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r é s u m é

Dans cette contribution nous présentons une introduction aux principes physiques sous-
jacents à l’effet Hall quantique. Un aperçu de l’approche de théorie des champs à l’effet
fractionnaire et entier est donné. L’accent est mis sur les mécanismes d’annulation de
l’anomalie de gauge électromagnétique par les degrés de libertés chiraux présents le
long du bord de l’échantillon. Les applications de ce formalisme à la conception ou à
l’interprétation théorique d’expériences d’interférence sont brièvement exposées.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The work reviewed in this contribution has been carried out in various collaborations, during the years 1989–2000 and
2008/2009 [1–13]. A useful classical reference on the quantum Hall effect is [14].

The reason the quantum Hall effect (QHE) is relevant to the subject of this colloquium, metrology, lies in the circumstance
that it yields a highly precise experimental value for the von Klitzing constant

R K = h

e2
(1)

This constant plays a fundamental role in the QHE: The Hall conductance of a two-dimensional incompressible electron gas
(2DEG) exhibiting the QHE turns out to be an integral or rational multiple of R−1

K . Its significance for metrology is clearly
an important aspect of the QHE. Apart from that, the QHE is a fascinating phenomenon, because its theoretical description
is related to quite fundamental and abstract concepts in mathematics and theoretical physics, such as fractional or braid
statistics, tensor categories, knot theory, 2D conformal field theory (CFT), and 3D topological field theory (TFT); see Fig. 1.
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Fig. 1. The quantum Hall effect is related to metrology, as well as to various fundamental physical and abstract mathematical concepts.

Fig. 2. Schematic representation of a quantum Hall sample. A voltage drop V x perpendicular to the current I y is observed.

In these notes, we present a short introduction to some of the concepts underlying the theory of the QHE. We also provide
a list of important references, with emphasis on our own contributions.

1.1. Remarks on history

An overview of the history of the quantum Hall effect can be found, e.g., in Ref. [15]. Here, we just list some important
scientific milestones.

1879 Edwin Hall discovers what is now called the classical Hall effect. Later, this discovery reveals that the electric current
in some semi-conductors is carried by holes.

1966 Fowler et al. investigate, for the first time, a two-dimensional electron gas (2DEG) at low temperature in a strong
magnetic field in a Silicon heterostructure (MOSFET).

1975 Kawaji et al. observe a dissipationless state in a Si-MOSFET device.
1978 Hall plateaux are observed by Englert and von Klitzing.
1980 von Klitzing realizes that the heights of the plateaux in the Hall conductance are quantized in integral multiples of the

constant R−1
K [16].

1982 Tsui, Störmer, and Gossard discover the fractional quantum Hall effect in GaAs–AlGaAs heterostructures [17].
�1982 Laughlin and followers [18–22] propose theoretical explanations of the fractional QHE.

2. What is the quantum Hall effect?

Modern quantum Hall devices are realized in Gallium-Arsenide heterostructures. The electrons are confined to the two-
dimensional interface between a layer of doped AlxGa1−xAs and undoped GaAs. The doped layer is a semi-conductor, while
the undoped one is an insulator. By applying a confining electric field perpendicular to the interface (gate voltage), a 2DEG
is formed at the interface. In order for an incompressible (Hall) state of the 2DEG to emerge, the device is brought into a
strong magnetic field transversal to the interface. A voltage drop V y may be applied inside the interface so as to generate
an electric current I y . Due to the Lorentz force acting on the electrons that carry the current, a voltage drop V x in the
direction perpendicular to the current is then observed (see Fig. 2).
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Experimentally, one can measure the longitudinal resistance, RL , as well as the transverse Hall resistance, R H :

RL = V y

I y
, R H = − V x

I y

Let n denote the density of electrons in the 2DEG, and let

Φ0 = hc

e
(2)

be the quantum of magnetic flux. The dimensionless quantity

ν = n
Φ0

|�B0⊥| (3)

is called the filling factor. The filling factor corresponds to the number of filled Landau levels for a gas of free spinless
fermions of charge −e. In Eq. (3), �B0⊥ is the component of the external magnetic field perpendicular to the plane of the
2DEG.

2.1. Classical theory

We start by studying the classical mechanics of a 2DEG exhibiting the Hall effect. In a steady state, where the electrons
in the 2DEG have a constant velocity, the total force on an electron must vanish. Hence

�Fe−‖ = −e

[
�E‖ + �v

c
∧ �B0⊥

]
= 0 (4)

It follows that the velocity of the electrons, �v , is perpendicular to the in-plane electric field �E‖ , i.e.,

�E‖ · �v = 0 (5)

Using (4), the electric current density is given by

�j = −en�v = σH (�ez ∧ �E) (6)

and the Hall conductivity, σH , is apparently given by

σH = R−1
H = enc

|�B0⊥| = e2

h
ν (7)

We observe that classical theory predicts a linear relation between the Hall conductivity and the filling factor ν , with a factor

of proportionality given by R−1
K = e2/h.

2.2. Experimental behavior of the Hall conductivity

Interestingly, experiments with Hall samples at low temperature and in strong magnetic fields yield a behavior of σH

that deviates from the classical linear relation in (7). Experimental data, sketched in Fig. 3, show plateaux where σH is
very nearly constant. Whenever (ν,σH ) lies on a plateau, the longitudinal resistivity vanishes. There is ample experimental
evidence for the following claims. (See also Fig. 4.)

(I) RL = 0 whenever (ν,σH ) ∈ plateau [16,17];
(II) plateau heights ∈ (e2/h) Q, [16,17];

(III) the cleaner the sample,
• the more plateaux are observed, and
• the narrower are the plateaux;

(IV) if R K σH /∈ Z ( fractional QHE), some of the quasi-particles observed in the sample appear to carry fractional electric
charges [25–27].

The precision of the integral plateau heights is of the order of 10−9. Thus, systems exhibiting the QHE allow for an
extremely accurate determination of R K = h/e2. Together with Josephson junction experiments measuring the fundamental
quantity K J = e/(hc) and quantum pumps, which determine the elementary charge e, the metrological triangle closes [15].
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Fig. 3. Experimental behaviour of the Hall conductivity and the longitudinal resistance of a 2DEG (illustration).

Fig. 4. Observed Hall plateaux in the range 0 < σ � 1; with σ = R K σH = nH
dH

, where nH and dH are co-prime integers.

2.3. Tasks for theorists

Given these experimental findings, the following theoretical questions arise:

1. (a) For what values of ν is RL = 0 (existence of a mobility gap)?
(b) How do the plateau widths scale with disorder?
(c) Quantitative estimates on |σH (ν) − e2

h ν|?
(d) Nature of the phase transitions between neighboring incompressible Hall fluids?
(e) Existence of a Wigner crystal for ν � 1

7 ?
Answers to these questions would have to be based on a detailed understanding of the quantum many-body problem in
the presence of disorder and interactions. In situations relevant for the fractional QHE, quantitative insights are primarily
based on large-scale computer simulations [22–24]; but see [18–21]. However, for a 2DEG consisting of non-interacting
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electrons in a random external potential, one only observes the integral QHE, and the theory of this phenomenon is
well understood [49,50].

2. Assuming that RL = 0 (i.e., the 2DEG forms an incompressible fluid), what can we say about
(a) possible values of σH ?
(b) spectrum and properties of quasi-particles?
(c) new experimental tests of theoretical predictions (e.g., interferometry)?
Questions of this sort can be studied and answered with the help of an elegant effective field-theory approach. In the
following, we outline this approach.

2.4. Applications

The QHE has many important (or potentially important) applications, such as:

• Metrology, determination of fundamental constants of nature, definition of a resistance standard [16].
• Novel computer memories.
• Q-bits for topological quantum computers (exploitation of quasi-particles with braid statistics) [28–30].

3. Electrodynamics of an incompressible Hall fluid

Consider a 2DEG confined to a planar region Ω and subject to a strong, uniform external magnetic field �B0 transversal
to Ω . In such a system, the vanishing of the longitudinal resistance RL is a signal for the existence of a mobility gap in
the bulk. One then speaks of an incompressible Hall fluid. Let us consider the response of the system to a small, slowly
time-dependent perturbation of the electromagnetic (EM) fields, with

�Btotal = �B0 + �B(x) (8)

The orbital dynamics of electrons in the region Ω (assumed to be contained in the x–y plane) only depends on Btotal
3 =

(�B0 + �B) · �ez and �E‖ = E = (E1, E2). We set B = �B · �ez and introduce a vector potential,

(Aμ) := (A0, A1, A2) (9)

for the electromagnetic field tensor in 2 + 1 dimensions,

(Fμν) :=
( 0 E1 E2

−E1 0 −B
−E2 B 0

)
(10)

The expectation value of operators in a (quasi-stationary) state of the 2DEG in an external vector potential A is denoted by
〈(·)〉A . For example, the electric charge- and current density is given by

jμ(x) := 〈
J μ(x)

〉
A (11)

with μ = 0,1,2, where J μ(x) is the quantum-mechanical current density.
From phenomenological and fundamental laws of physics the following equations can be derived:

(i) Hall’s law (for RL = 0)
The electric current is perpendicular to the electric field, i.e.,

jk(x) = σHεkl El(x) (12)

with k, l = 1,2, where εkl is the sign of the permutation (kl) of (12), and

x = (
xμ

) = (t, x) ∈ Λ := R × Ω (13)

(ii) Charge conservation
Charge- and current density in Λ satisfy the continuity equation

∂

∂t
ρ(x) + ∇ · j(x) = 0 (14)

(iii) Faraday’s induction law

∂

∂t
Btotal

3 (x) + ∇ ∧ E(x) = 0 (15)
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The laws (i) through (iii) imply that

∂

∂t
ρ

(ii)= −∇ · j
(i)= −σH∇ ∧ E

(iii)= σH
∂

∂t
Btotal

3 (16)

We integrate Eq. (16) in time, with integration constants chosen such that

j0(x) = ρ(x) + en

Btotal
3 (x) = B(x) + B0 (17)

where −en is the charge density of a homogeneous 2DEG in a constant magnetic field �B0. We then arrive at

(iv) “Chern–Simons Gauss law” [48]

j0(x) = σH B(x) (18)

Next, we propose to show that the laws (i) through (iv) imply the existence of anomalous chiral currents circulating at
edges of the incompressible Hall fluid. Faraday’s induction law (iii) says that

∂[μFνλ] = 0 (19)

which (by Poincaré’s lemma) implies that the EM field tensor can be derived from a vector potential,

Fμν = ∂[μ Aν] (20)

In compact notation, laws (i) and (iv) can be written as

jμ(x) = σH

2
εμνλ Fνλ(x)

(20)= σHεμνλ∂ν Aλ(x) (21)

Whenever σH is constant, the current (21) satisfies the continuity equation (ii), i.e.,

∂μ jμ = 1

2
σHεμνλ∂μFνλ(x)

(19)= 0 (22)

However, wherever the value of σH jumps, e.g., at the boundary of the sample, the current (21) is not conserved. Let

Σ := support(∇σH ) (23)

Then we have that

∂μ jμ(x) = 1

2
εμνλ(∂μσH )Fνλ 
= 0, for x ∈ Σ (24)

which violates the law (ii)!
The apparent contradiction between (24) and the continuity equation (ii) disappears when one notices that the current

(21) is not the total current. Apparently, there must be an additional current supported on Σ that cancels the anomaly (24):

jμ = jμbulk 
= jμtotal = jμbulk + jμedge (25)

with

∂μ jμtotal = 0

support
(

jμedge

) = Σ

jedge · ∇σH = 0

Eq. (24) for the bulk current (21) then implies that, on the “edge” Σ ,

∂μ jμedge = −∂μ jμbulk = �σH E‖|Σ (26)

where E‖|Σ denotes the electric field “parallel” to Σ (i.e., the component of E|Σ parallel to the contour lines of σH )
and �σH is the discontinuity of σH across Σ . This non-conservation of the edge current is called chiral anomaly in
1 + 1 dimensions. The chiral anomaly (in 3 + 1 dimensions) is a well-known phenomenon in gauge theories of elemen-
tary particles. It plays an important role in various physical processes; see Refs. [9,31].
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Fig. 5. Chiral edge current in a 2D electron gas.

In Fig. 5, an illustration of the edge current in a quantum Hall sample is given. The velocity �v of an electron at the edge
can be calculated by equating the Lorentz force and the confining force,

−e
�v
c

∧ �B = −�∇V edge (27)

In classical physics, a phenomenon analogous to the chiral edge currents in an incompressible Hall fluid are the hurricanes
in the atmosphere of the earth! In this case, the magnetic field �B is replaced by the angular velocity of the earth, �ωearth ,
and the role of the Lorentz force is played by the Coriolis force. The confining force, −�∇V edge , in a Hall fluid is replaced by
the gradient of the air pressure, −�∇ P .

3.1. Chiral anomaly in 1 + 1 dimensions

An anomalous current satisfying (26) is carried by charged, chiral, gapless “modes”, i.e., by particles traveling at a certain
velocity along the edge. Let us suppose that the current jμedge is carried by N species of chiral modes. We denote their

coupling constants to the EM field by e Q 1, . . . , e Q N . The anomaly of jμedge is then described by (see our discussion in
Section 5)

∂μ jμedge = e2

h

(
N∑

i=1

Q 2
i

)
E‖|Σ (28)

Combining this equation with (26) (with σH = �σH ) it follows that the (dimensionless) Hall conductivity is given by

σ = R K σH =
N∑

i=1

Q 2
i (29)

One can convince oneself that, in the integral QHE, each filled Landau level gives rise to exactly one species of electrons
circulating at the edge and thereby contributing to the edge current jμedge . Therefore, R K σH = N is the number of filled
Landau levels. For an incompressible Hall fluid exhibiting the fractional QHE, with R K σH /∈ Z, it follows that at least one of
the “charges” e Q i must be a fraction of the elementary charge e. Arguments similar to the ones reported here can be found,
e.g., in [3,9,32].

4. Effective action of an incompressible Hall fluid and topological field theory

In this section, we determine the effective action of an incompressible Hall fluid (IHF). Here, and in the following section,
we express the Hall conductivity in units of e2/h, i.e.,

σ := R K σH (30)

where σ is dimensionless. The space–time of the sample is the cylinder Λ = R × Ω . For simplicity, we assume that the
support of ∇σ is Σ = ∂Ω; (of course, this is an idealization of what one encounters in real samples). We denote the
surface of the cylinder by ∂Λ = R × ∂Ω . The quantum-mechanical current operator is J μ(x), and 〈(·)〉A is the expectation
value in a stationary state of the IHF in an external EM field with vector potential A.

The effective action of an IHF, ΓΛ[A], is the generating functional of the current Green functions. Hence it satisfies

jμtotal(x) = 〈
J μ(x)

〉
A = δΓΛ[A]

δA (x)
(31)
μ
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The current in the bulk of the Hall sample, Eq. (21), is given by

jμtotal(x) = jμbulk(x) = σεμνλ∂ν Aλ(x), for x /∈ ∂Λ (32)

After integration, (31) and (32) then yield the following expression for the effective action.

ΓΛ[A] = σ

2

∫
Λ

d3xεμνλ Aμ(x)∂ν Aλ(x) + 1

2
Γ [a] = σ

2

∫
Λ

A ∧ dA + 1

2
Γ [a] (33)

where a := A|∂Λ , and Γ [a] is the generating functional of the edge-current Green functions.
The Chern–Simons action

∫
Λ

A ∧ dA in (33) is not invariant under a gauge transformation, A �→ A + dα with α|∂Λ 
= 0. In
fact, we find that

δ

∫
Λ

A ∧ dA =
∫
Λ

dα ∧ dA =
∫
∂Λ

α da (34)

where we have used Stokes’ theorem. In our case of a time-independent sample Ω , we have that da = ∂μaν dxμ ∧ dxν =
E‖ dt ∧ dξ , where ξ is a coordinate parametrizing ∂Ω , and

E‖ = εμν∂μaν (35)

is the electric field parallel to the edge. The total action ΓΛ , however, must be gauge invariant (conservation of electric
charge). Therefore, the violation of gauge invariance described in (34) must be canceled by the edge action Γ [a], which is
then found to be given by

Γ [a] = σ

2

∫
∂Λ

d2ξ
{(

E‖ − ∂μaμ
)�−1(E‖ − ∂νaν

) + aμaμ
}

(36)

(up to manifestly gauge-invariant terms), assuming that all chiral edge modes have the same propagation speed and direc-
tion (the general case will be discussed in Section 5). By (31) and (33),

jμedge = 1

2

{
σεμνaν + δΓ [a]

δaμ

}
(37)

where μ,ν ∈ {0,1}, and, using (36),

∂μ jμedge = σεμν∂μaν (38)

in accordance with Eq. (26).
We would like to emphasize that, up to gauge invariant terms, the effective action for the edge current, (36), is uniquely

determined by the requirement of electric charge conservation. The only possible generalization is to consider several in-
dependent edge channels of charged quasi-particles. In contrast to the bulk contribution to the total action (33), the edge
action is not topological, i.e., it depends on the space–time metric of the edge. Therefore, in general, each edge channel may
couple to a different space–time metric (i.e., exhibit a different propagation speed). We will discuss this point in more detail
in the next section.

The total electric current, J μ , is conserved,

∂μJ μ = 0 (39)

By Poincaré’s lemma, it can therefore be derived from a vector potential, which we denote by B ,

J μ = √
σεμνλ∂ν Bλ (40)

The potential B in (40) gives rise to the gauge symmetry Bμ �→ Bμ+∂μβ: J μ does not change under a gauge transformation
of B . The action

SΛ[B, A] = 1

2

∫
Λ

B ∧ dB +
∫
Λ

d3x J μ Aμ + S̃[B|∂Λ,a] (41)

describes the theory of the gauge potential B coupled to an EM vector potential A. In (41), S̃ is the edge action that makes
the total action gauge-invariant. With an appropriate choice of S̃ , the action (41) yields the effective action (33), after
functional integration over the field B .

SΛ[B, A] is the action of a topological U(1) Chern–Simons theory. The charge operator associated with a region O of Ω

is defined as



340 S. Bieri, J. Fröhlich / C. R. Physique 12 (2011) 332–346
Fig. 6. Fusion of two sources in a topological field theory (“b.c.” stands for a boundary condition).

Q O :=
∫

O

d2x J 0(t, x) = √
σ

∫
∂O

B (42)

Thus, the exponential of Q O ,

ei Q O = ei
√

σ
∫
∂O B (43)

is a Wilson loop operator for the field B associated with the contour ∂O. Wilson loops and networks furnish the “observables”
in a 3D topological field theory (TFT). Static sources of B inserted in the bulk at a point z ∈ Ω are described by vectors in a
Hilbert space,∣∣(q, λ), z

〉 ∈ [
(q, λ), z

]
(44)

with

Q O
∣∣(q, λ), z

〉 = √
σq

∣∣(q, λ), z
〉

(45)

whenever O contains the insertion point z. Here, q is the flux of the field B , and λ is some additional “internal” quantum
number needed to label the sectors of the TFT describing the bulk of an IHF. The state vectors |(q, λ), z〉 are elements of a
sector (subspace) of the total state space denoted by[

(q, λ), z
]

(46)

Sectors are thus labeled by (q, λ) and an insertion point z ∈ Ω . The fact that the bulk theory has trivial dynamics (static
sources, purely local current correlators) is a consequence of the mobility gap in the bulk, after passing to the scaling limit.

4.1. Fusion of sources

Next, we discuss properties of states in a TFT with several distinct sources. The sources in a TFT constitute a fusion
algebra. This means the following: Consider the tensor product space corresponding to two sources located at z1 and z2,
denoted by [(q1, λ1), z1]⊗ [(q2, λ2), z2]. As the locations z1 and z2 of the two sources approach the same point z, the tensor
product can be written as a direct sum,[

(q1, λ1), z1
] ⊗ [

(q2, λ2), z2
] �

⊕
λ

[
(q, λ), z

] ⊗ C
N

γ
γ1γ2 (47)

where γi = (qi, λi) and q = q1 + q2. The non-negative integers Nγ
γ1γ2 are called fusion rules; they are the multiplicities of the

spaces [(q, λ), z] in the tensor product space. The morphisms, F γ ,a
γ1γ2 , from [γ1, z1] ⊗ [γ2, z2] to the space [γ , z] are called

fusion matrices,

F γ ,a
γ1γ2 : [(q1, λ1), z1

] ⊗ [
(q2, λ2), z2

] → [
(q, λ), z

]
a (48)

with a = 1, . . . , Nγ
γ1γ2 (see Fig. 6).

In a “physical” theory, i.e., for a quasi-rational TFT, all multiplicities in the “Clebsch–Gordan series” (47) must be finite,
more precisely,

∑
γ Nγ

γ1γ2 < ∞, for all pairs {γ1, γ2}. If Nγ
γ1γ2 > 0, then γ is called a fusion channel for γ1 and γ2. A TFT is

abelian if
∑

γ Nγ
γ γ = 1, for all pairs {γ1, γ2}. In Section 5, we will focus on edge theories dual to abelian TFTs in the bulk.
1 2
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4.2. Constraints on physical TFTs

The spin sq,λ of a state is determined by considering a rotation in the plane through an angle of 2π . Let Urot(2π)

represent the rotation by 2π around the origin. Then

Urot(2π)
∣∣(q, λ), z

〉 = e2π isq,λ
∣∣(q, λ), z

〉
(49)

and the spin sq,λ is given by (see, e.g., [1,11])

sq,λ = q2

2
+ �λ (50)

where, for a quasi-rational TFT, as defined above, Vafa’s theorem [33] implies that

�λ ∈ Q (51)

So, in general, sq,λ /∈ 1
2 Z, and the theory may have quasi-particles in its spectrum, that have fractional spin and are neither

bosons nor fermions (so-called anyons).
In a theory describing a physical IHF, there must exist bulk states with the quantum numbers and properties of one-

electron states. Suppose that the state |(q∗, λ∗), z〉 is obtained by adding a single electron at the point z ∈ Ω to the
groundstate of the IHF. Then we have the following constraints: The charge of this state, see (45), must be

√
σq∗ = −1 (52)

Furthermore, the spin, see (50), must be half-integer, i.e.,

sq∗,λ∗ = (q∗)2

2
+ �λ∗ = 1

2σ
+ �λ∗ = l + 1

2
(53)

with l ∈ Z. From Vafa’s theorem we know that �λ∗ is rational. It thus follows that the Hall conductivity, σ , is rational,

σ = nH

dH
∈ Q (54)

There is a third constraint on physical theories: the so-called relative locality of all quasi-particle states with respect to
electron insertions. We will not discuss it here; but see Refs. [6,11] for more information. Using these three constraints on
a theory describing a physical IHF, one can show that the smallest electric charge of a quasi-particle that can appear in an
IHF is given by

qmin = e

f dH
(55)

where f ∈ N is an integer (namely the order of the simple current corresponding to the insertion of an electron); see,
e.g., [11].

To conclude this section, we remark that one may view the spaces labeled by (q, λ) as sectors of a chiral algebra
describing some chiral conformal field theory (CFT) [34]. Abstractly, they can be understood as the “irreducible objects”
of a braided tensor category [35,36].

4.3. Monodromy and braiding

Let us consider the transformation of a state describing two sources when the sources are adiabatically carried around
one another, as depicted in Fig. 7. This corresponds to a rotation of the two sources through an angle 2π . After subtracting
the contribution of the spins of the sources, the monodromy matrix, M , is defined by

Urot(2π)|[(q1,λ1),z1]⊗[(q2,λ2),z2] = e2π i(sq1,λ1 +sq2,λ2 )M(q1,λ1)(q2,λ2) (56)

We may fuse the tensor product states on both sides. Using (48) and (49), we get

Urot(2π)|[(q1,λ1),z1]⊗[(q2,λ2),z2] =
⊕

λ

e2π isq,λ F (q,λ),a
(q1,λ1)(q2,λ2) (57)

This shows that the monodromy matrix M(q1,λ1)(q2,λ2) is block-diagonal in the decomposition of the tensor product space
into the subspaces [(q, λ), z], and its eigenvalues on these subspaces are given by

e2π i(sq1+q2,λ−sq1,λ1 −sq2,λ2 ) = e2π iq1q2 e2π i(�λ−�λ1 −�λ2 ) (58)

The factor e2π iq1q2 corresponds to the well-known Aharonov–Bohm phase for carrying a charged particle around an insertion
of magnetic flux. In general, it may happen that M 
= 1, for some pairs of quasi-particles. The particles then exhibit braid
statistics.
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Fig. 7. Monodromy operation for a pair of particles with quantum numbers (q1, λ1) and (q2, λ2).

Braid statistics is an interesting phenomenon only encountered in two-dimensional systems. In dimensions larger than
two, quantum statistics is always described by representations of the permutation group; see, e.g., [37] and references given
there. The theoretical possibility of braid statistics in 2D systems appears to be realized in IHFs at certain fractional plateaux.

5. The edge of an incompressible Hall fluid

Next, we propose to find an action, S , for matter fields located on the edge, ∂Λ, that describe chiral modes coupled to
the electromagnetic field. (In addition, there may be neutral modes, which we omit here.) The main constraint on the edge
action is its gauge variation; i.e., under

a �→ a + dα|∂Λ (59)

we find [cf. Eq. (34)] that

δS = −σ

∫
∂Λ

d2ξ εμν∂μaνα (60)

Furthermore, the edge current, Jμedge , must satisfy the anomaly equation [see (38)]

∂μ Jμedge = σεμν∂μaν (61)

Since the edge degrees of freedom of an IHF form a system in 1 + 1 dimensions, we can make use of bosonization tech-
niques. A current carried by gapless quasi-particles can be decomposed into left- and right-moving currents with opposite
propagation directions, J L and J R . The vector current, J = J L + J R , is always conserved. This means that the anomalous
edge current, Jedge , must be chiral, i.e., there is an imbalance between left- and right-moving modes.

Conservation of the vector current, ∂μ Jμ = 0, allows us to introduce a (possibly multi-valued) scalar potential φ, i.e.,

Jμ = εμν∂νφ (62)

In the absence of an external electric field, let us write the chiral edge current in terms of the scalar potential as

Jμedge =
√

σ

2

(
∂μφ + εμν∂νφ

)
(63)

When the external field vanishes, the edge current is conserved,

∂μ Jμedge ∝ �φ = 0 (64)

which is the equation of motion for a massless free Bose field, φ, with action

S[φ,a = 0] =
∫ √|g|d2ξ

1

2
gμν∂μφ∂νφ (65)

We choose a metric gμν on ∂Λ with g = det(gμν) = −1. More precisely,
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(
gμν

) = diag
(
u−1,−u

)
(66)

where u is the propagation speed of φ.
Next, we introduce the edge action, S[φ,a], for a non-zero vector potential aμ: S[φ,a] is required to yield the effective

edge action (36), after functional integration over the matter field φ, i.e.,∫
Dφ e2π i S[φ,a] = e2π iΓ [a] (67)

This uniquely fixes S[φ,a] (up to gauge-invariant terms). It is found to be given by

S[φ,a] =
∫

d2ξ

{
1

2
∂μφ∂μφ + √

σ
(
∂μφ + εμν∂νφ

)
aμ + σ

2
aμaμ

}
(68)

with ∂μφ = gμα∂αφ and aμ = gμαaα . The edge current in the presence of external fields [see (37)] is

Jμedge = 1

2

{
σεμνaν + δS

δaμ

}
= 1

2

{√
σ

(
∂μφ + εμν∂νφ

) + σ
(
aμ + εμνaν

)}
(69)

It exhibits the correct anomaly (61), on a solution to the equation of motion for φ.
To generalize our construction, N > 1 conserved vector currents can be introduced,

Jμi = εμν∂νφi (70)

The action for the fields φ = (φ1, . . . , φN ) generalizing (68) is then given by

S[φ,a] =
∑

i

∫
d2ξ

{
1

2
∂μφi∂μφi + Q i

(
∂μφi + χiε

μν∂νφi
)
aμ + Q 2

i

2
gμν

i aμaν

}
(71)

where χi ∈ {+,−} is the chirality of the edge current carried by the field φi , and Q i ∈ R are some constants. The metrics,
gi , may be different for each field, (gμν

i ) = diag(u−1
i ,−ui), where ui is the propagation speed of J i . The action (71) has the

correct gauge variation, and the edge current,

Jμedge =
N∑

i=1

Jμχ i = 1

2

N∑
i=1

Q i
{
∂μφi + χiε

μν∂νφi + Q i
(
aμ + χiε

μνaν

)}
(72)

exhibits the expected anomaly, provided that∑
i

χi Q 2
i = σ (73)

Using (71), the equation of motion for the field φi is given by

gμν
i ∂μ(∂νφi + Q iaν) = χi Q i E (74)

By inspection, under a gauge transformation aμ �→ aμ + ∂μα, solutions to (74) transform as

φi �→ φi − Q iα (75)

This shows that the edge currents in (72) [and, in particular, (69)] are gauge-invariant objects.
Canonical quantization of the action (71) yields the equal-time commutators[

J 0
χ j(x, t), J 0

χk(y, t)
] = i

2π
χ j Q 2

j δ jkδ
′(x − y) (76)

Hence, the currents Jχ i generate N chiral U(1) Kac–Moody algebras [38]. Using (76) and (73), the edge current (72) satisfies
the commutation relation[

J 0
edge(x, t), J 0

edge(y, t)
] = i

σ

2π
δ′(x − y) (77)

The cancellation of the gauge anomaly of the electromagnetic effective (Chern–Simons) action in the bulk by appropriate
massless chiral field theories on the edge of the Hall sample is an example of the holographic principle (applied, here,
to gapless quantum field theories in two dimensions and three-dimensional TFTs). A more conventional version of this
principle tells us that there is a correspondence between certain 3D TFTs and 2D chiral conformal field theories (CFTs). This
formulation is somewhat misleading, though, since (as our example shows) the massless edge modes may have different
propagation speeds, i.e., the conformal symmetry may be broken. This is usually the case in realistic IHFs.

For abelian IHFs with N conserved currents, (71), the family of physical theories has been classified mathematically
[5–8]. For each fluid, it is possible to enumerate all quasi-particle excitations. For a given Hall conductivity, σ , and a certain
number, N , of currents, the charges of quasi-particles are labeled by vertices of a lattice, Γ ∗ , of dimension N , dual to an odd
integral lattice, Γ , of (multi-)electron excitations. This again implies that the dimensionless Hall conductivity σ is a rational
number. Steps towards a generalization of this approach to non-abelian IHFs have been undertaken in [11,12,39,40].
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5.1. Chiral vertex operators

So far, we have introduced an algebra of chiral currents, { Jμχ j}, generating U(1) Kac–Moody algebras; Eq. (76). The next
step is to construct quasi-particle creation- and annihilation operators as chiral vertex operators. For simplicity, let us discuss
the case of an abelian IHF with only a single edge degree of freedom. The operator

ψq(ξ) = N exp

[
2π i

q√
σ

ξ∫
dyμ

{
εμν Jνedge − σaμ

}]
(78)

creates a charged quasi-particle at a point ξ = (ξμ) ∈ ∂Λ of the edge. N denotes normal ordering, and Jμedge is given in
(69). The starting point of the line integral in (78) is some reference point, usually taken to be an ohmic contact. Note that
a continuous deformation of the path in the line integral in (78) leaves ψq(ξ) invariant. In other words, the vertex operators
only depend on the homotopy class of the path. This is because the curl of the integrated vector field vanishes,

εαμ∂α

(
εμν Jνedge − σaμ

) = 0 (79)

The electric charge is measured by the operator

Q̂ =
∫

∂Ω

dx J 0
edge(x, t) (80)

The charge of the quasi-particle created by ψq is obtained from the commutator[
Q̂ ,ψq(ξ)

] = √
σqψq(ξ) (81)

Hence, the electric charge deposited by (78) is equal to
√

σq. This suggests that the vertex operators ψq(ξ) are in one-to-one
correspondence with bulk states |(q, λ), z〉 introduced in the previous section.

Commuting two vertex operators yields the “statistical phase”,

ψq1(ξ1)ψq2(ξ2) = ψq2(ξ2)ψq1(ξ1)e±iπq1q2 (82)

The sign of the phase depends on the relative positions of ξ1, ξ2, and the starting point of the line integral (and on the
homotopy classes of the paths). The conformal spin of the vertex operator (78) is given by

sq = q2

2
(83)

These results are in accordance with the properties of the states |(q, λ), z〉 of the bulk TFT discussed in Section 4, for �λ = 0.
In fact, the statistical phase appearing in (82) corresponds to “half-monodromies” in the bulk, see Eq. (58). The conformal
spin (83) coincides with the spin of the bulk state, Eq. (50).

We note that, under a transformation a �→ a + dα, the vertex operator transforms like

ψq(ξ) �→ ψq(ξ)e−2π i
√

σqα(ξ) (84)

as expected of an operator creating a particle with electric charge
√

σq.

5.2. Inter-edge tunneling and interference experiments

The quantum field theory for the edge of an IHF can be used to predict observable effects that can be tested in beam-
splitting interference experiments using electronic versions of Mach–Zehnder or Fabry–Pérot interferometers (Fig. 8) [10,41].
For interference effects to appear, excitations need to be allowed to tunnel between different edges of the sample. This may
be modeled by adding tunneling terms of the form

Vq(x; y) ∝
∫

dt ψ
†
q(x, t)e2π i

∫ y
x a1(ξ,t) dξψq(y, t) (85)

to the edge action.
Important phenomena are:

• The tunneling current from one component of the Hall edge to another one through a quantum point contact is related
to the electric charges of the particle transmitted through the contact and to the scaling dimension of the tunneling
operator (exp. [42]; theory [12]).

• Aharonov–Bohm oscillations in the tunneling current are studied in [13,41,43]. Remarkably, they have the electronic
period, Φ0, if external flux tubes are added (topological screening), but may have quasi-particle period, Φ0/qmin , if
edges are deformed by a modulation gate; (qmin is the smallest fractional charge observed in the fluid).

• The “visibility” of the Aharonov–Bohm oscillations as a function of bias voltage is related to the propagation speeds, ui ,
of different channels (exp. [44]; theory [45–47]).
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Fig. 8. Mach–Zehnder (left) and Fabry–Pérot (right) interference experiments with chiral edge currents of an IHF on a Corbino-disk geometry. At two
constrictions, the modes tunnel between the two edges of the sample. This plays the role of beam splitters in the optical versions of the interferometers.
Properties of the quasi-particles and the magnetic flux, Φ , enclosed by the loop of chiral currents lead to characteristic interference effects. Data obtained
from such experiments help to constrain the set of possible effective theories describing a given IHF.
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