, quantization tests of
the QHE with a measurement accuracy of some parts in 107 were achieved in Hall bars samples made of either monolayer
graphene (B = 11.7 T, T = 1.5 K) or bilayer graphene (B = 18.5 T, T = 0.35 K) obtained by exfoliation [90]. This performance
which shows that an accurate quantization can be observed in graphene, notably results from the realization of better
contacts (some tens of ohms). But it is limited by the small size of the samples and the strong inhomogeneity of the
carrier density. In these experiments the sample were covered by PMMA polymer in order to protect graphene layer from
contamination by ad-atoms. Before measurement, an annealing to about 110 ◦C under vacuum was performed to further
decrease the residual density of carriers and increase the carrier mobility. Despite previous unsuccessful attempts to observe
the QHE in epitaxial samples, a large improvement of the measurement accuracy of the QHE quantization was reported
in a large area sample of graphene grown by epitaxy on silicon carbide. In a large Hall bar (160 × 35 μm2) with low
resistance connecting pads (about 1 �), the Hall resistance measured with a 12 μA current at 300 mK and 14 T magnetic
induction was found to agree with RK/2 within 3 parts in 109 (see Fig. 27) [88]. This result relies on a breakthrough in
fabrication: annealing the silicon carbide under 1 atm of argon rather than in vacuum leads to the growth of large-area
single monolayer graphene of better structural quality on the Si-terminated face of the substrate. Moreover, carrier densities
of less than 1012 cm−2 and mobilities of about 5000 cm2 V−1 s−1 are obtained. The observation of the QHE in single layer
epitaxial graphene was demonstrated by others works [91,92]. Carrier mobilities up to 20 000 cm2 V−1 s−1 were reached in
graphene growth on C-face of 4H silicon carbide [91]. All these results give hope that graphene could challenge the role of
GaAs in future quantum standards. Moreover, the epitaxial growth of graphene on silicon carbide [71] or by chemical vapor
deposition on metals [70] seems to be compatible with existing manufacturing processes. This is an asset for the metrology
application. Although further basic technological work is needed to realize a more practical resistance standard, graphene
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Fig. 27. a) Hall bar sample fabricated in monolayer graphene obtained by epitaxy on the Si-terminated face of SiC. b) QHE magnetoresistance curves
obtained in a large epitaxial graphene sample. Figures from Ref. [88].

material keeps one’s promises until now. An increase of the carrier mobility, a better control of the carrier density and of
its homogeneity will be crucial to operate graphene based quantum resistance standard cooled down at 4 K with a helium
free cryocooler under a magnetic induction of only some teslas.

8. Conclusion

The representation of the unit of resistance based on the QHE is universal: the ohm can be maintained in each NMI
with a relative uncertainty of one part in 109. Owing to the multiple connection technique, quantization properties of the
QHE can be preserved in various electrical circuits: accurate Quantum Hall Array Resistance Standards (QHARS), voltage
dividers, Wheatstone bridge. The latter is particularly suitable for realizing new universality tests of the QHE with a target
uncertainty less than 10−11. The application of this technique also allows the operation of the QHE with an alternating
current in the kilohertz range with an accuracy of some parts in 10−9. This opens the way towards a quantum standard of
impedance. In the context of the future revising of the Système International of units, the QHE is the cornerstone of three
main experiments: the RK determination, the watt balance experiment and the metrological triangle experiment. Their
results should lead to the determination of the constants involved in quantum metrology with a relative uncertainty as low
as one part in 108. Finally, the QHE metrology is renewed by the emerging graphene topic. First quantization tests of the
QHE show that graphene keeps one’s promises and could challenge GaAs material in the development of a more practical
quantum resistance standard.
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