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We present some recent applications of the Faddeev–Yakubovsky equations in describing
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by atomic hydrogen with special interest in X = p, e±, systems of cold bosonic molecules
and the bound and scattering properties of N = 3 and N = 4 atomic 4He multimers.
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r é s u m é

Nous présentons quelques applications récentes des équations de Faddeev–Yakubovsky
pour décrire des systèmes atomiques et moléculaires. Nous avons considéré la diffusion
d’une particule chargée X par l’atome d’hydrogène avec un intérêt spécial pour les cas
X = p, e±, des systèmes de molécules bosoniques ainsi que les propriétés des états liés et
de diffusion des N = 3 et N = 4 atomes d’4He.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Faddeev–Yakubovsky (FY) equations constitute a rigorous mathematical formulation of the quantum mechanical N-
body problem in the framework of non-relativistic dynamics. They allow obtaining exact solutions – in the numerical sense –
of the Schrödinger equation for bound and scattering states, in principle for an arbitrary number of particles. They were
first formulated as integral equations in momentum space by Faddeev in the early sixties [1], in the context of 3-nucleon
problem with short range interactions, and were generalized some years latter to an arbitrary number (N) of particles by
Yakubovsky [2].

A substantial progress in their numerical solution was made when the boundary conditions in the configuration space
were established for N = 3 in [3–5] and for N > 3 in [6]. A reformulation of the original Faddeev equations, allowing to
incorporate long range Coulomb-like interactions was derived in [7,8]. A brief review of the different steps in elaborating
the Faddeev–Yakubovsky approach to N-body problem can be found in [9].
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Fig. 1. Sets of three-particle Jacobi coordinates.

Until now only N = 3 and N = 4 systems have been explored, although there is no any formal nor practical impediment
to go beyond. Nowadays very accurate FY solutions have been obtained for the bound state problems on hadronic, nuclear
and atomic systems, in configuration as well as in momentum space [10–14], still with a smaller accuracy than the varia-
tional methods. The real advantage in using the FY equations, which was also their original motivation, is in describing on
the same foot the scattering states. They play there an unavoidable role, especially when many channels are open including
the break-up ones (dissociation into more than two clusters). At present, there exist three-body reliable scattering results in
nuclear and atomic physics including the break-up process [15–19]. In the four-body case, the progress remains limited to
elastic and rearrangement 1 + 3 and 2 + 2 particle channels in nuclear and atomic problems [20,21,13,22,12,23].

We present in this contribution some recent applications of the Faddeev–Yakubovsky formalism to describe cold atomic
structures. A short introduction to the Faddeev equations is given in Section 2. Section 3 is devoted to present some results
of a charged particle interacting with atomic hydrogen, with special interest in the p–H (or H+

2 molecular ion) and e±–H
systems. We study in Section 4 universal properties of the weakly bound N = 3 and N = 4 cold bosonic molecules. Some
results concerning 4He atomic multimers are given in Section 5. The last section is devoted to drawing some conclusion and
perspectives.

2. The formalism

We will develop in what follows the main ideas of the Faddeev equations for solving the three-body problem in config-
uration space. This form is the best adapted to deal with atomic problems. Let us consider three different spinless particles
with masses mi , coordinates �ri and denote by (�xi, �yi) the three different sets of Jacobi coordinates defined by

�xi =
√

2m jmk

m0(m j + mk)
(�r j −�rk), i = 1,2,3 (1)

�yi =
√

2mi(m j + mk)

m0M

[
�ri − m j�r j + mk�rk

m j + mk

]
(2)

where (i jk) denotes a cyclic permutation of the particle numbers (123), M = m1 + m2 + m3 is the total mass of the system
and m0 an arbitrary mass to be fixed at convenience. We will also assume that these particles interact via pairwise short
range local potentials V i(xi) vanishing at some distance Ri .

The dynamics of the system can be alternatively described by {�ri}i=1,2,3 or by choosing one of the Jacobi coordinate sets
(�xi, �yi), completed by the center of mass coordinate �R

M �R = m1�r1 + m2�r2 + m3�r3

The three-body Hamiltonian is assumed to have the form

H = H0 + V (3)

where H0 is the kinetic energy which can be written in one of these forms

H0 = − h̄2

2

(
1

m1
��r1

+ 1

m2
��r2

+ 1

m3
��r3

)
= − h̄2

m0

[
� �xi

+ � �yi
+ m0

2M
��R

]

and V the total potential

V = V 1(x1) + V 2(x2) + V 3(x3) (4)

In order to remove the center of mass motion, the choice of a Jacobi set is mandatory. Only in terms of it, the three-body
wavefunction Ψ , eigenstate of the total three-body Hamiltonian (3), factorizes into

Ψ (�xi, �yi, �R) = Φ(�xi, �yi) ei �P ·�R
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where Φ(�xi, �yi) is an eigenstate of the intrinsic Hamiltonian

HΦ = EΦ, H = − h̄2

m0
[� �xi

+ � �yi
] + V (5)

the only one that we are going to consider from now.
As it can be already seen from (4), none of the Jacobi sets is neither privileged nor fully satisfactory. The “non-interacting”

region of particles 2 and 3 is simply given by x1 > R1 but it is difficult to define this region in terms of say (�x2, �y2).
On the other hand, if we wish to describe for instance the scattering of particle 1 on a bound state of particles 2 and

3 – denoted symbolically by 1(2,3) – it will be natural to chose the coordinate set (�x1, �y1). However, the final state can
contain, together with the initial state, a superposition of channels 2(1,3) and/or 3(1,2) which can be hardly described in
terms of the same coordinate set. For the bound states and break-up channels the three ensembles will appear naturally on
the same footing.

The Faddeev equations are based on a partition of the total wave function on as many components as two-body asymp-
totic channels:

Φ = Φ1 + Φ2 + Φ3

It is straightforward to see that the three-body Schrödinger equation (5) is equivalent to the set of coupled partial differential
equations for the Faddeev components Φi[

E − H0 − V 1(x1)
]
Φ1(�x1, �y1) = V 1(x1)

[
Φ2(�x2, �y2) + Φ3(�x3, �y3)

]
[

E − H0 − V 2(x2)
]
Φ2(�x2, �y2) = V 2(x2)

[
Φ3(�x3, �y3) + Φ1(�x1, �y1)

]
[

E − H0 − V 3(x3)
]
Φ3(�x3, �y3) = V 3(x3)

[
Φ1(�x1, �y1) + Φ2(�x2, �y2)

]
(6)

The coupling is ensured by the right-hand side. It is highly nonlocal due to the linear relations between two different sets
of Jacobi coordinates: �xα(�xβ, �yβ), �yα(�xβ, �yβ). In the non-interacting region, V i = 0, the three Faddeev equations decouple
and the boundary conditions for each component take a simple form when expressed in their own Jacobi coordinate set.

These boundary conditions are more easily implemented in terms of the reduced Faddeev components φi defined by:

φi = xi yiΦi (7)

and take the following Dirichlet form:

– they vanish for xi = 0 and yi = 0:

φi(�xi = 0, �yi) ≡ 0, φi(�xi, �yi = 0) ≡ 0 (8)

– for a 3-body bound state they decrease exponentially in all the directions. In practice one can force them to vanish at
sufficiently large distances

φi(xi � xmax, yi � ymax) = 0 (9)

– for an open i + ( jk) elastic or rearrangement scattering, the i-th Faddeev component splits into the product of the
two-body bound state wave function ϕi(xi) of the particle pair ( jk) and the scattering wave of particle i with respect
to the center of mass of this pair χi( �yi):

φi(�xi, �yi) = ϕi(xi)χi( �yi) (10)

– for the break-up reactions at large values of the hyperradius ρ =
√

x2
i + y2

i one overimposes to (10) the behavior

φi(�xi, �yi) ∼ eikρ

ρ1/2
(11)

As mentioned in the Introduction, the original Faddeev equations, above formulated, are not suitable for the Coulomb
scattering problems. The reason is that the right-hand sides of Eq. (6) do not decrease fast enough to ensure the decoupling
of Faddeev amplitudes in the asymptotic region and to allow unambiguous implementation of the boundary conditions. In
order to circumvent this problem, Merkuriev [7,8] proposed to split the Coulomb potential V into two parts, V = V s + V l ,
by means of some arbitrary cut-off function η:

V s(x, y) = V (x)η(x, y), V l(x, y) = V (x)
[
1 − η(x, y)

]
(12)

One is then left with a system of equivalent equations
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Fig. 2. Bound state spectrum (atomic units) for π–H in a two-body approach with a regularized polarization potential (14).

[
E − H0 − W i − V s

i

]
Φi = V s

i [Φ j + Φk], W i = V l
i + V l

j + V l
k (13)

with the right-hand side containing only short range contributions (V s) and with a 3-body potential (Wα ) in the left-hand
side to account for the long range parts. As it will be demonstrated in the following, this approach was found to be very
efficient in calculating the positron–positronium (Ps) and positron–hydrogen (H) cross sections [17,18].

The main advantage of the Faddeev formulation is to allow a proper description of the different asymptotic states, each
of them well separated by the corresponding Faddeev component and easily described in terms of their natural Jacobi
coordinates. It is clear that the implementation of multichannel boundary conditions listed in (8)–(11) is impossible by
means of one single function. Let us just however mention that this is not the only reason for using this approach, after all
when working in momentum space there is no any need to implement any kind of boundary conditions. In fact there are
also deeper reasons related to the mathematical structure of the underlying Lipmann–Schwinger like integral equations. The
reader interested can take benefit in consulting [24,25].

Eqs. (13) allow us to treat any physical non-relativistic quantum three-body problem with the only exception of break-up
reaction with at least one attractive Coulomb interaction, despite numerous attempts [26].

Last but least, this formulation is also advantageous in the numerical calculations. Indeed, the Faddeev decomposition
takes benefit of the symmetry properties of the system. As a consequence, the Faddeev components have simpler structure
than the total wave function itself and are therefore easier to interpolate numerically.

The above described formalism has been extended to account for particles with spin, interacting via three-body and/or
nonlocal forces. A few years after their formulation, the Faddeev equations were generalized to an arbitrary number (N)
of particles by Yakubovsky [2]. However their numerical solution is still limited to N = 4 case and for the energies below
the first three-body break-up threshold. In this manuscript we will not present the formalism of Yakubovsky equations and
their numerical implementation techniques. The interested reader may refer to [27]. Still, in Sections 4–5, we present some
results, which were obtained by solving four-particle Yakubovsky equations.

One should also mention that, although we have described Faddeev approach in coordinate space in terms of coupled
differential equations, the equivalent formulation is available in momentum space using coupled integral equations. Both
formulations have its own advantages, namely higher energy scattering is easier to treat in momentum space [15,28], while
configuration space is more convenient for Coulomb related problems [25,17,19,14].

3. Charged particle interaction with H

An interesting atomic physics problem is related to the polarization of neutral atoms. In the vicinity of a charged particle
X± , the electronic density of a neutral atom A polarizes, giving rise to a central long range X±–A interaction which behaves
asymptotically like

V P (r) = −1

2

αd

r4
(14)

where αd is the dipole polarizability, characteristic of the atom (αd = 9/2 for H in the mp → ∞ limit). This interaction is
very shallow but if the charged particle is heavy enough to reduce the repulsive kinetic energy, it generates a rich spectrum
of bound and resonant states. This can be qualitatively illustrated in a simple two-body approach by assuming an X±–A
two-body interaction of the form (14) with the replacement [29]:

αd → α(r) = αd − 2
e−2r

(
r5 + 9

r4 + 9r3 + 27
r2 + 27

r + 27
)

3 2 2 2 4
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Fig. 3. Resonant μ–H states in the same two-body approximation as in Fig. 2.

Fig. 4. Different three-body reactions with atomic hydrogen and the existing particles.

This particular choice of α(r), valid for scattering on H atom, regularizes (linearly) the polarization potential (14) at short
distances, keeping also the right asymptotic behavior.

We have plotted in Fig. 2 the bound state spectrum of the π–H system thus obtained. It contains a large number of
states up to L = 6. In the case of a positively charged particle, X+ , these states would lay below the rearrangement threshold
p + (e− X+). Fig. 3 represents the μ–H elastic cross section obtained in the same approximation, displaying very narrow
resonances in high angular momentum states [19].

In view of having reliable quantitative predictions, an exact calculation must, however, be performed, taking into account
the internal structure of the atom. In the present Few-Body state of the art, this is only possible for the H and He atoms. The
simplest case for which the calculations can be performed exactly is the scattering on atomic hydrogen. This constitutes a
genuine three-body problem and a challenge for the Few-Body community.

We have first considered the case of positively charged particle X+ with mX+ � mp , for they have at zero energy a
single open channel corresponding to elastic scattering (see Fig. 4). The first exact three-body solutions of the X+(e−p+)

have been obtained in [19]. We display in Fig. 5 the X+–H scattering length as a function of the mass of the projectile mX .
The values corresponding to physical particles (μ,π ) are indicated by arrows. As one can see from this figure, the scattering
length is divergent for some values of the incoming particle mass, indicating the appearance of an additional bound state in
the (X, p, e) system.

Of special interest is the scattering of protons. Not only for they constitute experimentally the most accessible physical
particle but also because it corresponds, by chance, to one of the resonant cases displayed in Fig. 5 for smaller projectile
masses.

Indeed, we have computed the p–H scattering length for the S-wave symmetric (pp spin singlet) and antisymmetric
(pp spin triplet) states. For the symmetric case we found as = −29.3 a.u. while the antisymmetric one provided the value
of at = 750 ± 5 a.u. The analysis of the nodal structure of the corresponding Faddeev amplitude indicated that such a big
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Fig. 5. X+–H scattering length (in atomic units) as a function of the projectile mass (in MeV). The values corresponding to physical particles are indicated
by arrows.

Fig. 6. Cross section for the L = 0 pH scattering in pp spin triplet state as a function of the energy (in atomic units). Three body results (filled squares) are
compared to those (solid line) given by the two-body Landau potential [34] modified in order to reproduce the binding energy the first excited state.

value is due to the existence of a first excited bound state with extremely small binding energy. By using the effective range
expansion, its binding energy was found to be B = (1.135 ± 0.035) × 10−9 a.u. that is ≈ 30 neV.

This state can be also viewed as the first excited vibrational level v = 1 of 2pσu symmetry in the H+
2 molecular ion.

A direct computation of this state using ad-hoc variational techniques [30] confirmed its existence and provided a more
accurate value of the binding energy B = 1.085045 × 10−9 [31]. Further work showed that it is stable with respect to the
relativistic and leading order QED corrections. Taking them into account, its binding energy is only slightly modified and
becomes B = 1.082247 × 10−9 [32].

It is worth mentioning that this H+
2 first excited antisymmetric state exists also in the so-called Landau p–H poten-

tial [34]. The latter consists in adding to the polarization term (14) a repulsive one due to the Pauli principle between
protons in the spin triplet state and reads (in atomic units)

V L(x) = η
2x

ex+1
− αd

2x4
(15)

The total potential V L is regularized to a constant below xc = 2.5. In its original formulation (η = 1) it entails an excited
S-wave state, although with binding energy two order of magnitude smaller than the exact three-body value and a p–H
scattering length consequently larger.

To our knowledge the H+
2 first vibrational 2pσu state above described constitutes the most weakly bound natural

molecule ever predicted.1 A direct computation provides a root mean squared radius R = 270 a.u. and its wavefunction
has still sizeable values well beyond 1000 a.u. That makes the state extremely unstable against any kind of perturbation.

1 It is, however, possible to prepare arbitrarily weakly bound systems suitably adjusting external magnetic fields, like for instance in [33].
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Fig. 7. e±–H scattering cross section below H(n = 2) threshold: calculated values are compared with experimental ones [35].

Fig. 8. A zoom in the resonance region of e±–H scattering close to H(n = 2) threshold.

The low energy p–H scattering will be however totally dominated by the existence of this nearthreshold state. Correspond-
ing S-wave elastic p–H cross section is shown in Fig. 6. The Faddeev results (filled squares) are compared to those (solid
line) obtained with the Landau potential (15), whose parameter was adjusted to η = 0.9254 in order to reproduce the exact
3-body binding energy. The huge values of the cross section are a consequence of the large triplet scattering length at . No-
tice that the resonant region is however limited to E < 10−7 a.u. Below this energy range, a proton approaching a hydrogen
atom will feel an object of nanoscopic size.

Electron and positron scattering on hydrogen atoms in their ground state presents one of the rare three charge structures
for which experimental data are available. In Fig. 7 we compare our calculated total scattering cross sections with the
measured ones [35], for e± energies below H(n = 2) threshold (E2 ≈ 10.2 eV). One may see an excellent agreement between
measured and calculated values. The only exception is in the e+–H scattering at very low energies (E ≈ 1 eV), where the
experimental result has a big error bar, probably due to the strong positron annihilation probability.

We have displayed in Fig. 8 a zoom of the resonance region, close to the H(n = 2) threshold. One may identify three
well-known narrow resonances in e−–H system, which are also confirmed experimentally [36–38]. One S-wave resonance
is visible in e+–H system.

If the incoming particle is heavier than the proton, e.g. X+ = d, the rearrangement process

X + (
e−p

) → p + (
e− X+)

is kinematically open and even at zero kinetic energy we are left with a two channel problem. By increasing the scattering
energy, the number of open 1 + 2 channels before the 3-body breakup threshold becomes infinite.

The situation is even more interesting in the case of an incoming negatively charged X− which presents even at zero
incoming energy a large numbers of open channel corresponding to Coulomb (X−, p) ground and excited states (see Fig. 4).
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All of them provide a very rich variety of phenomena, most of them remaining unexplored both from the theoretical as well
as from the experimental point of view.

4. Cold molecules

An important simplification of the Faddeev equations may take place if one considers a system of identical particles. In
this case, the three Faddeev equations, as well as the corresponding components, become identical and therefore the full
solution of the problem is obtained by solving only one of them. Such symmetrized equation may be applied to study a
system of identical bosons. This is the simplest few-body problem, nevertheless revealing genuine peculiarities of quantum
many-body systems.

Two of the striking phenomena manifested in few-body physics are the Thomas collapse [39] and the so-called Efimov
states [40,41].

The first of these two effects, the Thomas collapse, attests that an N > 2 boson system will shrink into a state with an
infinite binding energy, if the pairwise particle interaction is attractive and of zero-range.

The second phenomenon, i.e. Efimov states, manifests in a series of weakly bound three-body states, which move below
the two-body threshold by slightly increasing the two-body attractive interaction. These states can appear in a realistic
physical system with finite range interaction, if one of its two-body subsystems is S-wave resonant, i.e. when the two-body
scattering length (a0) turns to be much larger than the interaction range (r0). The interest in Efimov states has been fueled
lately by the important progress of experimental low temperature physics and particularly by the recent discovery of an
Efimov state in caesium atoms [42] and the subsequent, even more conclusive, experimental works of Refs. [43–46].

Efimov physics involves systems having largely separated length (or momenta) scales and therefore turns to be a natural
laboratory to test Effective field theories (EFT). To analyze Efimov states it is then natural to introduce EFT expansions in
terms of two small dimensionless parameters r0/a0 and kr0, k being a characteristic center-of-mass (c.m.) momenta.

It is a common believe that, at the leading order of EFT, all the low-energy properties of a three-boson system are
set by two parameters: one two-body parameter – like two-boson (dimer) binding energy or scattering length – and one
three-body parameter – like three-boson (trimer) binding energy or particle-dimer scattering length [47,48]. This means that
whenever in a three-body system the particle interdistance R satisfies the Efimov condition, r0 	 R 	 |a0|, its low-energy
properties must be interaction independent and be governed by the only two low energy aforementioned parameters.

More recently, it has even been demonstrated that the properties of the four-boson system (tetramer) are determined
by the same two parameters and no additional four-body scale is required to establish universal relations between three-
and four-boson observables [49,50]. These universality studies have been also extended to fermionic three- and four-body
systems, recovering series of phenomenologically observed correlation rules in multi-particle system [51]. Most of these
relations have been derived relying on purely attractive (and often contact) two-particle interactions, while N > 2 systems
are balanced by introducing repulsive three-particle force to prevent Thomas collapse.

We present in this section a slightly different quantum-mechanical approach, based on a family of short range separable,
rank-1 and rank-2, interactions having the same two-boson scattering length.

These potentials have been derived somehow mimicking interaction between 4He atoms, i.e., choosing the boson mass
h̄2/m = 12.12 K Å2 and fixing the two-boson scattering length to a0 = 104.0 Å. Nevertheless one cannot pretend with these
results a realistic description of 4He multimers, since these separable potentials do not retain well-known properties of the
effective interaction of two inert neutral atoms, like strong repulsion at the origin and weak Van der Walls attraction in the
asymptote.

The family of two-boson separable (and thereby nonlocal) potentials we use have the form:

v =
nr∑
i j

|gi〉λi j〈g j| (16)

where nr is the rank of the considered potential. For simplicity, these potentials are restricted to S-wave only. In close
analogy with most of the EFT potentials [49], the form factors |gi〉 are chosen as Gaussian. In the configuration-space they
are given by

〈r|gi〉 = (Λi/
√

2)3e−(Λi r/2)2
(17)

The rank-1 potential is defined by two parameters: λ11 and Λ1. To preserve the two-body scattering length at a0 =
104.0 Å, these two parameters must satisfy λ11 = [πm(1/a0 − Λ1/

√
2π)/2]−1.

The rank-2 potential is obtained by choosing Λ j = jΛ with Λ in the range [0.133,0.305] Å−1, i.e. 13.8 < a0Λ < 31.7,
and determining the remaining three strength parameters λi j (we assume λ12 = λ21) by a fit of the calculated observables
(with a typical four digit accuracy): dimer binding energy B2 = 1.318 mK, scattering length a0 = 104.0 Å and two-particle
scattering phase-shifts up to about 50B2 c.m. energy. The broad scattering energy interval included in the fit, roughly
corresponding to the natural energy scale h̄2/mr2

0 [49], guarantees that in the effective range expansion not only k2 but
also higher order terms are well retained. Note that the phase-shift set we have used to fix the parameters of the rank-2
potential differs from the one obtained by realistic interaction (for instance our effective range r0 = 15.0 Å is about two
times larger).
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Fig. 9. Evolution of the three- and four-boson binding energies with the Gaussian cutoff Λ.

Fig. 10. (Color online.) Correlation between ground state binding energies of trimer and tetramer.

The dependence of the binding energies of L = 0+ three- and four-boson states as a function of the Gaussian cut-off Λ2

is displayed in Fig. 9 for both rank-1 and rank-2 potentials. By binding energy Bn of a n-particle multimer we denote the
difference between the sum of the n free constituent particles masses and the total multimer mass.

The rank-1 results are consistent with the EFT predictions, based on contact 2- and 3-body interactions. There exist two
trimers, the ground state which is strongly bound (its binding energy exceeds the dimer one by more than a factor 10),
and the first excitation which remains close to the threshold. There are also two tetramers, the ground state being strongly
bound relative to trimer one and the excited tetramer which consist in one boson weakly attached to the trimer ground
state. The binding energies of these trimers and tetramers reveal almost a linear correlation pattern for rank-1 potential, see
Fig. 10, and are in agreement with the EFT results of Ref. [51].

The situation is much more complicated when using the rank-2 potential. The binding energies B(n)
N /B2 are slowly

decreasing functions of the cut-off Λ in the range a0Λ < 26.0. In this region, all potentials support one ground and one
excited state for the trimer as well as for the tetramer, in agreement with the EFT approach. Moreover the trimer and
tetramer binding energies follow closely the correlation curves of rank-1 values. However, for larger Λ values, the rank-2
potential results show a nontrivial behavior despite the fact that all the potential parameters λi j depend smoothly on Λ.

First, at a0Λ = 26.5, the binding energy of the excited tetramer B(1)
4 detaches from B(0)

3 . It increases drastically and

stabilizes for a moment when it almost attains the tetramer ground state binding energy B(0)
4 that, with a tiny delay, also

starts to increase rapidly. At the same time, close to a0Λ = 26.75, the second excited tetramer state appears with a binding
energy B(2)

4 only slightly larger than B(0)
3 . In this region of harsh tetramer variations, the trimer properties remain practically

unchanged.
The trimers exhibit qualitatively similar behavior, although at larger Λ values, around a0Λ = 27.5. The binding energies

of the trimer ground and first excited state, B(0)
3 and B(1)

3 , start to grow very rapidly; the former increases much like

2 One should notice that the described potentials do not support L 
= 0+ rotational states, neither for trimers nor for tetramers.
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B(0)
4 did while the latter stabilizes for a while. As B(0)

3 increases, the second excited tetramer state disappears below the
ground trimer threshold at a0Λ = 28.14, whereas the first excited tetramer stalls for a while letting the trimer threshold
B(0)

3 to approach again. Furthermore, at a0Λ = 28.12 the second excited trimer state appears. Unlike the strongly bound
trimers, this state behaves like an Efimov one, i.e., it slides under the dimer threshold if the two-boson interaction is made
stronger. The second excited trimer loses that property above a0Λ = 30.7 where its binding energy B(2)

3 , much like B(1)
3

at a0Λ = 27.5, starts a phase of a rapid increase. However, the Efimov property is recovered by the third excited trimer,
appearing at a0Λ = 31.7. It is interesting to note that the second excited tetramer shows a similar behavior, i.e. it also
disappears if the two-boson interaction is made stronger.

While rank-2 potential results seems to be rather confusing, the explanation of such a nontrivial behavior of a few-boson
system is rather simple. For this aim one should simply understand the Λ-evolution of the nonlocal interaction. The shape
of nr = 1 potential is very simple, and can be represented by a single attractive bell-shape well in (r, r′) plane, the width of
the bell being constrained by the size of the cutoff Λ. For small Λ values, the nr = 2 potential has also single and rather flat
attractive plateau in the (r, r′) plane. However for larger Λ values, this plateau splits into a rather complicated saddle-like
surface with two asymmetric attractive regions separated by two symmetric repulsive regions. A narrow attractive region
is formed at the origin and it deepens when increasing Λ, whereas the second, distant, attractive region is much wider
and flatter. Due to the large kinetic energies required to squeeze the particles into the narrow region at the origin, it is
energetically preferable for the multi-boson system to stay in the distant attractive plateau. At this moment, the nr = 2
potential presents qualitatively the same features as nr = 1, having a single attractive region. However, for some values close
to a0Λ = 26.0, the attractive region at the origin becomes deep enough to accommodate the four-boson system, and some
kind of a phase transition occurs. The trimer has only three pair interactions compared to six for the tetramer. Therefore the
corresponding phase transition in the three-boson system takes place at larger Λ values, when the attractive region near
the origin is even more deepened.

One can probably question the reality of such “exotic” nonlocal potentials with several attractive regions. Nevertheless,
one must admit that some realistic nucleon–nucleon potentials [52,53] have even more complex structure than the one
exhibited in our model. The effective interaction between two complex molecules can, however, reveal an even much more
complicated pattern.

The presence of finite range (r0 > 0) interactions does not guarantee that the Thomas-like collapse will not occur in
multi-boson system. The interaction can have a short-range or an off-shell structure that may be ignored with the low-
energy probe. Such a structure can have no or little effect for low-energy observables of an N particles system, but may be
exploited in the N + 1 particle one which, having more interacting pairs, can compensate larger kinetic energies and thus
regroup itself into a shorter range domain. This fact complicates the possibility to make universal predictions about multi-
particle system, in particular about its deeper lying states, based only on the low energy properties of its subsystems, unless
one is sure that the eventual size of the few-body system satisfies the Efimov condition R � r0. Of course, this condition is
never satisfied a priori, although one may expect that it must be valid for higher order excited states [54].

5. 4He multimers

In this section we turn our attention to a realistic description of small structures of 4He atoms. The two electrons of the
He atom close the 1s shell, determining its spherical symmetry as well as its inert chemical properties. Two He atoms repel
strongly when approaching to each other, but a very weak Van der Vaals attraction is exhibited at large distance, resulting
in a shallow attractive pocket with a maximal depth of ≈ 10.9 K, centered at RHe–He ≈ 3 Å.

This weak attraction is responsible for the fact that at very low temperatures both bosonic 4He but also fermionic 3He
become liquid. It is also responsible for the existence of a loosely bound 4He dimer, with binding energies of B ≈ 1 mK and
sizeable 4He–4He scattering length a0 ≈ 100 Å, which has been experimentally observed few years ago [55,56].

When trying to study theoretically N > 2 4He clusters, one is faced to a serious theoretical problem. The standard
boundary conditions in the Dirichlet form (8), which imposes to the FY components to vanish at the origin, turns to be
impractical when considering structures of He atoms. The strong hard-core repulsion describing the inner part of the He–
He potential, which dominates the interaction between two He atoms at relative distance RHe–He ≈ 2 Å, introduce severe
numerical complications. The relevant attractive matrix elements which are responsible for the binding fade away in front
of these huge repulsive hard-core terms, thus causing numerical instabilities. On the other hand, such strong repulsion close
to the origin physically, simply reflects the fact that the two He atoms cannot get close to each other, i.e. closer than some
relative distance r = c inside the core.

The wave function of three He atom system, for instance, should vanish in the region of three-particle space R
6, which

is the interior of the three multidimensional surfaces xi = c, where xi is the distance between the particle j and k defined
in (1). Therefore one way to attain numerical stability would be to neglect the solution in the strong repulsion region. In
practice, as it has been shown by Motovilov and Merkuriev [57], the presence of infinitely repulsive interaction at xi < c,
can be formulated in terms of boundary conditions for the Faddeev components, which are implemented by setting:[

E − H0 − V (xi)
]
Φi(�xi, �yi) = 0 for xi < c

Φi(�xi, �yi) = 0 for xi = c (18)
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Table 1
Predictions for the 4He multimer properties. Binding energies (in mK) and scattering lengths (in Å) obtained using realistic LM2M2 interaction and rank-1
separable model of Section 4.

Pot. B(0)
3 B(1)

3 B(0)
4 B(1)

4 –B(0)
3 a{2−1}

0 a{3−1}
0

LM2M2 126.39 2.2680 557.7 1.087 115.56 103.7
rank-1 126.39 2.2758 597.9 3.16 114.77 67.38

A similar approach may be applied also to condition Faddeev–Yakubovsky equations for four-body system, see [57].
We compare in Table 1 the calculated properties of three and four 4He atom structures. The binding energies of the

ground and excited states (in mK) together with atom–dimer and atom–trimer scattering lengths (in Å) are listed. The
realistic model is based on the interaction between two He atoms developed by Aziz and Slaman [58], popularly referred
to as LM2M2 potential. These realistic calculations are compared to the values obtained using the rank-1 potential from
the previous section, whose parameters (λ,Λ) have been adjusted in order to reproduce the dimer and ground state trimer
binding energies obtained with the LM2M2 potential. One may see that the rank-1 approximation reproduces well the
excited trimer binding energy B(1)

3 and the atom–dimer scattering length a{2−1}
0 . However the description of the four-atom

system deteriorates considerably. Probably the main reason is the difference of the off-energy shell properties between these
two interaction models: a purely attractive rank-1 potential and the LM2M2 one containing a strong hard-core region. The
four-boson system, being a more compact structure, test more strongly the hard-core region than the three-body one, which
is also reflected by the fact that the rank-1 potential provides more binding than the LM2M2 one.

It is worth mentioning that a direct calculation of the 4He tetramer excited state still represents a challenging numerical
task. This state is very weakly bound and its wave function extend over several hundreds of Å. One is therefore forced to
use a very large and dense grid, ensuring at the same time enough accuracy to trace the small binding energy difference
with respect to the trimer ground state. Nevertheless the vicinity of the tetramers excited state to the 4He–4He3 continuum
makes possible the extraction of its binding energy from the low-energy scattering results as explained in [12].

6. Conclusion

The Faddeev–Yakubovsky equations provide a rigorous quantum mechanical formulation of the non-relativistic few parti-
cle problem, taking into account all the possible asymptotic states of the system. First formulated in momentum space and
for short range pairwise interactions, they have been generalized to accommodate three-body forces as well as long range
Coulomb potentials.

Aside from its well defined mathematical structure, the Faddeev–Yakubovsky formalism turned to be very useful in
numerical calculations. A large variety of problems in hadronic, nuclear, atomic and molecular physics have been solved
since its appearance. Still limited to N = 3 and 4 systems, they can be in principle extended to an arbitrary number of
particles. They provide very accurate results for the bound state problems but the genuine feature of this formalism lies on
its ability to treat scattering and bound states on the same footing, thus enabling a complete and consistent analysis of the
few-body system under consideration.

The configuration space formulation of Faddeev–Yakubovsky equations, made possible once the boundary conditions are
well established, is the best adapted to deal with atomic physics problems. Some selected examples of them have been
presented in this contribution covering aspects of cold atomic and molecular physics. We have considered the scattering of
positively charged particle on atomic hydrogen, systems of cold atomic molecules and bound and scattering states of 4He
atoms. In particular, we would like to emphasize the result concerning the p–H scattering: the huge scattering length in
the proton–proton spin triplet state at ≈ 750 atomic units.

Even by restricting ourselves to the 3- and 4-body cases, a large variety of unsolved problems remains to be considered.
Among them we would like to mention:

• The Coulomb reactions including break-up and/or many open channels, like those presented in Fig. 4.
• The many interesting antiproton physics processes, like p̄ + d, p̄H → e− + (p̄p)∗ , p̄ + (e+e−) → H̄ + e− .
• Four-body Coulomb problems, like first principle calculations of positron–positron scattering.
• Four-Body break-up reactions involving 1 + 2 + 1 and 1 + 1 + 1 + 1 particle channels.

They constitute altogether a very rich and challenging program for the coming years, both from the theoretical and experi-
mental physics points of view.
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