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We analyse the recent experiments investigating the low-energy physics of three lithium 6
atoms in three different internal states with resonant two-body scattering lengths. All
observed features are qualitatively consistent with the expected Efimov effect, i.e. the
effective universal three-body attraction that arises for large values of the scattering
lengths. However, we find that a quantitative description at negative energy requires non-
universal two- and three-body corrections due to presently unknown behaviour at short
distance. An attempt to implement these corrections is made through energy-dependent
parameters that are fitted to the experimental data.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous analysons les récentes expériences concernant la physique à basse énergie de
trois atomes de lithium 6 dans des états internes différents avec des longueurs de
diffusion résonantes. Toutes les observations s’expliquent qualitativement par l’effet
d’Efimov, c’est-à-dire l’attraction universelle effective à trois corps qui survient aux
grandes valeurs des longueurs de diffusion. En revanche, il apparaît qu’une compréhension
quantitative nécessite des corrections non-universelles à deux et trois corps provenant du
comportement inconnu à courte distance. Nous proposons d’implémenter ces corrections
par le biais de paramètres dépendant de l’énergie et ajustés à l’expérience.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In 1970, Vitaly Efimov predicted a peculiar effect [1], a universal effective attraction occurring between three quantum
particles with short-range interactions, whenever the two-body interactions are resonant, that is to say their respective
two-body scattering lengths are much larger than the typical short range of those interactions. Interestingly, this attraction
can bind the three particles to form trimers irrespective of the sign of the scattering lengths, i.e. whether the two-body
interaction supports a two-body bound state of similar energy or not. In particular, there is a domain of low energies
and large scattering lengths where the three-body physics is dominated by the Efimov attraction. Because this attraction
scales as the inverse square of the mean distance between the three particles, as does the kinetic energy, the physics in
that region is invariant under discrete scale transformations. As a result, for an infinite scattering length, an infinite set of
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trimers accumulate at zero-energy, and all these trimers in that region have the same structure described by only a few
parameters. For this reason, it is referred to as the (three-body) universal region [2].

Within the last year, the Efimov effect has received a wealth of experimental confirmations from the ultracold atom
community, for several kinds of atomic species [3–9]. Evidence of Efimov trimer states appeared as strong enhancement of
inelastic collisions due to the presence of an Efimov trimer just below the collisional threshold. These successes were made
possible thanks to the existence of magnetic-field induced Fano–Feshbach resonances [10], which enable experimentalists to
adjust the two-body scattering length to very large values. The case of lithium 6 atoms [3,6,7,12,13] is particularly striking
for several reasons. First of all, unlike the species used in other experiments, lithium 6 atoms are fermions. Since the Efimov
attraction does not occur for identical fermions because of the Pauli exclusion principle, they have to be prepared in three
distinguishable states 1, 2 and 3. As a result, unlike identical bosons, this system is described by three different scattering
lengths, and features three dimers with different binding energies. Fortunately there exists a Feshbach resonance for each
pair in the same range of magnetic field, enabling one to have large scattering lengths for all pairs at the same time and
the Efimov effect to manifest itself in various ways [11]. In that region, the atoms can pair to form three different kinds
of dimers (12), (23), and (31). This creates the possibility of chemical exchange reactions in the universal region, such as
(12) + 3 → (13) + 2 where the energies intersect [14]. Finally, because those dimers are comparatively stable, it is possible
to study the connection between dimers and trimers at negative energy. The three-component lithium 6 gas is the first
system where a dimer and an atom could be associated into one of the trimers, enabling direct trimer spectroscopy [15].

In this article, we examine in detail how to theoretically reproduce the experimental observations of the Efimov effect
in lithium 6. First, we describe the two-body physics, explaining how to model the Feshbach resonance occurring for each
pair of atoms. Then, we explain how to deal with the three-body problem, making use of some approximations. We finally
apply these models to analyse the experimental observations.

2. Two-body physics: the Feshbach resonances

A lithium 6 atom has a nuclear spin i = 1 and a valence electron spin s = 1/2, and their coupling leads to 6 different
hyperfine states in the electronic ground state. These states can be separated by applying a magnetic field, using the Zeeman
effect. They are labelled from 1 to 6 in order of increasing energy Ei=1,...,6. Since lithium 6 atoms are fermions, we consider
all the possible antisymmetrised pairs {i, j} of these states as a basis of diatomic channels. The interaction between two
atoms A and B depends on the arrangement of the total electronic spin �S = �sA + �sB into singlet (S = 0) or triplet (S = 1)
states. It can be written as:

V̂ (r) = V 0(r) P̂0 + V 1(r) P̂1 (1)

where r is the distance between the two atoms, P̂ S=0,1 are the projectors onto the singlet and triplet states, and V S=0,1(r)
are the respective singlet and triplet potentials. Because the interaction is non-diagonal in the diatomic channel basis, it
leads to a set of coupled Schrödinger equations describing the relative motion of a pair of atoms. As a result, a bare
scattering state in one channel can be coupled to a bare bound state in another channel. Since these states have different
magnetic moments, it is possible to change their energy difference by applying an external magnetic field. As these states get
closer in energy, the scattering length of the dressed states (solution of the full equations including the coupling) becomes
larger. At some point, it diverges and changes sign. That phenomenon is a so-called Fano–Feshbach resonance [10]. Thanks
to the existence of such resonances, it is possible to make the scattering lengths very large by controlling the magnetic field.

To quantify the effects of the resonances used in the lithium 6 experiments, we solved the coupled-channel equations
using singlet and triplet potentials for lithium. The potentials were obtained from the combination of ab-initio calculations
and adjustments to previous experimental data from Ref. [16], and are currently the most accurate potentials for lithium 6.
They were kindly provided to us by Paul S. Julienne and Eite Tiesinga. From the solutions, we extract important quantities

characterising the interaction. For scattering states of an atom pair {i, j} at some positive energy E = h̄2

m p2 (m is the mass
of lithium 6) just above the channel threshold Ei + E j , the component in the channel {i, j} (the so-called open channel) has
the following asymptotic form

ψ E
i j (�r) ∝ sin pr

pr
− aij(p)

cos pr

r
(2)

which defines the energy-dependent scattering length aij(p). This quantity is directly related to the more familiar scattering

amplitude f i j(p) = −1/(ip + 1/aij(p)). Similarly, for states of negative energy E = − h̄2

m κ2 below the channel threshold
(physical bound states as well as unphysical states), the asymptotic form becomes

ψ E
i j (�r) ∝ sinhκr

κr
− aij(iκ)

coshκr

r
(3)

which extends the definition of aij(p) to negative energy. The only physical states are the bound states which decay expo-
nentially at large distance. Therefore they must satisfy the condition

aij(iκ) = 1/κ

whose solutions κi j correspond to the discrete spectrum of binding energies Eij = h̄2κ2
i j .
m
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Fig. 1. Top panel: scattering lengths for each pair of atoms as a function of magnetic field. Bottom panel: two-body and three-body energy spectra, as a
function of magnetic field. The solid coloured curves correspond to the dimers’ energies, and the dashed coloured curves are their universal limit −h̄2/ma2

i j .

The dashed grey curves correspond to the trimers’ energies based on the universal theory (with |Λ| = 1.165ā−1). The orange curves correspond to the
single-channel contact model with both two-body and three-body non-universal corrections implemented through an energy dependence of aij and Λ. The
white areas are the universal regions where all scattering lengths are larger than 3ā and all energies are smaller than h̄2/m(3ā)2.

At low energy, the energy-dependent scattering length can be expanded as

1

aij(p)
= 1

aij
− 1

2
re,i j p2 + · · · (4)

from which we can extract the zero-energy scattering length aij and the effective range re,i j . Note that bound states with
small binding energies must satisfy the universal two-body property κi j ∼ 1/aij .

The various scattering lengths, effective ranges and binding energies of the last diatomic bound states are represented in
Figs. 1 and 2 as a function of magnetic field for the different atom pairs {1,2}, {2,3}, and {1,3} relevant to the experiments.
According to the universal two-body property κi j ∼ 1/aij , a bound state appears at each resonance point where the scatter-
ing length aij becomes infinite, and its binding energy increases as h̄2/ma2

i j on the side of positive values of the scattering
length. This universal binding energy, only valid for large positive scattering lengths, has been represented as dashed lines
in Fig. 1. By comparing the scattering lengths to the typical range of the potentials, the van der Waals length ā [10], and
the binding energies to the van der Waals energy h̄2/mā2, we can define two different universal regions A and B, which are
indicated in Fig. 1. For lithium 6, ā ≈ 1.5815 nm.

For convenience, in the rest of the article we will note a jk , κ jk , E jk , etc., as ai , κi , Ei where {i, j,k} = {1,2,3}.
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Fig. 2. Effective range of the interaction for each pair of atoms, as a function of magnetic field. Solid curves are calculated from our multichannel two-body
model. Dashed curves are obtained from two-channel model in Eq. (16).

3. Three-body physics: approximation schemes

It would be rather difficult to solve the problem of three atoms using the two-body coupled potentials described in
the previous section. Moreover, on top of these two-body interactions, there is also a three-body interaction which is
presently unknown. However, since we are considering the low-energy properties of the system, a precise knowledge of
those interactions and an exact solution of the three-body problem is not necessary. At low energy, the wave function
has a large de Broglie wavelength and is affected by the small-scale details of the interactions only through some phase
shifts which can be set by choosing appropriate boundary conditions at short distance [1]. Alternatively, one may replace
the interactions by pseudopotentials with the same low-energy effects (causing the same phase shifts), or construct a low-
energy effective field theory [17] with a few parameters (corresponding again to these phase shifts). All these approaches
are essentially equivalent, and are intended to simplify the problem by reducing the number of coordinates, and invoking
just a few parameters instead of the complicated knowledge of the two- and three-body interactions. Here we will use the
pseudopotential method. We will consider two different pseudopotentials: a single-channel contact pseudopotential, and a
two-channel separable pseudopotential of finite range.

3.1. Single-channel contact pseudopotential

Let us start by considering a single-channel pseudopotential as a substitute for the real interaction. The asymptotic
behaviour of the two-body scattering state in the open channel in Eqs. (2) and (3) can be reproduced by considering a non-

interacting wave ψ with energy h̄2 p2

m and imposing the Bethe–Peierls boundary condition ψ ∝r→0
1
r − 1

a(p)
, or equivalently

(rψ(r))′/(rψ(r))→r→0 −1/a(p) which fixes the logarithmic derivative of ψ at short distance r. This condition is equivalent
to a Fermi–Huang–Yang contact pseudopotential V̂ defined by:

〈�r|V̂ |ψ〉 = 4π h̄2a(p)

m
δ3(�r) ∂

∂r

(
rψ(�r)) with p2 = lim

r→0

−∇2
r ψ(r)

ψ(r)
(5)

By constructing such a pseudopotential V̂ i(�ri) for each pair of atoms { jk}, the three-body Schrödinger equation reads[
− h̄2

m

(
3

4
∇2

R + ∇2
r

)
− E + V̂ 1(�r1) + V̂ 2(�r2) + V̂ 3(�r3)

]
Ψ (�R,�r) = 0 (6)

where we have chosen a particular set of Jacobi coordinates (�R,�r) = (�R1,�r1) to represent the relative configuration of three
atoms in states 1, 2, and 3 – see Fig. 3. The pseudopotentials ensure that in all three Jacobi coordinate systems, the three-
body wavefunction Ψ should locally have the following form [18]:

Ψ (�Ri,�ri) =
ri→0

(
1

ri
− 1

ai(pi)

)
χi(�Ri) + O (ri), with p2

i = lim
ri→0

−∇2
�ri
Ψ

Ψ
= mE

h̄2
+ 3

4

∇2
�Ri
χi(�Ri)

χi(�Ri)
(7)

which is consistent with the Bethe–Peierls boundary condition for each pair of atoms. This introduces the three quantities
χi(�Ri). From Eq. (6), we obtain(

−3

4
∇2

R − ∇2
r − mE

h̄2

)
Ψ (�R,�r) = 4π

∑
i=1,2,3

χi(�Ri)δ
3(�ri) (8)

The solution of this equation in Fourier space is

Ψ̃ (�P , �p) = Ψ̃0(�P , �p) + 4π
3 P 2 + p2 − mE/h̄2 + iε

∑
χ̃i(�Pi) (9)
4 i=1,2,3
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Fig. 3. Jacobi coordinate systems (�Ri ,�ri ). In Fourier space, we have conjugate wave vectors (�Pi , �pi ).

where the term Ψ̃0 is a solution of the homogeneous (free) three-body equation. It physically corresponds to an incident

wave of 3 free atoms (2π)6δ3(�P − �P0)δ
3(�p − �p0) in the case of positive energy E = h̄2

m ( 3
4 P 2

0 + p2
0), or it must be taken to

be zero in the case of states with negative energy E , i.e. states Ψ with at least two bound atoms. From Eq. (9) and the
definition of χi , it follows that the χi must satisfy a set of 3 coupled equations known as the Skorniakov–Ter-Martirosian
equations [19],

( −1

ai(iγP )
+ γP

)
χ̃i(P ) − 1

π

Λ∫
0

dq
q

P
ln

P 2 + q2 + Pq − mE/h̄2

P 2 + q2 − Pq − mE/h̄2

(
χ̃ j(q) + χ̃k(q)

) =
∫

d3 �p
(2π)3

Ψ̃0(�P , �p) (10)

with the relative momentum γP =
√

3
4 P 2 − mE

h̄2 . The derivation is given in Appendix A. If we take the upper bound Λ of the

integral in the left-hand side of Eq. (10) to be infinite, the equations admit several solutions, as was noted by G.V. Skorniakov
and discussed by G.S. Danilov [20]. This is because the replacement of real interactions by two-body contact interactions is
in general not sufficient to have a well-defined three-body problem. In special situations of two-body interactions with a
large negative effective range, a unique solution is determined by the equations [18]. Otherwise, an extra boundary condition
on the wave function at very short distance where all three atoms are close to one another is necessary. Cutting off the
integral at some momentum Λ [21] precisely provides such a condition, as shown in Appendix B.

In his original papers, Vitaly Efimov considered an energy-independent scattering length a(p) = a. As we mentioned be-
fore, at the two-body level this approximation is valid only in the universal region of large scattering lengths (compared to
the range of the interactions). Hence, Eq. (10) with an energy-independent scattering length are equivalent to the universal
theory originally proposed by Vitaly Efimov to investigate the universal properties of three-body systems with large scatter-
ing lengths. Note that the energy-dependence of a(k) brings finite-range corrections to the universal theory, including the
effective range correction [22] as can be seen from Eq. (4).

3.2. Coupled-channel separable pseudopotential

Although the previous approach does take into account finite-range corrections, it may still look oversimplified because
it neglects the coupled-channel nature of the real atomic interactions near Feshbach resonances. To account for this, one
may substitute the real interaction by an effective two-channel interaction Û that reproduce most features of the original
Feshbach resonances [23,24]. It can be written as

Û = Ûo|o〉〈o| + Ûc|c〉〈c| + Ûoc|c〉〈o| + Ûco|o〉〈c| (11)

where |o〉 and |c〉 correspond to open and closed channels, respectively.
Let us first look at two atoms interacting with this effective potential. The two-body Hamiltonian is K̂ + Û , where K̂

is the relative kinetic energy. To model a resonance with a single bound state φ of energy Eb in the closed channel, we
take the closed-channel Hamiltonian K̂ + Ûc to be Eb|φ〉〈φ| and the channel-coupling term as Ûoc = Û †

co = W |φ〉〈φ|. A two-

body state |ψ〉 can be written as a superposition of open and closed-channel components |ψ〉 = ∫ d3 �p
(2π)3 A(�p)|�p〉|o〉+ B|φ〉|c〉,

where |�p〉 is the plane wave for two atoms with relative momentum �p, and the Schrödinger equation (K̂ + Û − E)|ψ〉 = 0
leads to:

(Eb − E)B + 2
∫

d3�q
(2π)3

A(�q)W φ∗(�q) = 0 (12)

(
h̄2k2

m
− E

)
A(�p) +

∫
d3�q

(2π)3
A(�q)Uo(�q, �p) + BW φ(�p) = 0 (13)

By assuming that the open-channel potential is separable [23–26], Uo(�q, �p) = 4π h̄2

m λφ∗(�q)φ(�p), we can group the last two
terms in the second equation, which greatly simplifies the problem. This arbitrary choice is permitted since the small-scale
details of the interaction are unimportant as long as they correctly reproduce the low-energy physics, as argued before. For
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the same reason, we can arbitrarily choose the functional form of φ(p). Following [23,24], we choose for convenience a

Gaussian form φ(p) = e− 1
2 (bp)2

with range b.

Eliminating B in Eq. (13) and solving at positive energy E = h̄2 p2
0

m , one obtains:

A(�p) = A0(�p) − T (p0, p)

h̄2 p2

m − E − iε
(14)

where A0(�p) = (2π)3δ3(�p − �p0) corresponds to an incident plane wave of momentum �p0, and we introduced the two-body
T -matrix element

T (p0, p) =
(

4π h̄2

m
λ − 2|Λ|2

Eb − E

)(∫
d3�q

(2π)3
φ∗(q)A(q)

)
φ(p) (15)

Solving for T (p0, p) self-consistently using the last two formulæ, we deduce that the scattering length a(p) =
−[( m

4π h̄2 T (p, p))−1 + ip]−1 takes the form [26]

a(p) =
{[(

λ − α

Eb − E

)−1

+ 1√
πb

]
e(pb)2 + pErfi(pb)

}−1

(16)

where α = m
2π h̄2 |Λ|2, and Erfi is a real function related to the standard error function Erf by Erfi(z) = Erf(iz)/i. By adjusting

the parameters λ, α, Eb and b, we can construct for each pair of atoms { j,k} a pseudopotential Û i which reproduces the
energy-dependent scattering length ai(p) of the real interaction.

We now consider three atoms 1, 2, 3 interacting through these pseudopotentials Û1, Û2 and Û3. The three-body wave
function can be written as:

|Ψ 〉 =
∫

d3 �P
(2π)3

d3 �p
(2π)3

A(�P , �p)| �P 〉1|�p〉23 +
∑

(i, j,k)=(1,2,3)

∫
d3 �P

(2π)3
Bi(�P )| �P 〉i|φ〉 jk (17)

where | �P 〉i is the plane wave with momentum �P for the relative motion between atom i and the centre of mass of the pair
of atoms j and k, |�p〉 jk is the plane wave of momentum �p for the relative motion between atoms j and k, and |φ〉 jk is the
closed-channel bound state for the pair of atoms j and k. Defining the quantity

β̃i(q) = −
(

λi − Λi

Ei + 3
4

h̄2 Q 2
k

m − E + iε

)∫
d3 �p

(2π)3
φ∗(pi)A(Q i, pi) (18)

we obtain an equation similar to Eq. (9) for the open-channel component A,

A(�P , �p) = A0(�P , �p) + 4π
3
4 P 2 + p2 − mE/h̄2 + iε

∑
i=1,2,3

β̃i(�Pi)φ(�pi) (19)

where A0 is an incident plane wave (2π)6δ3(�P − �P0)δ
3(�p − �p0) for positive energy E = h̄2

m ( 3
4 P 2

0 + p2
0), or zero for negative

energy. The β̃i then satisfy the generalised Skorniakov–Ter-Martirosian coupled equations,

∣∣φ(iγP )
∣∣2

( −1

ai(iγP )
+ γP

)
β̃i(P ) − 1

π

Λ∫
0

q2 dq

1∫
−1

du
φ∗(√q2 + P 2

4 + Pqu
)
φ
(√ q2

4 + P 2 + Pqu
)

P 2 + q2 − Pq − mE/h̄2

(
β̃ j(q) + β̃k(q)

)

=
∫

d3 �p
(2π)3

φ∗(�p)A0(�P , �p) (20)

Note that these equations are very similar to Eq. (10). In particular, all the two-body physics is contained in the energy-
dependent scattering length ai , except for the terms φ. When φ → 1, i.e. when the range b of the interaction goes to zero,
we formally retrieve the single-channel contact interaction equations (10). This indicates that apart from the terms φ there
is little difference between the two approaches. Here, the presence of φ with non-zero range b effectively cuts off the
integral at high momenta, so that we can safely take Λ → ∞. In fact, the range b of the pseudopotential plays the role of Λ

in Eq. (10), i.e. it characterises the three-body behaviour at short distance.
It might seem unreasonable to choose b, which is determined by the two-body interaction only, in order to characterise

a three-body property. In general, the short-range three-body behaviour should also depend on a three-body interaction
between the atoms. To be consistent, a three-body interaction should be added in the problem. Another approach, taken in
Ref. [24], is to regard b not as a parameter describing the real two-body interaction (for example its effective range), but as
a free two-body parameter that is adjusted to set the combined effects of the real two-body and three-body interactions.
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3.3. Models

To analyse the experimental results, we will consider three different three-body models:

• The universal model is given by Eq. (10) with energy-independent scattering lengths ai that are obtained from the two-
body calculation of Section 1, and Λ is a free parameter.

• The single-channel contact model is given by Eq. (10) with energy-dependent scattering lengths ai(p) given by Eq. (16),
where we set the parameters λi αi , Eb,i , and b so as to reproduce the two-body quantities calculated in Section 1,
namely ai , re,i and κi , as a function of magnetic field. The reason why we use this two-body model instead of the real
ai(p) is that it is numerically intractable to calculate the real ai(p) at negative energy due to the divergence of sinh and
cosh at large distance in Eq. (3). Nevertheless, this simple two-channel model should be very close to the real ai(p) in
the low-energy domain that we are interested in.

• The two-channel separable model is given by Eq. (20) with the scattering lengths ai(p) given again by Eq. (16).

4. Analysis of the experiments

There have been two sets of experiments. The first one [3,12,13] consisted in measuring the three-body recombination
rate in a gas of atoms equally distributed in the lowest three spin states. Three-body recombination is the process where
three colliding atoms recombine to form a combination of states with lower internal energy, such as a deep dimer and
a free atom. At the Feshbach resonance locations, the three-body recombination is strongly enhanced by the very large
scattering length. Away from these points, other peaks were found and attributed to recombination enhancement by the
presence of Efimov trimers at zero energy. Indeed, whenever a trimer state exists just below the collisional threshold of
three atoms, the three atoms resonate, which increases their probability to be close together and recombine. In the second
set of experiments [6,7], a gas of dimers and atoms was prepared, and inelastic collisions by relaxation to deeper dimer
states were observed. The relaxation rate was also found to be enhanced at two magnetic field values due to the presence
of two Efimov trimers just below the collision threshold. Recently, one of the two trimers’ energy was directly observed by
association spectroscopy [15,27]. These experiments thus provided some partial information about the spectrum of Efimov
trimers at both zero and negative energies. The general spectrum based on these results is given in Fig. 1.

4.1. Experiments at zero energy (three-body recombination)

When three atoms in different states collide and recombine, the density ni of atoms in each state i decreases according
to the rate equation:

ṅi = −Krecnin jnk (21)

where Krec is the recombination coefficient. By measuring the variation of the number of atoms, and taking into account
other kinds of loss, it is possible to extract the recombination coefficient. The clearest evidence of the enhancement of this
coefficient by the presence of an Efimov trimer at zero-energy is the peak found around 895 G by Williams et al. [3]. It is
indeed located in a region of very large scattering lengths where the universal theory should be valid

To calculate the recombination coefficient, we proceed as follows. We distinguish between two types of dimers: dimers
which are included in the theory (through the solutions of 1/a(iκ) = κ ), referred to as shallow dimers, and dimers which are
not included in the theory, referred to as deep dimers. Recombination to shallow dimer ( jk) appears in the three-body wave
function as an outgoing wave between dimer ( jk) and atom i. This means that χ̃i or β̃i can be written as:

χ̃i(P ) = √
Ni

4π Fi(P )

P 2 − Q 2
i − iε

, β̃i(P ) =
√

N ′
i

4π Fi(P )

P 2 − Q 2
i − iε

(22)

where Q i =
√

4
3 ( m

h̄2 E + κ2
i ) is the relative momentum between dimer ( jk) and atom i, and Ni = (

∫ d3 p
(2π)3 | 1

p2+κ2
i
|2)−1 = κi

2π

and N ′
i = (

∫ d3 p
(2π)3 | φ(p)

p2+κ2
i
|2)−1 Po are factors ensuring that the dimer wavefunction is properly normalised to unity, or the

probability Po to be in the open channel, respectively. The recombination coefficient K i
rec to shallow dimers ( jk) is then

obtained by calculating the flux of that outgoing wave [18,25]:

K i
rec = 3h

m
Q i

∣∣Fi(Q i)
∣∣2

(23)

Recombination to deep dimers occurs at distances on the order of the deep dimers’ size, typically given by the range of
the interactions. Therefore, the coefficient for recombination to deep dimers can be estimated by calculating the probability
of finding the three atoms within that range [28,29]:

K (deep)
rec = ξ

h̄

mR2
0

∫
√

4 R2+r2<R0

d3 �R d3�r∣∣Ψ (�R,�r)∣∣2
(24)
3
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Fig. 4. Recombination coefficient Krec as a function of magnetic field. The stars, dots and circles indicate the experimental measurements of Refs. [12,13],
and [3], respectively. Top panel: calculations from the universal model for |Λ| = 1.165ā−1 and η = 0.016. The insert shows results in universal region A
for |Λ| = 1.076ā−1 and η = 0.115. Bottom panel: calculations from the two-channel separable model for b = 1.31ā and ξ = 0.08. The insert shows results
in universal region A for b = 0.75ā and ξ = 0.5. In both panels, thick black curves show the total recombination coefficient, dashed grey curves show the
recombination coefficient to deep dimers, and coloured curves show the recombination to shallow dimers: (13) green, (23) blue, and (12) red.

The results are not very sensitive to the precise choice of the range R0, and the constant factor ξ is expected to be on the
order of unity. Typically, if R0 varies by 10%, the rate K (deep)

rec changes by 6%. As a typical size, we chose R0 = ā. The total
recombination coefficient is Krec = ∑

i K i
rec + K deep

rec . Alternatively, in the contact interaction model, one can set a complex
three-body parameter Λ = |Λ|eiη , where η > 0 phenomenologically reproduces short-distance losses due to recombination
to deep dimers. In that case, the total recombination coefficient at zero energy is given by (see Appendix C)

Krec = 4h

m
Im

∑
i

χ̃i(0) (25)

This method also has the advantage of taking into account the broadening effect of the loss strength η on the recombination
profile as a function of magnetic field. We checked that the two methods give similar results. The calculated recombination
coefficients for different models are represented in Fig. 4.

In the universal model, we have to adjust |Λ| to 1.165ā−1 and η to 0.016 (ξ ≈ 0.8) in order to reproduce the 895 G
peak. This peaks correspond to the appearance of an Efimov trimer at the three-body collisional threshold (zero energy) as
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represented in Fig. 1. Then we obtain the variation of the recombination coefficient around 895 G in the whole universal
region B, as first calculated by Eric Braaten et al. [30]. We extend the calculation to low magnetic field in universal region
A where earlier measurements of recombination were performed [12,13]. Interestingly, the same three-body parameter
roughly reproduces the variation of the recombination coefficient: a plateau with two peaks on both ends. However the
two peaks are not exactly at the right locations. This is not unexpected, since different universal regions separated by zero
crossings of the scattering lengths are known to have different three-body phases in general [31]. Changing the value of |Λ|
to 1.076ā−1, and η to 0.115 gives a fair agreement between the measured recombination and the universal model – see the
insert in the top panel of Fig. 4. Note that the two peaks correspond again to zero-energy crossings of a trimer in Fig. 1. This
was in fact the first indication of the underlying Efimov physics in lithium 6 [32–34]. However the calculated recombination
coefficient shows two marked peaks, while in the experimental data the left peak is much more pronounced than the right
one. Variations of the loss parameter η with magnetic field were subsequently proposed to improve the agreement of the
universal model with the data [35,36]. The reason is that in the universal model the least-bound dimers cease to exist at
low magnetic field because the scattering length becomes negative. Since in reality those dimers are still present, the loss
parameter η effectively accounts for transitions to these dimers. As their energy varies with magnetic field, it was inferred
that η should also change with magnetic field [36].

In the single-channel contact model and the two-channel separable model, the least-bound dimers are explicitly included
over the full range of magnetic field. For binding energies larger than the typical van der Waals energy associated with the
range the interaction, corresponding to magnetic field smaller than 600 G, their description becomes unrealistic. However
their energy remains accurate, and they still provide a simple model for the recombination mechanism. In the single-channel
contact model, we adjust |Λ| to 1.455ā−1 and η = 0.0033 (ξ ≈ 0.8) to reproduce the 895 G peak. Note that because the
scattering lengths are now energy-dependent, the values of |Λ| and η have been altered in order to obtain the same physical
situation. This is because the choice of the high-energy (i.e. short-distance) behaviour of the two-body interactions affects
the choice of the three-body phase. The calculated recombination rate in the universal region B is nearly identical to the
universal model. It is however numerically difficult to extend the calculation to the universal region A, presumably because
in that region the dimers’ binding momenta κi are close or even exceed the cutoff momentum Λ. This problem does not
occur for the two-channel separable model.

In the two-channel separable model, we first adjusted b to 1.31ā to match the effective range of the two-body inter-
action – see Fig. 2. Surprisingly, this choice perfectly reproduces the location of the peak at 895 G. Again, the results in
universal region B are very similar to those of the universal model. In universal region A, however, the results are different
and significantly off the observed peak locations. Changing b to 0.75ā (thus using a wrong effective range, while preserving
the correct scattering lengths and dimer binding energies) we can effectively change the three-body phase and get bet-
ter agreement – see bottom panel insert in Fig. 4. These numerical results also seem consistent with the semi-analytical
approach of Ref. [36] based on the universal theory and a magnetic-field-dependent η.

From all these results, we conclude that the three-body physics of lithium 6 at zero energy is essentially consistent with
the universal theory.

4.2. Experiments at negative energy

From the previous analysis, it is possible to predict the energy spectrum of trimers using the previously adjusted pa-
rameters. The spectrum based on the universal model, first predicted in Refs. [30,33,34], is shown in Fig. 1. In universal
region A, it predicts a trimer state which connects to no dimer but dissociates into three atoms at two magnetic field values
corresponding to the two three-body recombination peaks. In universal region B, it predicts the existence of two trimers
which connect to the dimer (23) at 598 G and 672 G. In fact, the first meeting point is outside the universal region where
the dimer binding energy clearly deviates from the universal formula h̄2/ma2. Therefore, it was expected in Ref. [30] to
be unreliable. On the other hand, the 672 G prediction is right in the universal region and was thought to be reliable. It
turns out that the dimer energy still has a small but appreciable deviation from universality at that magnetic field, due to
two-body finite-range corrections. However, computing the trimer energy with the single-channel contact or two-channel
separable model (both of which include those two-body finite range corrections) leads to a similar trimer energy curve
which again meets the dimer curve at around 672 G – see Fig. 5. In other words, the two-body finite range corrections shift
both the dimer and trimer energies, but do not modify the magnetic field of their meeting point.

4.2.1. Atom–dimer relaxation
To check those predictions, experimentalists prepared a mixture of dimers (23) and atoms 1, and observed the rate of

relaxation to deep dimers as atoms and dimers collide. The density n1 of atoms in state 1 therefore decreases according to
the rate equation:

ṅ1 = −Kreln1n23 (26)

where n23 is the density of dimers (23) and Krel is the relaxation coefficient. Calculating the relaxation coefficient from the
theory is similar to the case of the recombination coefficient. For the case of dimer (23) colliding with atom 1 at energy
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Fig. 5. Trimers and dimers connection regions. Left: ground-state Efimov trimer. Right: first excited-state Efimov trimer. Dimer curves are the same as in
Fig. 1. Trimer curves are obtained for different models: universal model (dashed grey), single-channel contact model (purple), two-channel separable model
(pink), and single-channel model with the energy-dependent parameter Λ given in Fig. 8 (orange). All models feature a zero-energy resonance at 895 G.

Fig. 6. Relaxation coefficient for dimer 23 colliding with atom 1 as a function of magnetic field. The grey and blue dots indicate the measurements
from Refs. [7] and [6]. Left: universal model with |Λ| = 1.165ā−1 and η = 0.016 – see similar calculations in Refs. [30,37]. Middle: contact model with
|Λ| = 1.455ā−1 and η = 0.0033. Right: contact model with the energy-dependent |Λ| of Fig. 8 and η = 0.0033 (dashed curves: η = 0.0400). Black curves
show the total relaxation coefficient, red curves show the relaxation to dimer 12, and grey curves show the relaxation to deep dimers. The horizontal line
indicates the unitarity limit given by the typical collisional energy (∼ 100 nK) in the experiments.

E − E12 = 3
4

h̄2 Q 2
1

m , the quantities χ̃i can be written as:

χi(P ) = √
Ni

(
δi1(2π)3δ3(�P − �Q 1) + 4π f i(P )

P 2 − Q 2
i − iε

)
(27)

corresponding to an incident wave and outgoing waves of amplitude f i(Q i) and momentum Q i =
√

4
3 ( m

h̄2 E + κ2
i ). The

relaxation coefficient K i �=1
rel to shallow dimers ( jk) is then obtained by calculating the flux of the corresponding outgoing

wave:

K i
rel = 4h

m
Q i

∣∣ f i(Q i)
∣∣2

(28)

and the total relaxation coefficient is

Krel = 4h

m

(
Im f1(Q 1) − Q 1

∣∣ f1(Q 1)
∣∣2)

(29)

Similarly to three-body recombination, whenever the magnetic field is close to the meeting point between a dimer and
trimer, a resonance occurs which strongly enhances the relaxation coefficient. Indeed, two peaks were observed near the
expected meeting points, at 602 G and 685 G [6,7] – see Fig. 6. However, the significant deviation of the second peak
location from the expected value 672 G is somewhat surprising. Indeed, we checked that if we change the three-body
parameter to obtain a peak at the measured 685 G, then the peak in the 3-recombination coefficient moves to 865 G, which
seems incompatible with the measured value of 895 G in Ref. [3].

Similar measurements of the relaxation coefficient involving a dimer (12) colliding with atom 3 [7] revealed some dips in
the relaxation coefficient at 610 G and 690 G – see Fig. 7. These dips are expected to result from two-pathway interferences
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Fig. 7. Relaxation coefficient for dimer 12 colliding with atom 3 as a function of magnetic field. The red dots show the results of the measurements from
Ref. [7]. The same conventions as in Fig. 6 are used.

Fig. 8. Energy dependence of the three-body parameter Λ (in units of ā−1) of the single-channel contact model adjusted to fit measured resonances. Each
dot corresponds to an adjustment to a peak or dip of the relaxation coefficient.

related to the Efimov physics of the system [11]. Actually only the first dip appears as a clear signature of such interference.
The second dip, as our calculations suggest, may be due to the combined effect of relaxation to shallow dimers and deep
dimers. While both the universal and single-channel contact models predict a dip at 600 G, the real dip is again shifted
away from the theoretical expectation.

Since all non-universal two-body corrections have been taken into account in the theoretical models, we concluded in
Ref. [6] that a non-universal three-body correction is also needed. In the contact model, non-universal two-body corrections
arise from the energy dependence of the scattering lengths ai(p). In the same fashion, we expect the three-body parame-
ter Λ to be energy-dependent in general. By adjusting the value of Λ(p) to fit each peak and dip locations we obtain some
insight on this energy dependence. The result is plotted in Fig. 8 and looks consistent with a smooth but non-linear vari-
ation with energy. By interpolating Λ(p) as a function of p, we can recalculate all previous curves and obtain reasonable
agreement with experimental data, see Figs. 1, 6, and 7. This adjusted non-universal three-body model predicts that the
ground-state Efimov trimer at large magnetic field is shifted by about 20 MHz from the universal prediction. Direct mea-
surement of that energy would clearly validate or invalidate our assumption of the energy dependence of the three-body
parameter Λ. The fact that the three-body parameter of an effective theory is energy-dependent to describe the ground-
state trimer is not surprising, since ground states of Efimov series are always non-universal. It is less obvious, however, why
it is also energy-dependent near the second trimer, which should be closer to universality.

4.2.2. Atom–dimer association spectroscopy
Very recently, the binding energy of the excited Efimov trimer was directly observed by association spectroscopy [15,27].

The experimentalists prepared a mixture of dimers and atoms, and applied a radio-frequency field to induce a transition
to the trimer state. The preliminary results [15] reported excellent agreement with our own theoretical prediction [6] of
the binding energy based on the single-channel contact model with the energy-dependent three-body parameter Λ(p) –
see Fig. 9. However, it turns out that the thermal shift of the association peaks is non-negligible in this experiment, and
was not taken into account in the reported measurements of the binding energies. Correcting for these shifts makes the
measurements deviate significantly from the original prediction. Worse still, to account for the deviation, the parameter
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Fig. 9. Direct measurements of the second trimer energy: dots correspond to measurements of Ref. [15], which were taken at about 1 μK, and squares show
the results of the measurements in Ref. [27] which were taken at lower temperature where thermal shifts are negligible. Using the same conventions as
Fig. 1, thick curves represent the dimer energies and the orange curve represents the trimer energy obtained from the single-channel contact model with
the energy-dependent three-body parameter shown in Fig. 8.

Λ(p) should be adjusted in a way which breaks its expected smooth variation with energy. This problem is the subject of a
separate study [27].

5. Conclusion

In this article we provided an overview of the various experimental results concerning the Efimov physics in a three-
component lithium 6 system. Using different theoretical models, we found that the Efimov features measured at nearly zero
energy are essentially consistent with the so-called Efimov scenario based on the universal theory developed in Vitaly Efi-
mov’s original papers. However, the features measured at negative energy, although qualitatively consistent with the Efimov
scenario, show some significant deviations from universal theory, as well as theories which fully take into account non-
universal two-body corrections. To account for this, we introduced phenomenological non-universal three-body corrections
through an energy dependence of the three-body parameter adjusted the experimental data. While most measurements can
be explained by this ad hoc parametrisation, it does not seem to be consistent with the very recent measurements of a
trimer’s binding energy, and further studies are needed to fully understand the physics at negative energy. The two-body
model which the present study is based on is thought to be very accurate. However, even minor inaccuracies at the two-
body level has been shown to be important in the three-body physics of other systems [38], and therefore deserve further
investigation in our system as well.

Appendix A

Here, we give the derivation of Eq. (10). From Eq. (9), we perform the inverse Fourier transformation with respect to the
second variable:

Ψ̃ (�P ,�r) = Ψ̃0(�P ,�r) +
[

e−γP |�r|

|�r| χ̃1(�P ) + 4π

∫
χ̃2(�P2) + χ̃3(�P3)

3
4 P 2 + p2 − mE/h̄2 + iε

ei�p·�r d3 �p
(2π)3

]
(30)

Then, applying the operator limr→0
∂
∂r (r·), and using the definition of χ̃1, we find:

− 1

a1(iγP )
χ̃1(�P ) = [

Ψ̃0(�P ,�r)]r→0 +
[
−γP χ̃1(�P ) + 4π

∫
χ̃2(�P2) + χ̃3(�P3)

3
4 P 2 + p2 − mE/h̄2 + iε

d3 �p
(2π)3

]
(31)

Using �P2 = − �P
2 − �p, and �P3 = − �P

2 + �p, we can change the integration variable to get

− 1

a1(iγP )
χ̃1(�P ) = [

Ψ̃0(�P ,�r)]r→0 +
[
−γP χ̃1(�P ) + 4π

∫
χ̃2(�q) + χ̃3(�q)

3
4 P 2 + (�q + �P

2 )2 − mE/h̄2 + iε

d3�q
(2π)3

]
(32)

(
γP − 1

a (iγ )

)
χ̃1(�P ) − 4π

∫
χ̃2(�q) + χ̃3(�q)

2 2 � 2

d3�q
(2π)3

= [
Ψ̃0(�P ,�r)]r→0 (33)
1 P P + q + P · �q − mE/h̄ + iε
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Assuming that χ̃i(�q) = χ̃i(q), and writing the integration element d3�q = q2 dq dϕ d(− cos θ), with �P · �q = Pq cos θ , we can
perform the integration over the angles ϕ and θ :(

γP − 1

a1(iγP )

)
χ̃1(P )

− 4π

8π3

∫ ( 2π∫
0

dϕ

)( 1∫
−1

d(− cos θ)

P 2 + q2 − Pq cos θ − mE/h̄2 + iε

)(
χ̃2(q) + χ̃3(q)

)
q2 dq = [

Ψ̃0(�P ,�r)]r→0 (34)

(
− 1

a1(iγP )
+ γP

)
χ̃1(P ) − 1

π

∫
1

Pq
ln

P 2 + q2 + Pq − mE/h̄2

P 2 + q2 − Pq − mE/h̄2

(
χ̃2(q) + χ̃3(q)

)
q2 dq = [

Ψ̃0(�P ,�r)]r→0 (35)

from which we obtain Eq. (10) after introducing a cutoff Λ to the integral.

Appendix B

Here we derive the connection between the upper bound Λ of the integral in Eq. (10) and the boundary condition at
short distance between the three particles. According to Danilov [20] and Minlos and Faddeev [39], the solutions χ̃i(�p) of
the original Skorniakov–Ter-Martirosian equations (without upper bound Λ) are superpositions of two linearly independent
solutions, which have the following asymptotic form:

χ̃i(�p) →
p→∞ A

sin(s0 ln p)

p2
+ B

cos(s0 ln p)

p2
∝ sin(s0 ln p

Λ0
)

p2
(36)

where s0 ≈ 1.00624 is a constant. Thus, some extra condition can determine one particular solution (up to normalisation)
by fixing the ratio B/A = tan(s0 ln Λ0). The quantity Λ0 is the three-body parameter of the original Efimov theory. It is set
by imposing a boundary condition on the wave function at short distance [1]. Alternatively, one can cut off the integral in
Eq. (10) at some high momentum Λ [21,30,32], and this imposes the condition that the remaining part of the integral be
zero:

∞∫
Λ

dq
q

P
ln

P 2 + q2 + Pq − mE/h̄2

P 2 + q2 − Pq − mE/h̄2

(
χ̃ j(q) + χ̃k(q)

) ≈
∞∫

Λ

4
sin(s0 ln k

Λ0
)

k2
dk = 0 (37)

This condition selects a particular solution. By evaluating the above integral, one obtains

4
s0 cos(s0 ln Λ

Λ0
) + sin(s0 ln Λ

Λ0
)

(Λ/Λ0)(1 + s2
0)

= 0 (38)

which gives an explicit relation between the three-body parameter Λ0 and the imposed cutoff Λ:

Λ0 = Λexp

(
arctan s0 + πn

s0

)
, with n integer. (39)

Appendix C

The expression for the total loss rate coefficient at zero energy, Eq. (25), can be seen as a consequence of the optical
theorem. Here we indicate a short derivation. We start from the wave function in Eq. (9) in space coordinates at zero energy

Ψ (�R,�r) = 1 +
∑

j

∫
d3 �P j

(2π)3

d3 �p j

(2π)3

4π
3
4 P 2

j + p2
j + iε

χ̃ j(�P j)ei �P j · �R j ei�p j ·�r j (40)

For large R j , i.e. when all three atoms are far from each other, it can be approximated as Ψ (�R,�r) = 1 + G0(�R,�r)∑
j χ̃ j(�0),

where

G0(�R,�r) =
∫

d3 �P j

(2π)3

d3 �p j

(2π)3

4π
3
4 P 2

j + p2
j + iε

ei �P j · �R j ei�p j ·�r j = 2
√

3

(3π/2)2

1

R4
(41)

and R =
√

r2 + 4
3 R2 is the hyper-radius of the system. Calculating the flux of probability current of the wave function

through a large hypersphere S , we obtain
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2h̄

m
Im

∫
S

Ψ ∗ �∇RΨ · d�S = 2h̄

m

(∫
S

�∇R G0 · d�S
)

Im
∑

i

χ̃i(0) (42)

= 2h̄

m

((√
3

2

)3 dG0

dR
2π3 R5

Γ [3]
)

Im
∑

i

χ̃i(0) (43)

= −4h

m
Im

∑
i

χ̃i(0) (44)

This incoming flux should balance the outgoing fluxes in other sectors where two atoms are recombined into a shallow
dimer [Eq. (23)], as well as the loss induced by the imaginary part of the three-body parameter Λ, which phenomenologi-
cally describes recombination to deep dimers. Therefore, Eq. (44) represents the total recombination coefficient Krec.
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