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Abstract

Time-reversal mirrors (TRMs) refocus an incident wavefield to the position of the original source regardless of the complexity
of the propagation medium. TRMs have now been implemented in a variety of physical scenarios from GHz microwaves to MHz
ultrasonics and to hundreds of Hz in ocean acoustics. Common to this broad range of scales is a remarkable robustness exemplified
by observations at all scales that the more complex the medium (random or chaotic), the sharper the focus. A TRM acts as an
antenna that uses complex environments to appear wider than it is, resulting for a broadband pulse, in a refocusing quality that does
not depend on the TRM aperture.

Moreover, when the complex environment is located in the near field of the source, time-reversal focusing opens completely new
approaches to super-resolution. We will show that, for a broadband source located inside a random metamaterial, a TRM located
in the far field radiated a time-reversed wave that interacts with the random medium to regenerate not only the propagating but also
the evanescent waves required to refocus below the diffraction limit. This focusing process is very different from that developed
with superlenses made of negative index material only valid for narrowband signals. We will emphasize the role of the frequency
diversity in time-reversal focusing. To cite this article: M. Fink et al., C. R. Physique 10 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Champs retournés temporellement et super-résolution. Les miroirs à retournement temporel (MRT) refocalisent une onde
incidente sur la position de la source initiale indépendamment de la complexité du milieu de propagation. Les MRTs ont maintenant
été mis en œuvre dans des situations physiques variées depuis les microondes GHz jusqu’aux ondes ultrasonores MHz en passant
par l’acoustique sous-marine à quelques centaines de Hz. Leur robustesse commune à toutes ces fréquences est illustrée par le fait
que pour toutes ces échelles plus le milieu est complexe (aléatoire ou chaotique) plus la focalisation est fine. Un MRT agit comme
une antenne qui utilise l’environnement complexe pour paraître plus large qu’elle ne l’est, de telle manière que, pour une impulsion
large bande, la finesse de la refocalisation ne dépende pas de l’ouverture du MRT.

De plus, lorsque l’environnement complexe se situe dans le champ proche de la source, la focalisation par retournement temporel
ouvre une toute nouvelle approche de la super-résolution. Nous verrons que pour une source large bande située dans un métama-
tériau aléatoire, un MRT situé en champ lointain rayonne un champ retourné temporellement qui interagit avec le milieu aléatoire
pour recréer non seulement les ondes propagatives mais aussi les ondes évanescentes nécessaires à la focalisation au-delà de la
limite de diffraction. Ce processus de focalisation est très différent de celui développé avec les super-lentilles faites de matériau
d’indice négatif, valable seulement pour des signaux à bande étroite. Nous soulignerons le rôle de la diversité fréquentielle dans le
retournement temporel. Pour citer cet article : M. Fink et al., C. R. Physique 10 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

Time-reversal invariance of the wave equation in acoustics and electromagnetisms allows one to build time-reversal
mirrors (TRMs) made of arrays of reversible antenna, allowing an incident broadband wavefield to be sampled,
recorded, time-reversed and re-emitted. TRMs refocus the incident wavefield to the position of the original source
regardless of the complexity of the propagation medium. The first TRMs have been developed in the field of acoustics
[1–3]. An acoustic source, located inside a lossless medium, radiates a brief transient pulse that propagates and is
potentially distorted by the medium. Time reversal of the acoustic field would entail the reversal, at some instant, of
every particle velocity in the medium. This kind of instantaneous time reversal in the whole volume is practically im-
possible to achieve. A more realistic alternative can be developed thanks to the Helmholtz–Kirchoff integral theorem.
The acoustic field radiated by a source could be measured on every point of an enclosing surface (acoustic retina),
and retransmitted in time-reversed order, then the wave will travel back to its source, see Fig. 1. Both time-reversal
invariance and spatial reciprocity [4] are required to reconstruct a time-reversed wave in the entire volume by means
of this two-dimensional time-reversal operation. From an experimental point of view a closed TRM consists of a
two-dimensional piezoelectric transducer array that samples the wavefield over a closed surface. An array pitch of
the order of λ/2 where λ is the smallest wavelength of the pressure field is needed to ensure the recording of all the
information on the wavefield. Each transducer is connected to its own electronic circuitry that consists of a receiving
amplifier, an A/D converter, a storage memory and a programmable transmitter able to synthesize a time-reversed
version of the stored signal.

In practice, closed TRMs are difficult to realize and the TR operation is usually performed on a limited angular
area, thus apparently limiting focusing quality. A TRM consists typically of a small number of elements or time-
reversal channels. The major interest of TRM, compared to classical focusing devices (lenses and beam forming) is
certainly the relation between the medium complexity and the size of the focal spot. A TRM acts as an antenna that
uses complex environments to appear wider than it is, resulting in a refocusing quality that does not depend on the
TRM aperture.

One spectacular result that is shown in this article deals with a complex environment located in the near field of the
source. Such an environment can be made, for example, of a random or periodic distribution of resonating scatterers
with a mean distance smaller than the wavelength. It will be shown that, for a broadband source located inside such
random metamaterials, a TRM located in the far field radiated a time-reversed wave that interacts with the random
medium to regenerate not only the propagating but also the evanescent waves required to refocus below the diffraction
limit. This focusing process is very different from that developed with superlenses made of negative index material
only valid for narrowband signals. We will emphasize the role of the frequency diversity in time-reversal focusing.

Fig. 1. (a) Recording step: A closed surface is filled with transducer elements. A point-like source generates a wavefront which is distorted by
heterogeneities. The distorted pressure field is recorded on the cavity elements. (b) Time-reversed or reconstruction step: The recorded signals are
time-reversed and reemitted by the cavity elements. The time-reversed pressure field back-propagates and refocuses exactly on the initial source.
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2. Time reversal of acoustics waves: basic principles

The basic theory employs a scalar wave formulation p(r, t) and, hence, is strictly applicable to acoustic or ultra-
sound propagations in fluids. However, the basic ingredients and conclusions apply equally well to elastic waves in
solids and to electromagnetic fields.

Let us consider the propagation of an acoustic wave in a heterogeneous and non-dissipative medium, whose com-
pressibility κ(r) and density ρ(r) vary in space. By introducing the sound speed c(r) = (ρ(r)κ(r))−1/2, one can
obtain the wave propagation equation for a given pressure field p(r, t):

�∇ ·
( �∇p(r, t)

ρ(r)

)
− 1

ρ(r)c(r)2

∂2p(r, t)
∂t2

= 0 (1)

One can notice the particular behaviour of this wave equation regarding the time variable t . Indeed, it only contains a
second-order time derivative operator. This property is the starting point of the time-reversal principle. A straightfor-
ward consequence of this property is that if p(r, t) is a solution of the wave equation, then p(r,−t) is also solution
of the problem. This property illustrates the invariance of the wave equation during a time-reversal operation, the so-
called time-reversal invariance. However, this property is only valid in a non-dissipative medium. If wave propagation
is affected by dissipation effects, odd order time derivatives appear in the wave equation and the time-reversal invari-
ance is lost. Nevertheless, one should note here that if the ultrasonic absorption coefficient is sufficiently small in the
frequency bandwidth of the ultrasonic waves used for the experiments, the time-reversal invariance remains valid.

In any propagation experiment, the acoustic sources and the boundary conditions determine a unique solution
p(r, t) in the fluid. The goal, in time-reversal experiments, is to modify the initial conditions in order to generate the
dual solution p(r, T − t) where T is a delay due to causality requirements. Cassereau and Fink [4] and Jackson and
Dowling [5] have studied theoretically the conditions necessary to insure the generation of p(r, T − t) in the entire
volume of interest.

2.1. An ideal time-reversal experiment

Although reversible acoustic retinas usually consist of discrete elements, it is convenient to examine the behaviour
of idealized continuous retinas, defined by two-dimensional surfaces. In the case of a time-reversal cavity, we assume
that the retina completely surrounds the source.

In a first step, let us consider a point-like source located at r0 inside a volume V surrounded by a surface S, emitting
a time modulation s(t). The inhomogeneous wave equation is given by

�∇ ·
( �∇p(r, t)

ρ

)
− 1

ρc2

∂2p(r, t)
∂t2

= −δ(r − r0)s(t) (2)

Note that contrary to Eq. (1), the right part of this equation describes the source term and this term may contain
spatial and time singularities. Considering, for example, an impulsive source s(t) = δ(t) at time 0, the causal solution
to Eq. (2) reduces to the retarded Green’s function Gret(r, r0; t) that takes into account the heterogeneities and the
boundaries of the medium. Note that to respect causality, only the causal Green’s function (retarded) that satisfies the
Sommerfeld radiation boundary condition at infinity is selected while the advanced Green’s function (the anti causal)
is neglected.

The initial goal of a perfect time-reversed experiment is to generate in the medium this advanced Green’s function
Gadv(r, r0; t) = Gret(r, r0;−t) by modifying the initial conditions on the boundaries of the experiment. This would be
an optimal way to obtain super-resolution in a focusing experiment, because the advanced Green’s function converges
towards a spatial singularity. In a more realistic way, taking into account any source modulation s(t) with a well
defined bandwidth, we are interested to generate in the volume of the experiment p(r,−t).

The so-called time-reversal cavity approach was developed, by using the fact that a wavefield at any location inside
a volume V (without source) can be predicted from the knowledge of both the field and its normal derivative on
the surrounding surface S. Therefore a time-reversal experiment can be conceived in the following way: During the
second step of the time-reversal process, the initial source at r0 is removed and we create on the surface of the cavity
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monopole and dipole sources that correspond to the time reversal of those same components measured during the first
step. The time-reversal operation is described by the transform t → −t and the secondary sources are{

ps(r, t) = G(r, r0;−t) ⊗ s(−t)

∂nps(r, t) = ∂nG(r, r0;−t) ⊗ s(−t)
(3)

where we use now and in the following the notation G(r, r0; t) instead of Gret(r, r0; t) and neglect the causal delay T

needed to record and reemit the signals.
Due to these secondary sources on S, the time-reversed pressure field ptr(r, t) propagates backwards inside the

cavity. It can be calculated using a modified version of the Helmholtz–Kirchhoff integral, valid inside a zone without
source:

ptr(r, t) =
+∞∫

−∞
dt ′

∫ ∫
S

[
G(r, r′; t − t ′)∂nps(r′, t ′) − ps(r′, t ′)∂nG(r, r′; t − t ′)

] d2r′

ρ(r′)
(4)

Instead of directly computing this integral, there is a straightforward way to predict the field ptr(r, t). Our initial goal
was to radiate inside the volume surrounded by surface S the field p(r,−t) = G(r, r0;−t)⊗ s(−t) with G(r, r0;−t)

the advanced Green’s function. However, the wave equation verified by p(r,−t) in the volume V can be obtained by
changing t in −t in Eq. (2)

�∇ ·
( �∇p(r,−t)

ρ

)
− 1

ρc2

∂2p(r,−t)

∂t2
= −δ(r − r0)s(−t) (5)

Therefore, to obtain a perfect time-reversal field would require also that the original active source that injected
energy into the system in the initial step be replaced by a sink (the time reversal of a source) that corresponds to
the right term of Eq. (4). This means that to achieve a perfect time reversal, both the source has to be transformed
into a sink, while the field and its normal derivative on surface S has also to be time-reversed (like in Eq. (4)). The
superposition of these two fields will give exactly p(r,−t). Therefore p(r,−t) is given by the following sum

p(r,−t) = ptr(r, t) + G(r, r0; t) ⊗ s(−t) (6)

For a source term with a Dirac excitation, we directly get for the time-reversed field:

ptr(r, t) = G(r, r0;−t) − G(r, r0; t) (7)

This important result is, in some way, disappointing because it means that reversing an acoustic field using a closed
TRM is not enough to radiate only the advanced wavefield. Complete time reversal requires not only to time-reverse
the source but the original source as well. Eq. (7) can be interpreted as the difference of advanced and retarded
waves centered on the initial source position. The converging wave (advanced) collapses at the origin and is followed
by a diverging (retarded) wave. Thus the time-reversed field observed as a function of time shows two wavefronts
of opposite sign. The wave re-emitted by the time-reversal cavity looks like a convergent wavefield during a given
period, but a wavefield which does not know how to stop. When the converging wavefield reaches the location of the
initial source location, it collapse and then continues its propagation as a diverging wavefield.

To achieve a perfect time reversal both the field on the surface of the cavity has to be time-reversed, and the source
has to be transformed into a sink [6,7]. In this manner one may achieve time-reversed focusing below the diffraction
limit. The role of the new source term −δ(r − r0)s(−t) in Eq. (5) is to transmit a diverging wave that exactly cancels
the outgoing spherical wave.

In a monochromatic approach, taking into account the evanescent wave concept, the necessity of replacing a source
by a sink in the complete time-reversed operation can be interpreted as follows. In the first step a point-like source
of size much smaller than a wavelength radiates a field that can be described as a superposition of homogeneous
plane waves propagating in the various directions k

⇀
and of decaying, non-propagating, evanescent plane waves [8].

The evanescent waves contain information on fine scale features of the source; they decay exponentially with distance
and do not contribute in the far field. If the TRM is located in the far field of the source, the time-reversed field
retransmitted by the mirror does not contain these evanescent components. The role of the sink is to radiate exactly,
with the good timing, the evanescent waves that have been lost during the first step. The resulting field contains the
evanescent part that is needed to focus below diffraction limits. Time reversal below the diffraction limit has been



M. Fink et al. / C. R. Physique 10 (2009) 447–463 451
experimentally demonstrated in acoustics, using an acoustic sink placed at the focal point. Focal spots of size λ/14
have been observed by de Rosny and Fink [6]. One drawback is the need to use an active source at the focusing point
to exactly cancel the usual diverging wave created during the focusing process.

2.2. Time reversal in free space

For example, in the case of a homogeneous medium, assuming that the retina does not perturb the field propagation
(free-space assumption), the free-space retarded Green’s function G0 reduces to a diverging spherical impulse wave
that depends only on r − r0 and propagates with a sound speed c. Thus, neglecting the causal time delay T , the
time-reversed field can be written as:

ptr(r, t) ≺
{

1

4π |r − r0|δ
(

t + |r − r0|
c

)
− 1

4π |r − r0|δ
(

t − |r − r0|
c

)}
⊗ s(−t) (8)

that reduces to the time derivative of the source modulation at the origin:

ptr(r = r0, t) = − 1

2πc
s′(−t) (9)

In the case of a narrowband excitation (monochromatic excitation of pulsation ω), the interference between the con-
verging and the diverging fields leads to the classical diffraction limits. Indeed, by calculating the Fourier transform
of Eq. (7) over the time variable t , we obtain

P̂tr(r,ω) = exp(−jk|r − r0|)
4π |r − r0| − exp(jk|r − r0|)

4π |r − r0| = −2j
sin(k|r − r0|)

4π |r − r0| = −2j Im Ĝ(r − r0,ω) (10)

where j2 = −1. The time-reversed field at initial source position is finite because it is the difference between a
converging and a diverging wave and not the sum (otherwise it will have a discontinuity there).

As a consequence, the time-reversed field is focused on the initial source position, with a focal spot size limited to
one half-wavelength π/k that corresponds to the standard formulation for the complex field modulus, where k is the
wavenumber and Ĝ(r − r0,ω) is the monochromatic Green’s function. The point spread function is proportional to
the imaginary part of the monochromatic Green’s function.

2.3. Time reversal through heterogeneous medium

In the case of a non-dissipative heterogeneous medium surrounding the source, a similar interpretation can be
given, but the retarded Green’s function Ĝ(r, r0;ω) is no longer dependent on r − r0, but is now a function separately
of both r and r0, taking into account, for example multiple scattering processes between heterogeneities

P̂tr(r,ω) =
∫ ∫
S

[
∂nĜ

∗(r′, r0;ω)Ĝ(r, r′;ω) − Ĝ∗(r′, r0;ω)∂nĜ(r, r′;ω)
] d2r′

ρ(r′)
= −2j Im Ĝ(r, r0;ω) (11)

Note that the field amplitude at the focal point is directly proportional to the LDOS, the so-called local density of
states that depends on the medium complexity around the source point. In the situation where the source is located
inside a periodic or random metamaterial with scatterers closed to the source, it can happen that the LDOS be zero
for some source position and therefore the time-reversed wave will have a node at the source point. However, for
broadband excitation, the resulting field take advantage of the frequency diversity.

For a broadband excitation s(t) the time-reversed field is given by:

ptr(r, t) = −2j

∫
Im Ĝ(r, r0;ω)S∗(ω) exp(jωt)dω (12)

where S(ω) is the Fourier transform of the source modulation. For an excitation with a flat bandwidth 
ω, the field at
the collapse time (t = 0) reads

ptr(r, t = 0) = −2j

∫
Im Ĝ(r, r0;ω)dω (13)

ω
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Therefore the time-reversed field at the focus (source point) and at the collapse time is given by

ptr(r = r0, t = 0) = −2j

∫

ω

Im Ĝ(r0, r0;ω)dω (14)

Thus, the time-reversed field at the source point and at the focal time is directly proportional to the number of modes
excited by the source.

2.4. An experimental point of view

From an experimental point of view, it is difficult to measure both the field and its normal derivative at any point of
surface S. Experiments are carried out with transducer arrays that behave either as monopolar or as dipolar transducers
and that spatially sample the receiving and emitting surface. Assuming that the time-reversal retina consists of discrete
elements located at position ri in the far field of the source, the observation points and the heterogeneities, a paraxial
approximation, allows one to replace the field normal derivative by time derivative and the integration over S in Eq. (4)
is replaced by summation over N surface element positions:

ptr(r, t) = C
∂

∂t

N∑
i=1

G(ri , r0;−t) ⊗ G(r, ri; t) (15)

where C is a scaling factor.

3. TRM in complex media

It is generally difficult to use acoustic arrays that completely surround the area of interest, so the closed cavity
is usually replaced by a TRM of finite angular aperture. This yields an increase of the point spread function that is
related to the limited angular size of the mirror observed from the source. In the standard theory of diffraction in
homogeneous free space, the point-spread function is related to the angular spectrum of the aperture. For a closed
time-reversal mirror, the �k vectors of the radiated field span the whole 4π solid angle and the focal spot dimension is
minimal (λ/2). When a TRM covers a limited solid angle, the spatial diversity of �k vectors that interact with the TRM
is reduced. Therefore the focal spot size is increased.

The main interest of focusing with TRM is that in media with complex structure the spatial diversity of the �k
vectors captured by a small TRM can be significantly increased. Wave propagation in media with complex boundaries
or random scattering medium can increase the apparent aperture of the TRM, resulting in a focal spot size smaller
than that predicted by classical formulas.

The basic idea is to replace one part of the transducers needed to sample a closed time-reversal surface by reflecting
boundaries that redirect one part of the incident wave towards the TRM aperture (see Fig. 2). When a source radiates a
wavefield inside a closed cavity or in a waveguide, multiple reflections along the medium boundaries can significantly
increase the apparent aperture of the TRM. Thus spatial information on the �k vectors that is usually lost with a finite
aperture TRM is converted into the time domain. The reversal quality then depends crucially on the duration of the
time-reversal window, i.e., the length of the recording that is reversed.

Such a concept is strongly related to a kaleidoscopic effect that appears thanks to the multiple reverberations on the
waveguide boundaries. Waves emitted by each transducer are multiply reflected, creating at each reflection ‘virtual’
transducers that can be observed from the desired focal point. Thus we create a large virtual array from a limited
number of transducers and a small number of transducers is multiplied to create a “kaleidoscopic” transducer array.
Two different examples will be presented (a chaotic cavity and a multiply scattering medium).

3.1. One-channel time reversal in chaotic cavities

In this paragraph, we are interested in multiply reflected waves: waves confined in closed reflecting cavities with
non-symmetrical geometry. With closed boundary conditions, no information can escape from the system and a re-
verberant acoustic field is created. If, moreover, the geometry of the cavity shows ergodic and mixing properties,
one may hope to collect all information at only one point. Ergodicity means that, due to the boundary geometry, any
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Fig. 2. One part of the transducers is replaced by reflecting boundaries. In (a) the wave radiated by the source is recorded by a set of transducers
through the reverberation inside the cavity. In (b), the recorded signals are time-reversed and reemitted by the transducers.

acoustic ray radiated by a point source and multiply reflected would pass every location in the cavity. Therefore, all
the information about the source can be redirected towards a single time-reversal transducer. This is the regime of
fully diffuse wavefields that can be also defined as in room acoustics as an uncorrelated and isotropic mix of plane
waves of all propagation directions [9,10]. Draeger and Fink [11–13] showed experimentally and theoretically that in
this particular case a time-reversal focusing with λ/2 spot can be obtained using only one TR channel operating in a
closed cavity.

The first experiments were made with elastic waves propagating in a 2-D cavity with negligible absorption. They
were carried out using guided elastic waves in a monocrystalline D-shaped silicon wafer known to have chaotic ray
trajectories. This property eliminates the effective regular gratings of the previous section. Silicon was selected also
for its weak absorption. Elastic waves in such a plate are akin to Lamb waves.

An aluminum cone coupled to a longitudinal transducer generated waves at one point of the cavity. A second
transducer was used as a receiver. The central frequency of the transducers was 1 MHz and their relative bandwidth
was 100% (
ω = 1 MHz). At this frequency, only three propagating modes are possible (one flexural, one quasi-
extensional, one quasi-shear). The source was considered point-like and isotropic because the cone tip is much smaller
than the central wavelength. A heterodyne laser interferometer measures the displacement field as a function of time
at different points on the cavity. Assuming that there is no mode conversion at the boundaries between the flexural
mode and other modes, we have only to deal with one field, the flexural-scalar field.

The experiment is a “two-step process” as described above: In the first step, one of the transducers, located at
point r0 (Fig. 3), transmits a short omnidirectional signal of duration 0.5 µs. Another transducer, located at rtrm,
observes a long random-looking signal that results from multiple reflections of along the boundaries of the cavity. It
continues for more than 50 ms corresponding to some hundred reflections at the boundaries. Then, a portion 
T of
the signal is selected, time-reversed and re-emitted by point rtrm. As the time-reversed wave is a flexural wave that
induces vertical displacements of the silicon surface, it can be observed using the optical interferometer that scan the
surface on different observation points r around point r0 (see Fig. 3).

For time-reversal windows of sufficiently long duration 
T , one observes both an impressive time recompression
at point r0 and a refocusing of the time-reversed wave around the origin (see Figs. 4a and 4b for 
T = 1 ms), with
a focal spot whose radial dimension is equal to half the wavelength of the flexural wave. Using reflections at the
boundaries, the time-reversed wavefield converges towards the origin from all directions and gives a circular spot,
like the one that could be obtained with a closed time-reversal cavity covered with transducers. A complete study of
the dependence of the spatio-temporal side lobes around the origin shows a major result (Draeger et al. [13]): a time
duration 
T of nearly 1 ms is enough to obtain a good focusing. For values of 
T larger than 1 ms, the sidelobes’
shape and the signal-to-noise ratio (focal peak/sidelobes) do not improve further. There is a saturation regime. Once
the saturation regime is reached, point rtrm will receive redundant information. The saturation regime is reached after
a time τHeisenberg called the Heisenberg time. It is the minimum time needed to resolve the eigenmodes in the cavity.
It can also be interpreted as the time it takes for all a single ray to reach the vicinity of any point in the cavity within
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Fig. 3. (a) Geometry of the chaotic cavity. (b) Time-reversal experiment conducted in a chaotic cavity with flexural waves. In a first step, a point
transducer located at point r0 transmits a 1 µs long signal. The signal is recorded at point rtrm by a second transducer. The signal spreads on more
than 30 ms due to reverberation. In the second step of the experiment, a 1 ms portion of the recorded signal is time-reversed and retransmitted back
in the cavity.

a distance λ/2. This guarantees enough interference between all the multiply reflected waves to build each of the
eigenmodes in the cavity. The mean distance δω between the eigenfrequencies is related to the Heisenberg time;
τHeisenberg = 1

δω
.

The success of this time-reversal experiment in a closed chaotic cavity is particularly interesting with respect to
two aspects. Firstly, it proves the feasibility of acoustic time reversal in cavities of complex geometry that give rise to
chaotic ray dynamics. Paradoxically, in the case of one-channel time reversal, chaotic dynamics is not only harmless
but even useful, as it guarantees ergodicity and mixing. Secondly, using a source of vanishing aperture, there is an
almost perfect focusing quality. The procedure approaches the performance of a closed TRM, which has an aperture
of 360◦. Hence, a one-point time reversal in a chaotic cavity produces better results than a limited aperture TRM in
an open system. Using reflections at the edge, focusing quality is not aperture limited; the time-reversed collapsing
wavefront approaches the focal spot from all directions.

Although one obtains excellent focusing, a one-channel time reversal is not perfect, as a weak noise level through-
out the system can be observed. There is a saturation regime beyond the Heisenberg time. Residual temporal and
spatial sidelobes persist even for time-reversal windows of duration larger than the Heisenberg time. They are due to
multiple reflections passing over the locations of the TR transducer and they have been expressed in closed form by
Draeger and Fink. Using an eigenmode analysis of the wavefield, they explain that, for long time-reversal windows,
there is a saturation regime that limits the signal-to-noise ratio (SNR). To evaluate the time-reversed field for the elas-
tic wave in the one-channel experiment we can use Eq. (15) with a TRM located at unique point rtrm and the vertical
component of the displacement field ϕtr(r, t) is given by (note that the time derivative of Eq. (15) has disappeared
because of the dimensionality of the displacement field)

ϕtr(r, t) ≺ G(rtrm, r0;−t) ⊗ G(r, rtrm; t) (16)
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Fig. 4. (a) Time-reversed signal observed at point r0. The observed signal is 210 µs long. (b) Time-reversed wavefield observed at different times
around point r0 on a square of 15 mm × 15 mm.

Taking into account the modal decomposition of the Green’s functions G(r, rtrm; t) and G(rtrm, r0;−t) on each of
the eigenmodes uj (r) of the cavity with eigenfrequency ωj , we get:

G(r, rtrm; t) =
∑
j

uj (r)uj (rtrm)
sin(ωj t)

ωj

(t > 0) (17)

Under the assumption that the eigenmodes are not degenerated (valid for a chaotic cavity), we calculate ϕtr(r, t) for a
time window of duration longer than the Heizenberg time of the cavity and we get

ϕtr(r, t) ∝
∑

i

1

ω2
i

ui(r)ui(r0)u
2
i (rtrm) cos(ωit) (18)

Note that at the focal time t = 0 (collapse) the directivity pattern of the time-reversed wavefield is

ϕtr(r, t) ≺
∑ 1

ω2
ui(r)ui(r0)u

2
i (rtrm) (19)
i i
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Note that in a real experiment one has to take into account the limited bandwidth of the source, so a spectral function
S(ω) centered on center frequency ωc, with bandwidth 
ω, must be introduced and we can write Eq. (19) in the form

ϕtr(r,0) =
∑

i

1

ω2
i

ui(r)ui(r0)u
2
i (rtrm)S(ωi) (20)

Thus the summation is limited to a finite number of modes, which is typical in our experiment of the order of some
hundreds. As we do not know the exact eigenmode distribution for each chaotic cavity, we cannot evaluate this
expression directly. However, due to the ergodic properties of the cavity one may use a statistical approach and
consider the average over different realizations, which consist in summing over different cavity realizations. So we
replace in Eq. (20) the eigenmodes product by their expectation values 〈. . .〉. We use also a qualitative argument
proposed by Berry [14,15] to characterize irregular modes in chaotic system. If chaotic rays support an irregular
mode, it can be considered as a superposition of a large number of plane waves with random direction and phase. This
implies that the amplitude of an eigenmode has a Gaussian distribution with 〈u2

i 〉 = σ 2 and a short-range isotropic
correlation function given by a Bessel function that reads:〈

ui(r)ui(r0)
〉 = J0

(
2π |r − r0|/λi

)
(21)

where λi is the wavelength corresponding to ωi . If r and r0 are sufficiently far apart from rtrm not to be correlated,
then 〈

ui(r)ui(r0)u
2
i (rtrm)

〉 = 〈
ui(r)ui(r0)

〉〈
u2

i (rtrm)
〉

(22)

One obtains finally:

〈
ϕtr(r,0)

〉 = ∑
i

1

ω2
i

J0
(
2π |r − r0|/λi

)
σ 2F(ωi) (23)

The experimental results obtained in Fig. 4a agree with this prediction and show that in a chaotic cavity the spatial
resolution is independent of the time-reversal mirror aperture. Indeed, with a one-channel time-reversal mirror, the
directivity patterns at t = 0 are closed to the Bessel function J0(2π |r− r0|/λc) corresponding to the central frequency
of the transducers. This means that the one-channel time-reversed field is a good estimate of the imaginary part of
the Green’s function (see Eq. (14)) that was predicted for a closed time-reversal cavity made of large number of
antenna.

One can also observe, in Fig. 4b, a very good estimate of the eigenmode correlation function experimentally
obtained with only one realization. A one-channel omnidirectional transducer is able to refocus a wave in a chaotic
cavity, and if the bandwidth is very large, we do not have to use a TRM made of many transducers.

The focusing process described here is very different from the focusing techniques used in the monochromatic
regime. Here, the frequency diversity is use to concentrate the wavefield at one time at one location. It is interesting
to compare this focusing approach for broadband signals with phase conjugation of monochromatic signal. Time re-
versal of p(r, t) is equivalent, for each spectral component P̂ (r,ω), to complex conjugation. For a single-frequency
signal, time reversal is equivalent to complex conjugation of complex amplitude. In a closed cavity, as above, if one
works only at a single frequency (say that of one of the eigenmodes ωi ), one constructs only the eigenmode pattern
corresponding to the selected frequency. The refocusing process discussed above works only with broadband pulses,
over a bandwidth that includes a large number of eigenmodes. Here, the averaging process that gives a good focusing
is obtained by a sum over the different modes in the cavity by assuming that in a chaotic cavity, we have a statistical
decorrelation of the different eigenmodes, the time-reversed field can be computed by adding the various frequency
components (each individual mode) and it can be represented as a sum of Fresnel vectors (Fig. 5). At the source posi-
tion, all these phase conjugated fields have a zero phase (this comes from the phase conjugation operation that exactly
compensates for the forward phase) and even if there is no amplitude focusing for each spectral contributions, there is
a constructive interference between all these fields at the focusing time as

∑
i |Ĝ(r0, rtrm;ωi)|2 where Ĝ(r0, rtrm;ω)

is the Fourier transform of G(r0, rtrm; t). Thus, the total field at the focusing time increases proportionally to the
number I of modes (or arrows). Outside the source position, at point r, we observe

∑
i Ĝ(r0, rtrm;ωi)Ĝ

∗(r, rtrm;ωi),
the contributions of each individual mode are decorrelated because there is no longer coherent phase compensation
and therefore the total length only increases as

√
I . On the whole, the focusing peak emerges at the focusing time

from the noise when the bandwidth is large enough to contain many different modes. Ideally, if we could indefinitely
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Fig. 5. Schematic representation of a broad-band time-reversal operation at the source (right part) and off the source (left part). Each arrow represents
a different Fresnel vector corresponding to a frequency component. At the source position, all the phases are set back to 0, the amplitude of the
resulting signal rises proportionally to the number of independent frequencies N . Outside the source, the different contributions are presumably
decorrelated, and the standard deviation of their sum rises as

√
N .

expand the bandwidth, the background level on the directivity patterns should decrease as 1/
√

I . As the number of
eigenfrequencies available in the transducer bandwidth increases, the refocusing quality becomes better and the focal
spot pattern becomes closed to the ideal Bessel function.

As a conclusion, it must be emphasized that in a closed cavity a one-channel time-reversal mirror can focus with
λ/2 resolution if the duration of the time-reversal window is greater or equal to the cavity’s Heisenberg time. Longer
time windows do not improve the focusing quality. However, a larger bandwidth 
ω reduces the side lobe levels as
1/

√

ω.

Time reversal in reverberant cavities at audible frequencies has been shown to be an efficient localizing technique
in solid objects. The idea consists in detecting acoustic waves in solid objects (for example, a table or a glass plate)
generated by a slight finger knock. As in a reverberating object, a one-channel TRM has the memory of many distinct
source locations, and the information location of an unknown source can then be extracted from a simulated time-
reversal experiment in a computer. Any action, turn on the light or a compact disk player, for example can be associated
with each source location. Thus, the system transforms solid objects into interactive interfaces. Compared to the
existing acoustic techniques, it presents the great advantage of being simple and easily applicable to inhomogeneous
objects whatever their shapes. The number of possible touch locations at the surface of objects is directly related to the
number of independent time-reversed focal spots that can be obtained. For example, a virtual keyboard can be drawn
on the surface of an object; the sound made by fingers when a text is captured, is used to localize impacts. Then, the
corresponding letters are displayed on a computer screen [16].

3.2. Time reversal in open systems: random media

The ability to focus with a one-channel time-reversal mirror is not only limited to experiments conducted inside
closed cavity. Similar results have also been observed in time-reversal experiments conducted in open random medium
with multiple scattering [17–19]. A. Derode et al. carried out the first experimental demonstration of the reversibility of
an acoustic wave propagating through a random collection of scatterers with strong multiple scattering contributions.
A multiple scattering sample is immersed between the source and a TRM array made of 128 elements. The scattering
medium consists of 2000 randomly distributed parallel steel rods (diameter 0.8 mm) arrayed over a region of thickness
L = 40 mm with average distance between rods 2.3 mm. The elastic mean free path in this sample was found to be
4 mm (see Fig. 6). A source 30 cm from the 128 elements TRM transmitted a short (1 µs) ultrasonic pulse (3 cycles
of 3.5 MHz, 
ω = 1 MHz).

Fig. 7a shows one part of the waveform received by one element of the TRM. It spread over more than 200 µs,
i.e. 200 times the initial pulse duration. After the arrival of a first wavefront corresponding to the ballistic wave,
a long diffuse wave is observed due to the multiple scattering. In the second step of the experiment, any number of
signals (between 1 and 128) is time-reversed and transmitted and a hydrophone measures the time-reversed wave in
the vicinity of the source. For a TRM of 128 elements, with a time-reversal window of 300 µs, the time-reversed
signal received on the source is represented in Fig. 7b: an impressive compression is observed, since the received
signal lasts about 1 µs, against over 300 µs for the scattered signals. The directivity pattern of the TR field is also
plotted in Fig. 8. It shows that the resolution (i.e. the beam width around the source) is significantly finer than it is in
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Fig. 6. Time-reversal focusing through a random medium. In the first step the source r0 transmits a short pulse that propagates through the rods. The
scattered waves are recorded on a 128-element array. In the second step, N elements of the array (0 < N < 128) retransmit the time-reversed signals
through the rods.The piezoelectric element located at r0 is now used as a detector, and measures the signal reconstructed at the source position. It
can also be translated along the x-axis while the same time-reversed signals are transmitted by the array, in order to measure the directivity pattern.

Fig. 7. Experimental results. (a) Signal transmitted through the sample (L = 40 mm) and recorded by the array element no. 64, and (b) signal
recreated at the source after time reversal.
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Fig. 8. Directivity pattern of the time-reversed waves around the source position, in water (thick line) and through the rods (thin line), with a
16-element aperture. The sample thickness is L = 40 mm. The −6 dB widths are 0.8 and 22 mm, respectively.

Fig. 9. Directivity pattern of the time-reversed waves around the source position through L = 40 mm, with N = 128 transducers (thin line) and
N = 1 transducer (thick line). The −6 dB resolutions are 0.84 and 0.9 mm, respectively.

the absence of scattering: the resolution is 30 times finer, and the background level is below −20 dB. Moreover, Fig. 9
shows that the resolution is independent of the array aperture: even with only one transducer doing the time-reversal
operation, the quality of focusing is quite good and the resolution remains approximately the same as with an aperture
128 times larger. This is clearly the same effect as observed with the closed cavity. High transverse spatial frequencies
of arbitrary k that would have been lost in a homogeneous medium are redirected by the scatterers towards the array.
Once again this result illustrates the difference between phase conjugation and time reversal. If the experiment had
been quasi-monochromatic and the single array element had simply phase conjugated one frequency component, the
conjugated wavefield would never have focused on the source position. Indeed, whatever its phase, there is no reason
for a monochromatic wave emanating from a point source to be focused in a particular place on the other side of a
random sample. The phase conjugated field at one frequency in the source plane is perfectly random and verifies the
classical speckle distribution.

As for a broadband signal in a closed cavity, an analysis similar to that of the last paragraph can be conducted in
order to predict the level of the side lobes around the focal peak. A modal decomposition of the field is not directly
applicable. However, if we keep in mind that the focusing with one channel occurs only for a broadband transducer,
we identify the number of uncorrelated spectral correlation length δω of the scattered waves. Then there are 
ω/δω

uncorrelated bits of spectral information in the frequency bandwidth, and the signal-to-noise is expected to vary
like

√

ω/δω. To evaluate the spectral correlation length, one can use the Wiener–Kinchin theorem [18] that gives
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the spectral correlation function (averaged over the frequency bandwidth) as the Fourier transform of the ‘time of
flight’ distribution. In a multiply scattering medium, in the diffusive approximation, it is well known that the typical
spreading time (the so-called Thouless time) is equal to τThouless = L2/D where D is a diffusion coefficient related
to the mean free path and L is the thickness sample. Therefore δω = D/L2, so the number of uncorrelated frequen-
cies grows with L2, provided we can neglect dissipation effects (τdissipat � τThouless) where τdissipat is the dissipative
time.

4. Focusing microwaves below the diffraction limit

Super-resolution can be achieved with an acoustic sink but it has a severe drawback. It needs to use an active
source at the focusing point to exactly cancel the usual diverging wave created during the focusing process. Since
we know that the time-reversal focusing spot at each frequency depends on the imaginary part of the Green function
for any heterogeneous medium, another approach consists in surrounding the focusing point by a microstructured
medium with length scales well below the wavelength; strong resonating scatterers were placed in the near-field of the
source. In this case, the microstructured medium strongly modifies the spatial dependence of the imaginary part of the
Green function that now oscillates on scales much smaller than the wavelength. For a broadband pulse with enough
frequency diversity, a time reversal will generate at the focal time an interference between the imaginary part of the
Green’s function at each frequency (see Eq. (13)). At the source point, the time-reversed field is directly proportional
to the number of modes excited inside the microstructure from the source. While at the other points, the oscillations
of the imaginary parts at different frequencies cancel their effects. To predict the behaviour of time reversal in such
medium, we have to know the field correlations. A wave propagating in any medium can be characterized by a spatial
correlation length and a spectral correlation length which have a pretty simple meaning. The spatial correlation length
of a medium represents, at a given frequency, the smallest distance between two points which exhibits statistically
different wavefields, while the spectral correlation frequency δω measures the minimal frequency change that leads to
independent wavefields. If the correlation length of the medium is much smaller than the wavelength, and if we use a
bandwidth that contains several spectral correlation lengths, one can achieve a focusing on a scale of the order of the
correlation length of the medium.

This is exactly the idea we exploit in the field of time reversal with microwaves [20] to create focal spots much
thinner than the wavelength. In a recent experiment [21] we consider 8 possible focusing points placed in a strong
reverberating chamber (Fig. 10a). Eight electromagnetic sources are placed at these 8 locations to be used in the
learning step of the TR process. These sources consist of wire antennas used at a central frequency of 2.45 GHz
(i.e., λ = 12 cm), with a bandwidth of 100 MHz. The pitch between them is λ/30! These eight antennas form an array
which will be referred to as the receiving array. Each antenna in this array is surrounded by a microstructure consisting
here of a random distribution of thin copper wires (Fig. 10b). The mean distance between the thin copper wires was
of the order of 1 mm (correlation length λ/100), while the frequency correlation δω was of the order of 30 MHz,
resulting in three independent speckle patterns in the whole bandwidth. A TRM made of eight commercial dipolar
antennas is placed in the far-field, ten wavelengths apart from the receiving array. The set “reverberant chamber/TRM”
acts as a virtual far-field time-reversal cavity. When antenna marked #3 in Fig. 10 sends a short electromagnetic pulse
(10 ns), the 8 signals received at the TRM are much longer than the initial pulse due to strong reverberation in the
chamber (typically 500 ns). As an example the signal received at one of the antennas of the TRM is shown in Fig. 11a.
When the antenna marked #4 is in its turn used as a source, it is remarkable to point out that now the signal received
at the same antenna in the TRM (shown in Fig. 11b) looks significantly different although sources #3 and #4 were
λ/30 apart from each other. When these signals are time-reversed and transmitted back, the resulting waves converge
respectively to antenna #3 and #4 where they recreate pulses as short as the initial ones (Figs. 11c and 11d). Measuring
the signal received at the other antennas of the receiving array gives access to the spatial focusing around antennas #3
and #4 (Fig. 11e). The remarkable result is that the two antennas can be addressed independently since the focusing
spots created around them have a size much less than the wavelength (here typically λ/30): the diffraction limit is
overcome although the focusing points are in the far-field of the TRM!

Contrary to the acoustic sink experiment, in the microwave time-reversal experiment, the source remains passive
and high spatial frequency components of the field are created upon scattering at the disordered structure. Reciprocity
ensures that the time-reversed scattering process creates a subwavelength focus around the source location [22]. The
initial evanescent waves created around the initial wire are converted into propagating waves by the random distri-
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Fig. 10. (a) A time-reversal mirror (TRM) made of eight commercial dipolar antennas operating at 2.45 GHz with 100 MHz bandwidth (i.e.,
λ = 12 cm) is placed in a 1-m3 reverberating chamber. Ten wavelengths away from the TRM is placed a subwavelength receiving array, consisting
of eight microstructured antennas λ/30 apart from one another. (b) Details of one microstructured antenna. It consists of the core of a coaxial line
which comes out 2 mm from an insulating layer and is surrounded by a microstructure consisting of a random distribution of thin copper wires.
(c) Photo of the 8-element subwavelength array surrounded by the random distribution of copper wires. Antennas #3 and #4 are indicated by the
red and blue arrows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

bution of wires. In the time-reversed step, these propagating waves are playback, from the far field, with reverse k
⇀

.
Spatial reciprocity ensures that each propagating waves with a reverse k

⇀
interact with the random distribution of wires

to recreate the initial evanescent waves around the focus.
Note that this approach can work not only when the experiment is conducted inside a reverberant cavity [23].

Provided, the microstructured medium generates enough multiple scattering in the near field of the source resulting
in a transmitted signal sufficiently long, the time-reversal signal from a small TRM located in free space leads to beat
the diffractions limit.
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Fig. 11. In (a) (resp. (b)) is shown the signal received at one antenna of the TRM when a 10-ns pulse is sent from antenna #3 (resp. #4) of the
subwavelength array. The signals in (a) and (b) look significantly different although antenna #3 and antenna #4 are distant from λ/30. In (c) (resp.
(d)) is shown the time compression obtained at antenna #3 (resp. #4) obtained when the eight signals coming from antenna #3 (resp. antenna #4)
are time-reversed and sent back from the TRM. In (e) are shown the focusing spots obtained around antennas #3 and #4. Their width is λ/30. Thus
antennas #3 and #4 can be addressed independently.

5. Conclusion

We have shown that in presence of multiple reflections or multiple scattering, a small size time-reversal mirror
manages to focus a pulse back to the source with a spatial resolution that beats the diffraction limit. The resolution
is no longer dependent on the mirror aperture size but it is only limited by the spatial correlation of the wavefield.
In these media, due to a sort of kaleidoscopic effect that creates virtual transducers, the TRM appears to have an
effective aperture that is much larger than its physical size. Resolution can be improved in reverberating media using
this concept. Time-reversal focusing opens also completely new approaches to super-resolution. We have shown that
in a medium made of random distribution of subwavelength scatterers, a broadband time-reversed wavefield interacts
with the random medium to regenerate not only the propagating but also the evanescent waves required to refocus
below the diffraction limit. Focal spots as small as λ/30 have been demonstrated with microwaves. This results in a
large increase of the information transfer rate by time reversal in such disordered media.
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