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Abstract

The guided waves in the surface plasmon polariton gap waveguide (SPGW) excited by the Gaussian beam through the I-shaped
aperture have been investigated by the three-dimensional simulations using a volume integral equation. Optical fields excited in the
SPGW are investigated under practical conditions. The complex propagation constants are calculated from the simulated optical
fields using the least-squares fitting. The dependence of the propagation constant, i.e., attenuation and phase constants, on the
gap-width and on the gap-depth of SPGW is investigated. To cite this article: K. Tanaka et al., C. R. Physique 9 (2008).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Constantes de propagation des ondes guidées dans les guides optiques à fente à plasmon–polariton de surface excités à
travers d’une ouverture en forme de I. Les ondes guidées dans un guide optiques à fente à plasmon–polariton de surface (SPGW)
excité par un faisceau gaussien à travers un diaphragme en forme de I ont été étudiées au moyen de simulations tridimensionnelles
basées sur une équation intégrale de volume. Les champs optiques excités dans un SPGW sont étudiés dans des conditions pra-
tiques. Les constantes de propagation complexes sont calculées à partir des champs optiques simulés en utilisant une méthode des
moindres carrés. La variation de la constante de propagation (c’est-à-dire des constantes d’atténuation et de déphasage) en fonction
de la largeur de la fente et de sa profondeur est étudiée. Pour citer cet article : K. Tanaka et al., C. R. Physique 9 (2008).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

Recently, the construction of optical circuits on nanometric scales has attracted much attention of many researchers
in nanophotonics. It is not easy to construct optical devices whose size is much smaller than the optical wavelength
and whose integration-density is much larger than that of the current optical integrated circuits due to the diffraction
limit of light. The size of optical waveguide using surface plasmon polaritons (SPPs) can be significantly decreased as
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compared to the conventional diffraction-limited optical waveguide [1–3]. So, the optical integrated circuit using SPPs
is one of the promising candidates for future optical integrated circuits. Many interesting experimental or theoretical
works that treat practical and concrete nanometric optical circuits using SPPs have been reported so far [4–9]. The
guiding structure called SPP gap waveguide (SPGW) has been proposed by the authors [10–13]. The waveguide
mechanism of the SPGW is derived from the low phase velocity exhibited by SPPs in nanometrically narrow gap-
regions between two parallel metal substrates compared to that in wide gap regions. SPGWs have been demonstrated
to guide, divide, and bend optical waves with acceptable losses in nanometric circuits.

In the design of optical circuits by using SPGW, one of the most fundamental and important parameters is the
propagation constant of the guided waves. Since metals are dielectric objects with complex permittivity in the op-
tical frequency region, the propagation constant of guided waves in the SPGW has complex value inevitably, i.e.,
attenuation constant and phase constant. The computations of complex propagation constants for the SPGWs and the
similar structure have been performed by the finite-different time-domain (FDTD) method so far [14–16]. However,
the investigation of guided waves in SPGW excited in the practical situation in not sufficient. The excitation of guided
waves by practical techniques and propagation characteristics of excited guided-waves in SPGW will be important
for experimental study of SPGW. Furthermore, numerical techniques of computation of propagation constants by the
integral equation method will be also important, because the integral equation method is often used in simulation in
nanophotonics.

In this article, we consider the experimental situation, i.e., the problem of the excitation of guided waves in SPGW
of open type through an I-shaped aperture. We perform computer simulation of this 3D scattering problem by the
volume integral equation. Then we calculate the complex propagation constants of the guided waves excited in the
SPGW by least-squares fitting. The basic characteristics of optical intensity excited in the SPGW and dependence of
propagation constants on the gap-width and gap-depth has been investigated.

2. Geometry of the problem

The geometry of the problem considered in this article is shown in Fig. 1. Two identical thick metallic (Au) slabs
whose size is given by D×d × l are placed on the same plane parallel to the x–z plane with a gap-with w between two
slabs, as shown in Fig. 1. The permittivity of the metallic slabs is assumed to be ε1. In order to reduce the parameters
of the problem, the surrounding space is assumed to be a free space whose permittivity is denoted by ε0. The phase
velocity of SPP in the gap region between two slabs is smaller than that in the surrounding free space when the gap-
size is much smaller than the wavelength [10]. Hence, the optical field is confined in the gap region and is guided
along the gap, i.e., the structure shown in Fig. 1 constitutes a straight SPGW. Guided waves in the SPGW can be
excited through an I-shaped entrance aperture created in a rectangular thick metallic screen shown in Fig. 1. The size

Fig. 1. Geometry of the problem used in the simulation.
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of the rectangular screen is given by Cx × Cy × Cz and is assumed to be Cx = (2 × D + w) in Fig. 1. The screen is
made of same material (Au) as that of metallic slabs and is placed on the plane parallel to the x–y plane as shown in
Fig. 1. The center of the screen coincides with the center axis of the SPGW in Fig. 1.

The I-shaped entrance aperture consisting of a rectangular narrow gap-region of ax × ay sandwiched by two rec-
tangular wide gap-regions of Bx × (By − ay)/2 as shown in Fig. 1. The I-shaped aperture in metallic screen is also
a SPGW, and the SPP excited within is confined in the narrow-gap region in the aperture. Through this paper, we
assume that ax = w and ay = d and call w and d the gap-with and gap-depth, respectively.

A Gaussian beam is set normally incident to the screen from the negative z direction in Fig. 1. The electric field
polarization at z = 0 is set parallel to the x axis and the amplitude on the beam axis at z = 0 is unity. It is assumed that
the beam axis coincides with the center axis of the SPGW. The spot size of the incident beam is set to be sufficiently
smaller than the size of the metallic screen of size Cx × Cy . So, the negligibly small guided wave is excited in the
straight SPGW by the incident field diffracted by the screen.

3. 3D simulations by Volume Integral Equation

The scattering problem for the metallic structure shown in Fig. 1 is solved using a volume integral equation under
the assumption of time dependence exp(+jωt), as given by

Ei (x) = D(x)/εr (x) − (
k2

0 + ∇∇·)A(x) (1)

where k0 = ω/c (c is light velocity in free space), D(x) is the total electric flux, Ei (x) is the incident electric field,
and A(x) is the vector potential, which is expressed by the following volume integral [17,18]:

A(x) = (1/ε0)

∫ ∫ ∫

V

{[
εr(x

′) − ε0
]
/εr(x

′)
}
G(x|x′)D(x′)dv′ (2)

Here, G(x|x′) is a free-space Green’s function given by

G(x|x′) = exp
(−jk0|x − x′|)/(4π |x − x′|) (3)

The volume integral region V in (2) represents the entire space, and εr (x) represents the distribution of permittivity,
where εr(x) = ε1 in metal and εr(x) = ε0 in the surrounding free space of the SPGW and metallic screen. The
expression of the incident Gaussian beam can be found in the literature [19]. To obtain the numerical solution, the
entire region of the problem is divided into small discretized cubes of size δ × δ × δ, and volume integral, Eq. (1)
with (2), is discretized by the method of moments using roof-top functions as a basis and testing functions. The
resultant system of linear equations is then solved by iteration using the generalized minimized residual method
(GMRES) with fast Fourier transformation (FFT). As the numerical evaluation is long and extraneous, and it can be
found in the literature [17,18,20], the details are omitted in this paper.

The operating wavelength considered in this analysis is λ = 632.8 nm and the metal that constitutes SPGW is
assumed to be gold (Au) with a relative permittivity of ε1/ε0 = −13.2 − j1.08. The spot size of the incident Gaussian
beam at z = 0 is λ. The following parameters are used in the simulation shown in Fig. 1:

– size of the metallic screen used for the entrance aperture: Cx = Cy = 1148 nm, Cz = 201 nm;
– cross-section of entrance aperture: Bx = 302 nm, By = 403 nm, ax = w and ay = d;
– length of SPGW: l = 6244 nm;
– size of the discretized cube: δ = 10 nm.

The gap-width w, gap-depth d , and the size of small gap-region of the entrance aperture ax and ay are changed so
that ax = w and ay = d . Fig. 2 shows the distribution of total optical intensity |E|2 on the plane parallel to the x–z

plane and located at a distance of 5 nm above the slab surface for the case of w = ax = 101 nm and d = ay = 101 nm.
The intensity scale is normalized by the incident beam intensity at z = 0. The same optical intensity on the plane that
contains the center axis of the SPGW and is parallel to the parallel to the y–z plane is shown in Fig. 3. Standing waves
can be clearly seen to arise along the SPGW in Figs. 2 and 3. These results show that the guided wave is excited
through the entrance I-shaped aperture effectively in Figs. 2 and 3.
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Fig. 2. Optical intensity |E|2 on a plane parallel to the x–z plane and located at a distance 5 nm above the slab surface for the case of
w = d = 101 nm.

Fig. 3. Optical intensity |E|2 on a plane, which includes center axis of the waveguide and is parallel the y–z plane for the case of w = d = 101 nm.

(a) (b) (c)

Fig. 4. Optical intensities of (a) |Ex |2, (b) |Ey |2 and (c) |Ez|2 on a plane parallel to the x–y plane indicated by a white line in Fig. 2. Notice that
the normalized intensity scales are (a) 0.0–1.0, (b) 0.0–0.05 and (c) 0.0–0.05.

Optical intensities of field components |Ex |2, |Ey |2 and |Ez|2 on a plane parallel to the x–y plane indicated by a
white line in Fig. 2 are shown in Fig. 4. The electric field of the guided wave excited in the SPGW is mainly composed
of the x-component. From Figs. 2 to 4, the guided wave is confined in the gap-region in the SPGW and is guided along
the SPGW.

The one-dimensional distributions of the optical intensities along a line parallel to the z-axis inside the SWPG are
shown in Fig. 5. This line is located close to the side surface of the gap, i.e., concretely it is placed at coordinates of
x = D + 5 nm and y = Cy/2, in Fig. 1, because the intensity on the center axis is smaller than that close to the surface
of the gap. The results with a parameter gap-width w for the case of d = 101 nm and with a parameter gap-depth d

for the case of w = 101 nm are shown in Fig. 5(a) and in (b), respectively. Most results in Fig. 5 show the monotonous
decay of envelope of standing waves and show the monotonic oscillation along the propagation distance z in the range
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(a)

(b)

Fig. 5. Dependence of optical intensity |E|2 on propagation distance z in the SPGW with a parameter (a) gap-width w and (b) gap-depth d .

of 2000 nm < z. These characteristics show that two waves, which travel in opposite directions, have one propagation
constant kz in this range, i.e., a single-mode propagation. So, it is possible to calculate the single complex propagation
constant kz from the simulated optical fields.

In the range z < 2000 nm in Fig. 5, the interference between guided waves and other fields can be observed in
the optical intensities. In order to know the origin of this interference, the optical intensities on the plane parallel to
the x–z plane and located at a distance 5 nm above the slab surface for the cases of w = 20 nm, d = 101 nm and
w = 101 nm, d = 40 nm are shown in Fig. 6(a) and (b), respectively. Both cases show rather large interferences in
the optical intensity in Fig. 5. In Fig. 6, optical fields can be seen to extend widely near the entrance aperture. It is
confirmed that the main component of these fields in Fig. 6 is the y-component.

So, these intensities represent SPPs excited on the surfaces of metallic slabs, which are parallel to the x–z plane,
by the entrance aperture. Fig. 6 demonstrates that interference in Fig. 5 is due to the coupling between the guided
waves and SPPs excited on the surfaces of the slabs. In particular, the coupling is strong for the case of w = 101 nm
and d = 40 nm shown in Fig. 6(b).
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(a)

(b)

Fig. 6. Optical intensity |E|2 on a plane parallel to the x–z plane and located at a distance 5 nm above the slab surface for the cases of (a) w = 20 nm,
d = 101 nm and (b) w = 101 nm, d = 40 nm. Notice that the normalized intensity scale is 0.0–0.1.

4. Computation of complex propagation constants by least-squares fitting

Let us consider the computation of the complex propagation constants defined by jkz = (α + jβ)k0 of the guided
waves excited in the SPGW shown in Figs. 2–4, where α and β are the attenuation and phase constants normalized
by the free space wavenumber k0, respectively. When the attenuation constant α is rather large or the length l of the
SPGW in Fig. 1 is sufficiently long in the simulation, the reflected guided wave from the end of the SPGW can be
neglected because the excited guided wave will be negligibly small at the end of the SPGW due to the attenuation. In
this case, it is easy to calculate kz directly form simulation results as shown in Fig. 3. However, when the attenuation
constant is not large and the sufficiently long SPGW cannot be used in the simulation, the reflected waves cannot be
neglected. We consider the calculation of the complex propagation constants kz from the field distributions as shown
in Figs. 2–4.

In the region which is close to the entrance aperture and to the end of the SPGW shown in Fig. 1, we cannot consider
that the field is the simple single-mode propagation from numerical examples shown in Fig. 5. However, in the limited
range Zmin � z � Zmax between the entrance and the end in the SPGW, it is possible to assume that the electric fields
ei(z) (i = x, y, z) along an appropriate given line parallel to the z-axis inside SPGW can be approximated by the
following expression:

ei(z) = Ai exp
[−(α + jβ)k0z

] + Bi exp
[+(α + jβ)k0z

]
(i = x, y, z) (4)

where Ai and Bi (i = x, y, z) are complex constants for x, y and z components of electric field, respectively. It is
apparent that the first term in (4) represents the propagating wave to the positive z-direction and the second term
represents the propagating wave to the negative z-direction in Fig. 1. The unknown constants Ai , Bi , α and β , can
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(a) (b)

Fig. 7. Dependence of normalized (a) attenuation constant α, and (b) phase constant β on the gap width w for the case of d = 101 nm.

(a) (b)

Fig. 8. Dependence of normalized (a) attenuation constant α, and (b) phase constant β on the gap height d for the case of w = 101 nm.

be approximately calculated so that the following least-squares errors at discrete points along the given line inside
SPGW becomes minimum:

J (Ai,Bi,α,β) =
∑
j

∣∣Ei(zj ) − ei(zj )
∣∣2

(i = x, y, z), Zmin � zj � Zmax (5)

where Ei(zj ) represent the discrete value of the electric field components at discrete point zi obtained by the numerical
simulation. Parameters Zmin and Zmax are minimum and maximum values of the range where least-squares fitting is
employed. The values of Zmin = 2014 nm and Zmax = 6043 nm are used in this paper from the results in Fig. 5. The
propagation constants obtained are confirmed by comparing the electric fields obtained by the simulation with the
reconstructed fields reconstructed by (4). It is confirmed that values of α and β do not depend on the electric field
components and on the x and y coordinates of the line used in (5). We used x-component of electric field Ex in the
calculation of (5), because Ey , Ez are much smaller than Ex as shown in Fig. 3.

The dependences of the attenuation constant α and phase constant β on the gap-width w for d = 101 nm and on
the gap-depth d for w = 101 nm are shown in Figs. 7 and 8, respectively. Only for the case of the smallest gap-depth
in Fig. 8, i.e., the case of d = 40 nm and w = 101 nm, the method based on (4) is not used in the calculation. In this
case, the averaged values of α and β calculated from the field distribution in the range of 2014 nm < z < 6043 nm are
shown in Fig. 8. Both constants α and β decrease with the increase of gap-width w and they approach asymptotically
to the results of w = ∞ as shown in Fig. 7. Results for the case of w = ∞ can be obtained by the simulation where
one of the metallic slabs that constitute SPGW is eliminated in Fig. 1. It is possible to understand the existence of the
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guided waves in this structure [21]. Under the conditions used in this paper, the dependence of α on the gap-width
w is weak in the range of 60 nm < w in Fig. 7. It is interesting that attenuation constants α are smaller than that of
w = ∞ in the range of 80 nm < w and there is the optimum gap-width w that gives smallest attenuation constant α

of the guided waves in Fig. 7.
Both constants α and β also decrease with the increase of gap-depth d and they approach asymptotically to the

results of d = ∞ as shown in Fig. 8. Results for the case of d = ∞ can be obtained easily because the problem
becomes two-dimensional [10]. It is found that their dependence on the gap-depth d is weak for the case of 60 nm < d

in Fig. 8. In Fig. 8, the reason why α and β increase with the decrease of gap-depth d is that the guided wave shown
in Figs. 2–4 is coupled to the SSP short-range mode excited in the metallic slabs [22].

5. Conclusions

The guided waves in the surface plasmon polariton gap waveguide (SPGW) excited by the Gaussian beam through
the I-shaped aperture have been investigated by the three-dimensional simulations using a volume integral equation.
Optical fields excited in the SPGW were calculated under practical conditions. The complex propagation constants
are calculated from the optical fields using the least-squares fitting. The dependences of the attenuation and phase
constants on the parameters of the waveguide were investigated. Parameters used in this paper are practical value for
the experiment. Results obtained in this paper will be useful for the experimental study of SPGWs.
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