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Abstract

Inelastic neutron scattering is a powerful technique that can measure magnetic correlations in a large momentum and energy
range. In strongly correlated electronic systems, where spin, orbital, lattice and charge degrees of freedom are entangled, it is
currently used to study the magnetic properties and shed light on their role in the appearance of the exotic electronic properties,
such as unconventional superconductivity. In this article, we focus on the observation by inelastic neutron scattering technique
of unconventional spin triplet collective modes in the superconducting state of high temperature superconducting cuprates and its
interplay with anomalies in the charge excitation spectrum. The triplet spin mode is interpreted as a spin exciton, within a spin band
model. Alternative scenarii based on localized or dual (itinerant localized) models are also mentioned. To cite this article: Y. Sidis
et al., C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Étude par diffusion inélastique de neutrons des excitations de spin dans la phase supraconductrice des supraconducteurs
à haute température. La diffusion inélastique de neutrons est une technique très efficace qui permet de mesurer les corrélations
magnétiques sur une large gamme de vecteurs d’onde et d’énergies. Dans le cadre de l’étude des systèmes d’électrons fortement
corrélés, pour lesquels les degrés de liberté des spins, des orbitales, du réseau et des charges sont fortement couplés, cette technique
est couramment utilisée pour sonder les propriétés magnétiques et tester leur rôle dans l’établissement de propriétés électroniques
exotiques, telles que la supraconductivité non conventionnelle. Dans cet article, nous nous focalisons sur l’observation par diffusion
inélastique de neutrons d’un mode d’excitation de spin triplet inhabituel dans la phase supraconductrice des cuprates supracon-
ducteurs à haute température critique, ainsi qu’à son implication dans l’apparition d’anomalies dans le spectre d’excitations des
charges. Ce mode est interprété comme un exciton de spin sur la base d’une description itinérante des excitations magnétiques.
D’autres interprétations en termes de spins localisés ou impliquant une description mixte itinérante-localisée seront également
présentées. Pour citer cet article : Y. Sidis et al., C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

High temperature superconducting copper oxide systems are layered perovskite materials characterized by the
stacking of CuO2 planes [1]. There can be one or several CuO2 planes per unit cell. These planes are separated by other
atomic layers that play the role of charge reservoirs. By transferring charges between the charge reservoirs and the
CuO2 planes, the CuO2 planes can be doped either with electrons or holes. The charge transfer can be achieved by ionic
substitution, such as in La2−xSrxCuO4, or by modification of the oxygen stoichiometry, such as in YBa2Cu3O6+x .
The generic phase diagram of electron-doped and hole-doped high temperature superconducting copper oxides is
reported in Fig. 1 [2,3]. At zero doping, there is one electron located in 3dx2−y2 orbital on each Cu2+ ion. In term of
band structure, one could expect a half filled band and therefore the system should be a good metal. On the contrary
(Fig. 1), these materials are insulators at very high temperature and on cooling exhibit an antiferromagnetic (AF) order,
between 300 K and 400 K depending on each cuprate family. This AF order is well described by the Heisenberg model
applied to localized quantum spins S = 1/2 on copper sites. The fact that the system is an insulator well above the
Néel temperature indicates that there is a large on-site Coulomb repulsion Ud on Cu sites that prohibits the double
occupancy. Upon doping, the AF order is destroyed, and the system undergoes a transition from the insulating state
to the superconducting state. As a function of doping, the superconducting critical temperature first increases, reaches
a maximum at a doping level ∼16% and then further decreases [4]. The doping level at which Tc is maximum is
called optimal doping and one usually defines two sub-regimes on both sides of the optimal doping: the underdoped
regime where Tc increases with increasing doping and the overdoped regime where Tc decreases at higher doping.
In the phase diagram as a function of temperature and hole (or electron) doping (Fig. 1), the superconducting critical
temperature exhibits a characteristic dome-like shape centered at optimal doping.

The superconductivity in high temperature superconductors is unconventional. This is not only due to the excep-
tionally large Tc that can be obtained in these materials and that can be as high as 130 K (or even 160 K under
pressure) in hole doped systems. This is also due to the symmetry of the superconducting order parameter. As in
conventional superconductors, superconductivity implies the formation of pairs of electrons (the Cooper pairs) and
these pairs acquire a phase coherence at Tc. In conventional superconductors, the Cooper pairs are in a s-wave singlet
spin state. The superconducting order parameter is isotropic. At variance, in superconducting cuprates it is now well
established that the superconducting order parameter is anisotropic: Cooper pairs are in a d-wave spin singlet state
[5]. The superconductor order parameter can therefore change sign and exhibits nodes along the diagonal directions.

In the rest of the article, we are going to focus on the case of hole doped cuprates which display the highest
superconducting critical temperature (Tc) and have been the most studied by inelastic neutron scattering (INS). Before

Fig. 1. Generic phase diagram of hole doped (right panel) and electron doped (left panel) high temperature superconducting cuprates [2,3]. The
phase diagram shows different states: the antiferromagnetic state (AF) and the d-wave superconducting state (SC).
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Fig. 2. (a) Electronic structure of a CuO2 plaquette. (b) Schematic description of the CuO2 plane (Cu2+ ions in blue, O2− ions in red). The solid
lines stand for the Cu–O bonds and the black arrows for the spin S = 1/2 on a copper site. J indicates the antiferromagnetic super-exchange
interaction between nearest neighbour Cu spins. The CuO2 plane can be viewed as a square lattice made of CuO2 plaquettes, characterized by 3
different states: |↑〉 or |↓〉, when there is no doped hole on the plaquette and |0〉 when there is a doped hole (Zhang–Rice singlet). The hopping of
a doped hole induces a distortion of the AF correlation. The figure is reproduced from Ref. [3].

discussing the magnetic properties of cuprates, it is interesting to consider their electronic structure (here, we follow
the description given in Ref. [3] by P.A. Lee et al.). There is now a consensus that the exotic electronic properties of
cuprates occur in CuO2 planes. As mentioned above, the large on-site Coulomb repulsion on copper Ud splits the Cu
3dx2−y2 electronic level: Ed and Ed + Ud (Fig. 2(a)). The O 2p electronic level is located at an energy Ep , above Ed

(Fig. 2(a)). At zero doping, there is one hole on the Cu 3d shell at Ed and it can virtually hop on the oxygen, yielding
a superexchange antiferromagnetic interaction between S = 1/2 spins on copper sites. Once the system is doped
with holes, there are two crucial questions to answer: what is the minimum Hamiltonian to deal with properties of
cuprates? What is the effect of the motion of a doped hole in an antiferromagnetically correlated media? The physics
of the CuO2 planes is described by a three band Hubbard model, which is extremely difficult to handle theoretically.
A large majority of theoretical models considers that the low energy properties of cuprates can be captured using an
effective one-band Hubbard model on a squared lattice:

H = −
∑

〈i,j〉,σ
ti,j c

+
i,σ cj,σ + U

∑
i

ni,↑ni,↓ (1)

Here c+
i,σ is the usual fermion creation operator on site i and ni = ∑

σ c+
i,σ ci,σ the number operator. In particular, it

was shown by Zhang and Rice [6] that a doped hole on an oxygen site can form a singlet state with an electron on a
neighboring Cu site. The Zhang–Rice singlet can hop from one Cu site to another. Since this hopping is a two step
process, the effective hoping integral t is of the order of tpd/(Ep − Ed), where tpd is the hopping integral between
the oxygen and the copper. Then, the three band Hubbard model can be simplified to a one-band model on a square
lattice with an effective hopping integral t and an effective on-site Coulomb repulsion U = Ep − Ed . In the large
U (= Ep − Ed) limit, this maps onto the t–J model:

H = P

[
−

∑
〈i,j〉,σ

ti,j c
+
i,σ cj,σ +

∑
〈i,j〉

Ji,j

(
SiSj − 1

4
ninj

)]
P (2)

P is the projection operator that excludes the double occupancy on each site. J is the superexchange interaction
4t2

U
∼ 4t4

pd

(Ed−Ep)3 . Note that at half filling, the t–J model reduces to the Heisenberg Hamiltonian. Furthermore, as

shown in Fig. 2(b), the hopping of the Zhang–Rice singlet induces a flip of the spin. That is the reason why the motion
of doped holes quickly destroys the AF order. Furthermore, in the presence of strong AF correlations, the motion of
charge and spin fluctuations have to be bound together. Finally, it has also been emphasized that apical oxygens and the
Cu 4s orbital can also contribute to additional hopping integrals along the diagonal t ′ and on next-nearest neighbours
t ′′. The introduction of t ′ and t ′′ breaks the electron–hole symmetry and can explain why the phase diagram is not
symmetric with respect to electron and hole dopings (Fig. 1).

These Hamiltonians are purely electronic, the coupling of the electrons with the lattice is ignored. In conventional
superconductors, the superconducting pairing is mediated by the exchange of phonons: owing to the electron–phonon
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coupling, an electron generates a virtual phonon which is absorbed by a second electron. This gives rise to an ef-
fective attractive interaction between electrons responsible for the superconducting pairing. The sensitivity of the
superconducting temperature to isotopic substitution, that modifies the frequency of the phonons, is one experimen-
tal observation that supports the predominant role of the electron–phonon coupling in the superconducting pairing
mechanism in conventional superconductors. In high temperature superconductors, the d-wave symmetry of the su-
perconducting order parameter, on the one hand, and the absence of a significant isotopic effect, on the other hand,
question the leading role of the electron–phonon coupling as a driving force leading the superconducting pairing. At
variance, soon after the discovery of superconductivity at high temperature, it has been proposed that a purely elec-
tronic mechanism could be at the origin of superconductivity and could involve antiferromagnetic properties of these
materials [7,8]. Using a one-band Hubbard model to describe the low energy physics of cuprates, one can find two
limits [9]: (a) the strong coupling limit where U is much larger than the band width (W = 8t); (b) the weak coupling
limit where U is smaller than the band width [7]. For sake of simplicity, one can say that in the strong coupling
limit the Hubbard model maps onto the t–J and J (q) = 2(cos(qx) − cos(qy)) may play the role of a direct attractive
interaction for the d-wave superconducting pairing. In the weak coupling limit, the pairing interaction is mediated
by the exchange of spin fluctuations and the pair potential responsible for the superconducting pairing is found to be
proportional to ∼ U2χ(q,ω), which can be viewed as the on-site Coulomb repulsion dressed by magnetic fluctua-
tions. χ(q,ω) is the generalized spin susceptibility [8]. In both cases, U is essential, as it is repulsive on a given site,
but contributes to generate AF interaction or AF correlations which makes the particle–particle interaction attractive
on the nearest neighbor sites, leading to d-wave superconductivity. One usually considers that the typical orders of
magnitude are: U ∼ 2 eV, t ∼ 0.3 eV, yielding a J value of about 0.13 eV, in agreement with the experimental value
deduced from two-magnon Raman scattering measurements [11] and the study of spin waves by inelastic neutron
scattering in the insulating AF state (see Refs. [12,13]). Note, that with these values, the system should be in an inter-
mediate regime between strong and weak coupling (U ∼ W ). For further details, the different theoretical models for
superconducting pairing approaches based on magnetic properties of cuprates are summarized in Ref. [10] and also
compared to other theories of high temperature superconductivity, based on phonons, for instance.

To summarize the complexity of these systems, the physics of cuprates is between that of a doped AF Mott insulator
(at weak doping) and that of a more conventional metal (described by the Fermi liquid theory in the overdoped regime).
It is believed that their low energy properties could be described by a single band Hubbard model at intermediate
coupling, so that electrons or holes can be either described as quasi-localized particles or waves. As a consequence,
the spin excitations probed by INS measurements can be discussed using a spin localized picture or an itinerant one.

In the rest of the article, we are going to review a few inelastic neutron scattering results obtained in different fam-
ilies of superconducting cuprates. The purpose of the paper is definitively not to give an extensive review of all results
which have been obtained so far. Excellent reviews can be found in Refs. [12,13]. We rather focus on the experimen-
tal observations which support the idea that there are residual magnetic interactions in the superconducting state of
cuprates giving rise to unconventional spin triplet collective modes and that there is a strong spin–fermion coupling,
which would be equivalent to the electron–phonon coupling in conventional superconductors (for a longer review
see Ref. [14]). The paper is organized as follow. In Section 2, we report the observation of unconventional magnetic
excitations in the superconducting state, using the inelastic neutron scattering technique: the so-called resonant spin
excitations. In Section 3, we show that these unconventional excitations can be understood in the framework of spin
band theory as a collective S = 1 mode existing in the superconducting state only: the spin exciton. In Section 4, we
present anomalies in the charge excitation spectrum which are likely to involve the resonant spin excitations and thus
can be viewed as the hallmark of the coupling of spin and charge degrees of freedom. In Section 5, we discuss the
alternative interpretations of the resonant spin excitations using localized spin pictures.

2. Unconventional spin excitations in the superconducting state of cuprates

In the section, after a brief description of the inelastic neutron scattering technique, we show that this technique
has been very useful in revealing the existence of unconventional magnetic collective modes in the superconducting
state. Their characteristic energy is tightly related to the superconducting temperature or the superconducting gap as
a function of hole doping. Furthermore, we show that the mode displays a very particular ‘X’-like dispersion.
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2.1. Inelastic neutron scattering technique

Since the AF properties of cuprates are likely to play a crucial role for the appearance of superconductivity in these
materials, it turns out to be quite natural to try to study the evolution of the spin correlations as a function of hole
doping, looking for experimental evidence that spin and charge properties are coupled. As pointed out in the previous
section, the AF correlations are quickly destroyed upon hole doping, but dynamical short range AF correlations can
still survive in the metallic or superconducting state. The inelastic neutron scattering technique is a powerful tool that
allows us to study the spin correlations in a large range of momentum and energy. This is a bulk measurement that
requires large single crystals. This constraint has for a long time restricted the study of the spin dynamics to a small
number of cuprate families. Recently, thanks to progress made in crystal growth and the improvement of neutron
flux, more and more cuprate families can be studied by inelastic neutron scattering, which is essential to establish
the universality of the observed magnetic properties and thus their relevance for the physics of high temperature
superconductors. Experiments can be carried out on high flux triple axis spectrometers (for instance at the ILL and
LLB in France, at FRM-II in Germany) or on time-of-flight spectrometers (for instance, at ISIS in England).

The magnetic neutron scattering cross section per formula unit [15] is written in terms of the Fourier transform of
the spin correlation function Sα,β(Q,ω) (labels α,β correspond to Cartesian coordinates x, y, z) as:

d2σ

dΩ dω
= kf

ki

r2
0 F 2(Q)

∑
α,β

(
δα,β − QαQβ

|Q|2
)

Sα,β(Q,ω) (3)

where ki and kf are incident and final neutron wave vectors, r2
0 = 0.292 barns, F(Q) is the magnetic form factor.

The scattering vector Q can be split into Q = q + G where q lies in the first Brillouin zone and G is a wave vector
of the Bravais lattice. Superconducting cuprates being nearly tetragonal systems, all reciprocal space coordinates
(Qx,Qy,Qz) (or (H,K,L)) are given in reduced lattice units 2π/a, 2π/b, 2π/c, where a 	 b and c stand for the
lattice parameters.

According to the fluctuation–dissipation theorem, the spin correlation function is related to the imaginary part of
the dynamical magnetic susceptibility, weighted by the detailed balance factor:

Sαβ(Q,ω) = 1

π(gμB)2

Imχαβ(Q,ω)

1 − exp(−h̄ω/kBT )
(4)

where g stands for the Landé factor. Note that in a paramagnetic state, when there is no spin anisotropy, Imχαβ(Q,ω)

reduces to Imχ(q,ω)δαβ . F(Q) is described by the anisotropic form factor of the Cu2+ ion in first approximation [16].

2.2. Magnetic resonance peak in the superconducting state

Using the INS technique to probe the spin dynamics in high temperature superconducting cuprates, one of the first
major discoveries was the observation of an unusual magnetic excitation in the superconducting state: the so-called
magnetic resonance peak [17–20]. The observation of this excitation was first reported by J. Rossat-Mignot et al. [17]
in the superconducting system YBa2Cu3O6.92 (Tc = 91 K). In the superconducting state, the magnetic resonance peak
appears as a sharp excitation located at 41 meV (Fig. 3(a)) and is centered at the wave vectors QAF = (0.5,0.5,L)

(Fig. 3(b)), which characterized planar AF spin correlations. When increasing temperature, the characteristic energy
of the magnetic resonance peak remains unchanged, whereas its intensity exhibits an order-parameter like temper-
ature dependence and steeply disappears at Tc (Fig. 3(c)). Such a kind of excitation does not exist in conventional
superconductors.

The observation of the magnetic resonance peak was then reproduced in other cuprate families. It is observed at
optimal doping at 43 meV in Bi2Sr2CaCu2O8+δ (Tc = 91 K) [23] (Fig. 4(d)) and 47 meV in Tl2Ba2CuO4 (Tc =
90 K) [21] (Fig. 4(a)). At least for superconducting cuprates, whose superconducting critical temperature can be as
high as 90 K (Fig. 4), the existence of an unusual AF excitation in the superconducting state could be viewed as a
generic property. While the magnetic resonance peak is almost resolution limited in Tl2Ba2CuO4 and YBa2Cu3O6.95
(Fig. 4(a), (b)), it is significantly broader in energy in Bi2Sr2CaCu2O8+δ (Fig. 4(b)). This energy broadening can be
ascribed to intrinsic defects or impurities in the material and can be artificially reproduced by substitution of other 3d

ions (such as Ni) in YBa2Cu3O7 (Fig. 4(c)).
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Fig. 3. Weakly overdoped YBa2Cu3O6.97 (Tc = 92.7 K) [20]: (a) energy scan performed at the planar AF wave vector QAF = (0.5,0.5) at 5 K in
the superconducting state. (b) Constant energy scan at 40 meV performed along the (110) direction around QAF (see insert). At 5 K (open circles),
a magnetic excitation, with a Gaussian line-shape, appears on top of a featureless nuclear background. At 125 K (solid dots), the magnetic signal
disappears. (c) Temperature dependence of the magnetic intensity at 40 meV, that looks like the temperature dependence of an order parameter with
a marked change at the superconducting critical temperature. This kind of temperature dependence is the hallmark of magnetic resonant excitations,
which are intrinsic features of the superconducting state.

Fig. 4. The magnetic resonance is defined as the enhancement of the magnetic response in the superconducting state. Using unpolarized inelastic
neutron scattering measurements, magnetic and nuclear scatterings are measured simultaneously. The magnetic resonance peak can, nevertheless,
be extracted by performing the difference between measurements performed at low temperature in the superconducting state and just above Tc in
the normal state. In the differential spectra, the magnetic resonance peak appears as a positive signal at a well defined energy, on top of a negative
background, given by the thermal enhancement of the nuclear background. This procedure is particularly well suited when spin fluctuations of the
normal state are weak compared to the resonance peak (optimal and overdoped regimes) (see Fig. 3(b)). The figure shows the difference spectrum
of the neutron intensities at low temperature, measured at the planar AF wave vector QAF = (0.5,0.5) and T � Tc in samples: (a) Tl2Ba2CuO6+δ :
Tc ∼ 90 K, V = 0.11 cm3 [21]; (b) YBa2Cu3O6.95: Tc = 93 K, V = 10 cm3 [19]; (c) YBa2(Cu1−yNiy )3O7: Tc = 80 K, V ∼ 2 cm3 [22]; (d)

Bi2Sr2CaCu2O8+δ : Tc = 91 K, V = 0.06 cm3 [23]. V stands for the sample volume. Data are fitted to a Gaussian profile. The solid bars indicate
the energy resolution.

2.3. Several magnetic resonance peaks in multi-layer systems

One may notice that the magnetic resonance peak is observed at slightly higher energy in Tl2Ba2CuO4 which
has only one CuO2 per unit cell (monolayer system) (Fig. 4(a)), at variance with YBa2Cu3O6+x (Fig. 4(b)) or
Bi2Sr2CaCu2O8+δ (Fig. 4(d)) which are characterized by two CuO2 planes per unit cell (bilayer systems). This can
be explained by the fact that there is not one but two resonant spin excitations in bilayer systems [24–27]. In slightly
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Fig. 5. In weakly underdoped YBa2Cu3O6.85 (Tc = 89 K) [25], difference between scans measured at the AF wave vector at low temperature and
just above Tc. (a), (c) The figures show the acoustic magnetic resonance peak (red) peaked at 41 meV and its typical sine square modulation. (b),
(d) The optical magnetic resonance peak (blue), located at 53 meV and it characteristic cosine square modulation. The sketch below the figures
(a)–(d) shows the splitting of the magnetic resonance peak induced by the magnetic interaction between the CuO2 planes of the bilayer. (e), (f) Hole
doping dependence of the characteristic energy of the acoustic (red) and optical (blue) magnetic resonance peaks [26,27]. Both modes are located
below 2
m which gives the order of magnitude of the minimum energy required to create an elementary electron–hole spin flip excitation at the AF
wave vector. 2
m (open symbols) can be measured by angle resolved photo-emission (ARPES), tunneling spectroscopy (SIS) or electronic Raman
spectroscopy (ERS) (see Ref. [26,27] and references therein). Figure (e) shows the doping dependence in (Y,Ca)Ba2Cu3O6+x [26] and figure (f)

in Bi2Sr2CaCu2O8+δ [27]. The hole doping level is obtained thanks to the phenomenological relationship: Tc(δ) = T
opt
c (1 − 82.6(δ − δopt)

2) [4],
δopt is generally estimated to be 0.16 [4]. The schematic picture below figures (e), (f) indicates how experimentally we extrapolate from the INS
measurements of the resonance peaks the threshold of the electron–hole spin flip continuum, ωc, which is expected to be slightly smaller that 2
m.
In (e), (f), black dots correspond to ωc, deduced from INS data (see text).

underdoped YBa2CuO6.85 (Tc = 89 K) [25], the first magnetic resonance peak is observed at 41 meV (Fig. 5(a)) and
a second one, of much weaker intensity, is found at 53 meV (Fig. 5(b)). The same observation has been recently
reproduced in slightly overdoped Bi2Sr2CaCu2O8+δ (Tc = 87 K), where both excitations are observed at 42 meV
and 54 meV, respectively [27]. One sees that both modes are located at ±6 meV from 47 meV in YBa2Cu3O6.85 and
48 meV in Bi2Sr2CaCu2O8+δ , i.e. at equidistance from the energy at which the resonance spin excitation appears in
the monolayer system with a similar superconducting critical temperature (insert in Fig. 5).

The existence of two resonance spin excitations in bilayer systems instead of one in monolayer systems is not very
surprising. In the insulating parent compound, the spin excitations are collective: the spin waves. Owing to a weak AF
interaction between CuO2 planes in the bilayer (J⊥ 	 10 meV [12]), spin waves split into an acoustic mode and an
optical one, corresponding to out-of-phase and in-phase spin fluctuations between the CuO2 planes in the bilayer. The
imaginary part of the dynamical spin susceptibility then reads:

Imχ(Q,ω) = sin2(πzL) Imχac(Q,ω) + cos2(πzL) Imχop(Q,ω) (5)
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where z stands for the reduced distance between CuO2 planes in the bilayer (z = d/c with d = 3.3 Å). In addition to
the fact that acoustic and optical magnetic modes are located at different energies, they can be easily identified by the
modulation of the magnetic intensity along the c axis (Eq. (5)). In the superconducting state, the stronger magnetic
resonance peak at low energy displays a sine square modulation (Fig. 5(c)), whereas the weaker magnetic resonance
peak at high energy exhibit a cosine square modulation (Fig. 5(d)). Thus, the existence of two resonance peaks in
bilayer systems indicates that there is still an AF coupling between the CuO2 planes in the superconducting state
and that it has the same order of magnitude as J⊥ in the insulating state. What is more surprising is the fact that the
intensity of the optical-like excitation at high energy is significantly weaker than that of the acoustic-like excitation.

2.4. Hole doping dependence

One has to keep in mind that the superconducting state is a singlet spin state. In order to generate magnetic ex-
citations, one needs to break Cooper pairs. In the d-wave superconducting state, the superconducting gap reads:

(k) = 
m(cos(kx) − cos(ky))/2, where 
m stands for the maximum of the superconducting gap. In superconduct-
ing cuprates, the minimum energy required to induce an elementary magnetic excitation at the AF wave vector is
typically of the order of 2
m. The latter energy can be measured by angle resolved photo-emission measurements
(ARPES), tunneling scanning spectroscopy (SIS) or electronic Raman spectroscopy in B1G channel (ERS) and is
reported in Fig. 5(e), (f).

Let us consider now the hole doping dependence of the characteristic energy associated to acoustic and optical
resonance peaks, Eac

r and E
op
r , as compared to the hole doping dependencies of Tc and 2
m (Fig. 5(e), (f)). In

bilayer systems, such as YBa2Cu3O6+x (Fig. 5(e)) and Bi2Sr2CaCu2O8+δ (Fig. 5(f)), Eac
r is found to scale with the

superconducting critical temperature Tc, so that Eac
r 	 5kBTc. At variance with the dome-like curve that characterizes

the doping dependence of both Eac
r and Tc, E

op
r levels off in the underdoped regime and further decreases when going

from the optimal doping to the overdoped regime. The hole doping dependence of E
op
r displays striking similarities

with the doping dependence of 2
m. In the overdoped regime, for a doping level of ∼20%, Eac
r , E

op
r and 2
m

converge to the same energy, which is of the order of 5kBTc [26]. Below this doping level, one observes the following
hierarchy: Eac

r < E
op
r < 2
m. Therefore, it costs less energy to excite the resonance peak than to create elementary

magnetic excitations by breaking Cooper pairs.

2.5. Unusual X-like lineshape of the resonant spin excitation dispersion

The magnetic resonance peaks are excitations which are observed in the superconducting state at the antiferro-
magnetic wave vector, but the observation of resonant spin excitations is not restricted to that particular wave vector
[28–33]. On the other hand, it has been shown that the magnetic resonance peak is part of a dispersive S = 1 ex-
citation mode [32] (Fig. 6(a)). Starting at the AF wave vector, the mode disperses downward and upward, yielding
an X-like or hourglass-like dispersion [25,34,35]. One can also identify the so-called silent bands (blue dashed lines
in Fig. 6(a)), which indicate that the intensity of dispersing S = 1 excitations disappears or is significantly reduced
each time the mode approaches or crosses specific wave vectors [25]. In strongly underdoped cuprates (Tc � 62 K),
similar dispersive excitations are also reported [36–40], but only the downward branch vanishes above Tc whereas the
upward dispersion remains essentially the same across Tc [40]. Recently, the debate becomes focused on the origin
of the S = 1 dispersive collective mode whose theoretical description is especially important as antiferromagnetism
is generally believed to play a significant role in the superconducting pairing mechanism in high-Tc cuprates [8]. One
possible way to account for the existence of a dispersive S = 1 collective mode in the d-wave superconducting state
of superconducting cuprates is to describe the magnetic excitations as itinerant spin excitations.

3. Itinerant magnetic description of the resonant spin excitations: the spin exciton scenario

In this section, we give a description of the generalized magnetic susceptibility in the normal and the superconduct-
ing states using a spin itinerant model. We further show that, within this approach, the resonant spin excitations can
be understood as a spin exciton. The comparison of neutron scattering experiments and the spin exciton model should
allow us to quantitatively estimate the magnitude of the residual magnetic interaction left in the superconducting state.
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Fig. 6. (a) In weakly underdoped YBa2Cu3O6.85 (Tc = 89 K), the acoustic resonant spin excitations disperse downward (squares [32]) and
upward (circles [25]). The dashed region indicates the location of the e–h spin flip continuum, which is computed from ARPES measurements
in Bi2Sr2CaCu2O8+δ for a similar doping level [51]. (b) Sketch of the Fermi surface. The red circles correspond to the hot spots at the Fermi
surface, that can be connected by the AF wave vector qAF and where the superconducting gap is almost maximum. The blue circles stand for
the cold spots where the superconducting gap vanishes at the Fermi surface. Along the diagonal directions, the cold spots are connected by the
wave vector qn. (c) Computation of the imaginary part of the dynamical magnetic susceptibility, Imχ , in the superconducting state within the spin
exciton scenario [48]. The computed Imχ emphasizes the existence of a collective S = 1 mode located below the continuum, with two distinct
branches (red and green arrows). The planar wave vector is written: q = η(0.5,0.5). In (a) and (c), the red and green arrows indicate the parts of
the dispersion which are located in area 1 and 2, which are defined in the text. The vertical dashed blue lines in (a) correspond to the so-called
silent bands (see text and Refs. [25,48]).

3.1. Dynamical spin susceptibility in itinerant spin models

In a metal, one can create a magnetic excitation by transferring an electron from an occupied state |k,σ 〉 to an
unoccupied state |k + q,−σ 〉. The non-interacting susceptibility, corresponding to these electron–hole (e–h) spin flip
excitations, is given by the Lindhart function [15]:

χ0(q,ω) = 1

2
(gμB)2

∑
k

nF (ξ̄k) − nF (ξ̄k+q)

ξ̄k+q − ξ̄k − h̄ω − iO+ (6)

ξ̄k is defined as a function of ξk the bare quasi-particle dispersion and the chemical potential μ: ξ̄k = ξk − μ. nF cor-
responds to the Fermi distribution. χ0 stands for χxx = χyy = χzz. In the superconducting state (with spin singlet
Cooper pairs), the non-interacting spin susceptibility transforms into the BCS function [14]:

χBCS
0 (q,ω) = 1

2
(gμB)2

∑
k

M∓
qk

1 − nF (Ek+q) − nF (±Ek)

Ek+q ± Ek − h̄ω − iO+ (7)

with:

M±
qk = 1

4

(
1 ± ξ̄k+q ξ̄k + 
k+q
k

Ek+qEk

)
(8)

where Ek =
√

ξ̄2
k + 
2

k is the dispersion relation of the quasi-particles in the superconducting state and 
k the
momentum dependent superconducting gap. It is worth noticing that Eq. (7) becomes Eq. (6) when 
k → 0.
There are two main differences between the Lindhart and the BCS spin susceptibility. First, a minimum energy
h̄ωc(q) = min[Ek+q + Ek] is needed to create an elementary spin flip excitation in the superconducting state. h̄ωc(q)

defines the threshold of the electron–hole spin flip continuum. Second, spin excitations are two-particles processes
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and the coherence factor (Eq. (8)) in the superconducting state is an interference-term that probes the sign change
of the superconducting order parameter: 
k+q
k < 0 favors spin excitations. For a d-wave superconducting gap

k = 
m(cos(kx) − cos(ky))/2, this condition is fulfilled around the planar AF wave vector (0.5,0.5) (= (π,π)).

The magnetic response is further enhanced by magnetic interaction I (q). This interaction is, for instance, U the
on-site Coulomb repulsion in single band Hubbard model or −J (q) in the t–J model (see Section 1). The enhanced
spin susceptibility can be obtained by random phase approximation (RPA):

χ(q,ω) = χ0(q,ω)

1 − 2I (q)

(gμB)2 χ0(q,ω)
(9)

In the absence of specific topological properties of the Fermi surface (such as nesting or vicinity of a saddle point)
or of very strong interaction I (q), the magnitude of the spin excitation spectrum can remain rather weak and is
therefore difficult to probe by INS measurements. In the superconducting state [41–48], owing to the opening of a
gap in the e–h spin flip continuum and magnetic interaction I (q), an e–h spin triplet bound state, also called spin
exciton, can develop below the threshold of the continuum. Its characteristic energy is given by the pole condition:
1 − 2I (q)

(gμB)2 Reχ0(q,ω) = 0 in the energy range [0,ωc(q)].

3.2. Dispersion of the spin exciton: the fingerprint of the gapped Stoner continuum

This S = 1 collective mode can only exist below the e–h spin flip continuum and decays into elementary e–h

excitations when entering the continuum. The dispersion of the mode is therefore mainly controlled by the momentum
dependencies of the magnetic interaction I (q) and the threshold of the continuum ωc(q). The latter is given by the
topology of the Fermi surface and the symmetry of the superconducting gap. In superconducting cuprates, ωc(q) is
maximum at the AF wave vector: ωc(qAF) = 2
(khs), where khs are the wave vectors of the Fermi surface that can
be connected by the AF wave vector qAF, also called hot spots (hs) (Fig. 6(b)). At these wave vectors, the d-wave
superconducting gap is large and close to its maximum value, so that ωc(qAF) is slightly smaller than 2
m. Moving
away from the AF wave vector in the [110] direction (Fig. 6(c)), ωc(q) decreases and vanishes at qn the wave vector
between the nodal points of the Fermi surface (the cold spots) (Fig. 6(b)), where the superconducting gap goes to zero.
Thus, around the AF wave vector, ωc(q) displays a dome-like line-shape (area 1) (Fig. 6(a)). Away from the wave
vector qn, ωc(q) re-appears at high energy (area 2) (Fig. 6(a)). In area 1, the collective mode cannot disperse upwards
and is pushed to a low energy by the continuum and finally exhibits a characteristic downward dispersion (red arrow
in Fig. 6(a), (c)). When moving from area 1 to area 2, ωc(q) goes steeply to zero close to qn. As a consequence, the
spin exciton has to vanish when approaching some almost energy independent lines centered at qn: the so-called silent
bands (dashed lines in Fig. 6(a)). In area 2, a second part of the collective mode of much weaker intensity shows up at
higher energy with a upward dispersion (green arrow in Fig. 6(a), (c)). It has been shown that the spin exciton in area
1 can be viewed as a linear combination of direct e–h spin excitations, whereas in area 2 it is made of umklapp spin
excitations [48].

The fact that the magnetic resonance peak observed by INS measurements is an intrinsic feature of the supercon-
ducting state can be understood within the spin exciton scenario. Likewise, the confinement of the spin exciton below
the threshold of the e–h spin flip continuum (Fig. 6(a), (c)) provides an explanation for the downward and upward
dispersion of the magnetic resonant excitations. The observation of silent bands in INS data [25] can be viewed as the
fingerprint of the continuum close to qn (Fig. 6(a)).

3.3. What can we learn from the observation of two resonance peaks in bilayer systems?

In addition to the dispersion of the magnetic resonant mode, the intensity of the resonant excitations observed in
INS measurements supports the spin exciton scenario. The imaginary part of the dynamical spin susceptibility close
to Ωr(q) the energy of the triplet bound state reads:

Imχ(q,ω > 0) = π
1

(
2I (q)
gμB

)2

(
d Reχ0(q,ω)

dω

∣∣∣∣
ω→−Ωr(q)

)−1

δ
(
ω − Ωr(q)

)
(10)

At ωc(q), Imχ0(q,ω) is a step-function and Reχ0(q,ω), which is given by Kramers–Kronig relationship, displays a
logarithmic divergence at the threshold of the e–h continuum: Reχ0(q,ω) 	 Reχ0(q,0) − β ln(|ωc(q)−ω |) + · · · . As
ωc(q)
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a consequence, the spectral weight of the triplet bound state appears to be proportional to the reduced binding energy
(ωc(q) − ω)/ωc(q) [52]:

Imχ(q,ω > 0) 	 π
1

(
2I (q)
gμB

)2

1

β

ωc(q) − ω

ωc(q)
δ
(
ω − Ωr(q)

)
(11)

Thus, the closer the mode is to the continuum, the weaker its intensity is. In the case of bilayer systems, this property
explains why the intensity of the acoustic resonance peak at low energy is always stronger than that of the optical
resonance peak (second schematic picture below in Fig. 5(e), (f)). Furthermore, one can get the advantage of the
existence of two resonance peaks in bilayer systems. For these systems, I (q) = I‖(q) ± I⊥, where I‖(q) is the planar
magnetic interaction and I⊥ a weak inter-plane magnetic interaction. At the AF wave vector I‖(qAF) � I⊥, one can
therefore neglect I⊥ in a first approximation. As a second approximation, one can assume that the electronic bands in
each of the CuO2 planes of the bilayer are degenerated, so that the threshold of the continuum is the same for each
band. Under these assumptions, one finds according to Eq. (11) that the ratio of the energy integrated spectral weight
of the acoustic and optical modes, R = W ac

r /W
op
r is equal to (ωc(qAF) − Eac

r )/(ωc(qAF) − E
op
r ). At the AF wave

vector, the threshold of the continuum can thus be directly estimated from INS measurements [24–27]:

ωc(qAF) = E
op
r R − Eac

r

R − 1
(12)

When R is large, ωc(qAF) and E
op
r are close to each other. In addition, ωc(qAF) should be slightly smaller than

2
m as found experimentally. This is the reason why both ωc(qAF) and E
op
r display a hole doping dependence very

similar to that of 2
m (Fig. 5(e), (f)). In YBa2Cu3O6+x , where ARPES measurements that probe the electronic
spectrum are still in progress [2,49], comparisons between theory and INS experiments therefore remain qualitative.
Nevertheless, for four doping levels, ωc(qAF), E

op
r and Eac

r were determined and after calibration of the magnetic
intensity in absolute units, it was found that the energy integrated spectral weight of the resonance peaks scale with
the reduced binding energy, with a scaling factor which is hole doping independent within experimental accuracy [26].
In Bi2Sr2CaCu2O8+δ , ARPES data are available (see Ref. [14]) and the recent estimates of ωc(qAF) from INS data at
optimal doping and in the overdoped [27,50] regime match quite well the values that can be computed from ARPES
measurements [51].

The overall doping dependence of Eac
r and E

op
r can be well reproduced within the exciton scenario [54,55].

From these studies, one can get a phenomenological description of the magnetic interaction I (q): I‖(q) = I0(1 −
0.1(cos(kx) + cos(ky)) and I⊥ = 0.027I0. The typical order of magnitude of I0 is about 560 meV, assuming that the
nearest neighbor hopping parameter t is ∼ 250 meV as measured by ARPES and therefore significantly renormalized
as compared to the LDA calculations (t = 400 meV). In the t–J model, one would expect I (q) to be −J (q) the planar
AF superexchange interaction found in the insulating AF state: J (q) = 2J (cos(kx) + cos(ky)) (J 	 100–140 meV).
At the AF wave vector, J (qAF) = −4J is of the same order magnitude as I0 and the rations J⊥/4J and I⊥/I0 are
similar. On the other hand, it seems that the momentum dependence of the interaction in the superconducting state is
much less marked. The interaction is even almost q-independent, as the on-site Coulomb repulsion U in the Hubbard
model. Thus, using the spin exciton scenario in the same way as one usually uses spin wave model to describe collec-
tive spin excitations in an ordered magnet, one can extract from INS data the characteristic strength and momentum
dependence of the magnetic interaction left in the superconducting state. This should help to select the Hamiltonian
that must be used to describe the magnetic and electronic properties.

4. Anomalies in the charge excitation spectrum: the feedback effect

For the traditional low-temperature superconductors, anomalies in tunneling I–V characteristics as well as in the
optical conductivity σ1(ω), when combined with neutron scattering data on the phonon density of states, provided
detailed evidence that the pairing in these materials was mediated by the exchange of phonons [56]. In this section,
we show that several anomalies observed in tunneling spectroscopy, angle resolved photoemission measurements and
optical conductivity can be associated with the resonant spin excitation, indicating the existence of a spin–fermion
coupling in cuprates, which could play the same role as the electron–phonon coupling in traditional low-temperature
superconductors.
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Fig. 7. (a) Sketch of the Fermi surface. (b) ARPES spectra in Bi2Sr2CaCu2O8+δ at the M point for different doping levels. ARPES data correspond
to measurements carried out in two underdoped samples (U) with Tc = 55 K and 83 K and one overdoped sample (O) with Tc = 72 K. The dashed
lines indicate the separation between the peak and the dip [57]. (c) The collective mode energy as deduced from ARPES data and the energy of the
magnetic resonance peak as a function of the superconducting critical temperature from the underdoped (UD) to the overdoped (OD) regimes [57].

For cuprates, several anomalous features have been reported in the charge excitation spectrum, in particular by
ARPES and tunneling measurements (for a review, see Ref. [14]). In ARPES data, the charge excitation spectrum
close to the hot spots exhibits an anomalous peak-dip-hump structure (Fig. 7(b)), with the peak located at the energy
of Ek which is close to 
m for these states. Since the anomaly disappears in the normal state, it is ascribed to the
scattering of quasi-particles by a collective mode of energy Ω , which may exist in the superconducting state only.
The anomaly in charge excitation spectrum should start at an energy ∼
m + Ω , i.e. the energy needed to create a
quasi-particle out of the superconducting condensate plus the energy of the collective mode. It is at this energy that
the dip should appear. Experimentally, the energy difference between the peak and the dip is found at the same energy
as the acoustic magnetic resonance peak and further displays the same hole doping dependence, i.e. it scales with
∼5kBTc (Fig. 7(b)) [57]. In addition, the anomaly is observed close to the hot spots, which are connected by the AF
wave vector and where there is a large density of states, due to the vicinity of a van Hove singularity (Fig. 7(a)).
A similar peak-dip-hump structure is observed in the tunneling spectra [58] and, once again, the energy difference
between the peak and the dip matches the energy and the doping dependence of the acoustic resonance peak. The
optical conductivity measurements also provide evidences of a coupling of the resonant spin excitations with charge
carriers [59].

Thanks to the improvement of ARPES measurements [14,60], it is now possible to observe the splitting of the
electronic bands into bonding (B) and anti-bonding bands (A) in Bi2Sr2CaCu2O8+δ . This splitting is the consequence
of a finite hopping of quasi-particles between the CuO2 planes in the bilayer, which lifts the degeneracy of the bands.
The peak-dip-hump anomaly is mainly observed in the B band. Close to the hot spots, the density of states is higher
in the A band than in the B band, thus in order to obtain a stronger anomaly in the B band the mode involved in
the scattering process must couple the A and B bands. It turns out that the acoustic resonance mode, which has the
stronger spectral weight, corresponds to inter-band e–h spin excitations (AB, BA), whereas the optical mode requires
intra-band e–h spin excitations (BB, AA) [53–55]. This property explains why the peak-dip-hump feature is mainly
observed in the B band, as the result of the scattering of the quasi-particles of the A band by the strong acoustic spin
resonant mode [14,60].

In addition, it is known that substitution of Cu by other transition metals, such as Zn or Ni, reduces Tc [61,62].
In Zn or Ni substituted YBa2Cu3O6+x , INS measurements show that the acoustic resonance peak broadens and its
intensity weakens, with a minor change of its characteristic energy [22,63–65]. Recent ARPES measurements [66],
performed in Ni or Zn substituted Bi2Sr2CaCu2O8+δ , indicate that the dip feature is smeared out, as expected for the
damping of the mode involved in the scattering of quasi-particles.

There is now a consensus that the anomalies in the charge excitation spectrum are due to the coupling to a collective
mode [10,14,67], but the origin of the collective mode is still matter of discussion. Is it a phonon or the magnetic
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resonance peak? Its temperature dependence, its characteristic energy, its symmetry and its sensitivity to Ni and Zn
impurities suggest that the magnetic resonance peak must be this mode. The observation of anomalies in the charge
excitation spectrum due to the magnetic resonance peak is a feedback effect. The magnetic resonance peak is a quasi-
particle–hole bound state, that appears as a consequence of the opening of the superconducting gap and residual AF
interaction. As soon as the mode settles in, it interacts with the quasi-particles in the superconducting state. This
feedback effect highlights the existence of a spin–fermion coupling in high temperature superconducting cuprates,
that couples spin and charge degrees of freedom, as the electron–phonon coupling couples lattice and charge degrees
of freedom in conventional superconductors. Thus, the observation of resonant spin excitations in the superconducting
state by INS measurements shows (i) that there are residual magnetic interactions left in the superconducting state,
otherwise the resonant spin collective mode would not exist, and (ii) that a rather strong spin–fermion coupling exists,
whose magnitude should of the order of ∼1 eV [14,67].

However, one should not conclude that the resonant spin excitations play the role of the glue of the Cooper pairs
in the superconducting state. Indeed, the magnetic resonance peak exists only in the superconducting state, and it is
believed that the fluctuations involved in the pairing mechanism should pre-exist in the normal state, as the phonons in
conventional superconductors. In the spin fluctuation exchange pairing mechanism, the fluctuations of the continuum
should trigger superconductivity thanks to spin–fermion coupling. In the t–J model, the same exchange interaction
J (q), which should be responsible for the appearance of the resonant spin mode, should play also the role of a direct
attractive interaction (eventually further enhanced by AF fluctuations). Whatever the exact mechanism that triggers
superconductivity, once superconductivity develops, resonant spin excitations modify the charge spectrum and thus
strongly influence the superconducting state.

5. Origin of the S = 1 collective mode: beyond the itinerant picture

Using a spin band model, we have seen that one can account for the existence of resonant spin excitations. This
approach seems to be well suited for the overdoped regime and close to optimal doping. However, it is running into
trouble in the well underdoped regime or for the description of the magnetic properties of La2−xSrxCuO4 system. In
this section, we give some routes to go beyond this approach.

5.1. From itinerant spin picture to localized spin picture

Starting from the metallic side of the phase diagram of high-Tc superconductors and reducing the hole doping, one
can understand the S = 1 collective mode within an itinerant-spin model. The resonant magnetic collective mode can
be described as a spin exciton [14,41–48], i.e. a S = 1 bound state, pushed by AF interaction below the gaped e–h

spin flip continuum in superconducting state. Alternatively, when starting from the Mott-insulator side of the phase
diagram and increasing the hole doping, the mode can be viewed as reminiscent of magnons observed in the insulating
AF state: this corresponds to the localized-spin models [68,69]. The collective modes between localized spins on Cu
sites that may survive are heavily damped by the scattering by charge carriers. Long-lifetime collective excitations
can be restored in the superconducting state, when scattering processes are eliminated below the gaped e–h spin flip
continuum. On the contrary, when the collective mode between localized spins remains inside the continuum in the
superconducting state, the low energy excitations become of excitonic type: the itinerant-spin approach is recovered
[68,69]. Both approaches may represent two different limits of a more global description that considers the magnetism
of high-Tc superconductors of dual character: both localized spins and itinerant spins are actually tightly bound and
cannot be disentangled [70,71]. It is worth emphasizing that in a dual approach one can schematically ascribe the
upper dispersion to the localized character of the magnetic response and the lower one to the itinerant one. In all
these models, the change of the band electronic excitations passing through Tc has an important feedback on the spin
excitation spectrum in the superconducting state.

The magnetic resonance peak exists in hole doped cuprates whose maximum Tc is about 90 K. More recently,
the magnetic resonance peak has also been observed in an electron doped system Pr0.88LaCe0.12CuO4 at 12 meV
(Tc = 24 K) [72]. There is still a debate concerning its existence in the hole doped mono-layer system La2−xSrxCuO4
with a maximum of Tc of ∼ 37 K. The magnetic excitations in that compound are rather strong even in the normal
state and located at incommensurate planar wave vectors (0.5(1 ± δinc),0.5) and (0.5,0.5(1 ± δinc)) [13,73]. This
is in marked contrast with both the hole-doped and electron doped systems mentioned above, for which the normal
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state magnetic fluctuations (if observable) remain centered around the planar AF wave vector (0.5,0.5) [40,75,76,72].
However, passing through Tc, the incommensurate spin fluctuations of La2−xSrxCuO4 are enhanced and become
narrower in momentum space, in an energy range which is about 5kBTc [74]. This phenomenon, usually referred
to as a coherence effect, and the resonance peak could eventually share a common origin and could be viewed as
excitonic S = 1 modes, with different dispersions. However, the spin excitation spectrum in La2−xSrxCuO4 usually is
not described using an itinerant spin picture, but rather using a localized one, which involves spatial inhomogeneous
distribution of localized spin on copper and doped holes: the so-called stripe model [13,77].

5.2. Heterogeneous charge distribution: the stripe picture

The stripe model (see Ref. [77] and references therein) considers that in a S = 1/2 AF Heisenberg system, doped
holes segregate to form lines of charge, separating hole-poor AF domains in anti-phase. The metallic state is viewed
as a disordered stripe phase, where charged lines can fluctuate (Fig. 8(a), (b)). It is worth noticing that in the stripe
model, charge excitations are collective modes, so that spin excitations made of fermionic excitations (i.e. e–h spin
flip excitations) do not exist. The physical interpretation of the spin–spin correlations is at the opposite of the spin
band picture discussed in the previous sections.

Static stripes can be easily identified in X-ray and neutron diffraction measurements. They indeed give rise to super-
structure charge peaks at (0,±2δinc) (or (0,±2δinc)) and superstructure magnetic peaks at vectors (0.5(1 ± δinc),0.5)

(or (0.5,0.5(1 ± δinc)). Diffraction patterns consistent with static stripes are observed in La15/8Ba1/8CuO4 [78] and
(La,Nd)2−xSrxCuO4 [79]. In these systems, a structural transition (the so-called LTT phase) has been proposed to pin
static stripes. In La2−xSrxCuO4, stripes may remain fluctuating, not being pinned by the lattice (LTO phase).

Based on the spin dynamics data in the stripe ordered system La15/8Ba1/8CuO4 (Fig. 8(c)), it has been proposed
that, at the AF wave vector, Er could be a saddle point in the dispersion with spin excitations propagating along a
given direction (say a∗) below Er and along the direction perpendicular (i.e. b∗) above Er [13,80], giving rise to

Fig. 8. (a), (b) Bond-centered stripe model according to which non-magnetic charge stripes separate a set of weakly coupled 2-leg spin ladders
in the copper oxide layers. (c) Comparison of the dispersions of spin excitations in non-superconducting La15/8Ba1/8CuO4, in superconducting
La2−xSrxCuO4 and YBa2Cu3O6+x . Figures (a)–(c) are reproduced from Ref. [13]. (d) Spin gap, 
sg in superconducting La2−xSrxCuO4 (LSCO:
open symbols) and YBa2Cu3O6+x (YBCO: full symbols) (see [86] and references therein). The upper dashed line correspond to 
sg 	 3.8kBTc.
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an X-like line-shape in twinned crystals where a∗ and b∗ are mixed. More precisely, this system is characterized by
a spin and charge stripe order at low temperature: the spin excitations spectrum can then be modeled by a specific
bond-centered stripe model according to which non-magnetic charge stripes separate a set of weakly coupled 2-leg
spin ladders in the copper oxide layers (Fig. 8(a), (b)). The low energy excitations (below Er ) correspond to collective
excitations between coupled spin ladders, running across the stripe directions, whereas the high energy part of the
spectrum (above Er ) is associated with intra-spin ladder excitations propagating parallel to the lines of charges. This
picture, sustained later by calculations [81–84], implied a pronounced in-plane anisotropy of the magnetic spectrum.

The spin excitation spectra as measured in La15/8Ba1/8CuO4, in La2−xSrxCuO4 and in YBa2Cu3O6+x display a
striking similarity, as shown in Fig. 8(c). It has been therefore proposed that spin excitation spectra in cuprates could be
universal and that the X-like lineshape is the hallmark of static or dynamical stripes [13,85]. To account for the absence
of an enhancement of the magnetic response at Er in La2−xSrxCuO4 in contrast to the other systems, the following
phenomenological scenario has been suggested, [13]. In the superconducting state, low energy spin fluctuations are
suppressed below a characteristic energy, the spin-gap 
sg 	 3.8kBTc. When the spin gap opens, there should be
a transfer of spectral weight from energies below 
sg to energies above 
sg. When 
sg is slightly below Er , the
magnetic response is enhanced at Er in the superconducting state: this could be the case for YBa2Cu3O6+x . On the
other hand, when 
sg is at much lower energy than Er , the enhancement of the magnetic susceptibility does not take
place at Er : this should be the case of La2−xSrxCuO4.

As pointed out, the spin excitation spectrum should display a strong 1D anisotropy, which should be hidden in
twinned samples. This is in contrast to the leading symmetry of the spin excitations in underdoped and optimally
doped YBa2Cu3O6+x [39,40]. Indeed, using detwinned YBa2Cu3O6+x samples [40], it has been proved that the
spin excitations spectrum exhibits a 2D symmetry both below [39] and above [40] Er , inconsistent with a saddle-
point dispersion. Furthermore, if the X-like dispersion exits even in non-SC state, as in La15/8Ba1/8CuO4, it is more
meaningful to compare the spectrum in non-SC La15/8Ba1/8CuO4 with the magnetic spectrum of the normal state in
SC cuprates as it has been recently done in underdoped YBa2Cu3O6.6 [40]. The conclusion of this study is that the
normal state spin fluctuations do not display the same dispersion as in La15/8Ba1/8CuO4. The dispersion evolves from
a X-like to a Y-like lineshape when passing through Tc. This study does not rule out dynamical stripes. However, it
points out that it is not easy to define which part of the spin excitation spectrum is really common to all cuprates.
Actually, in underdoped cuprates, only the high energy part of spectrum (upper dispersion) seems to be universal and
seems somehow reminiscent of the spinwaves of the AF insulating state (remaining localized spin response).

In addition, it is worth noticing that the computation of the spin dynamics in the framework of the stripe model
was first performed for a monolayer system [81–84] and later extended to the case of a bilayer system [87,88]. These
computations indicate that charge lines should not lie on top of each other in a bilayer, in order to minimize their
Coulomb repulsion. As a consequence, the acoustic and optical spin excitations cannot be described anymore by
Eq. (5), in contrast with INS data in bilayer systems. The observed momentum dependence of the acoustic and optical
spin excitations in bilayer systems questions the theoretical predictions based on a stripe model.

Thus, it is not yet clear whether the La2−x (Sr,Ba)xCuO4 system should be viewed as a proto-type system for
cuprates, revealing the central role of stripes, or as a peculiar system where the coupling of spin and charge degrees
of freedoms with the lattice favors spin- and charge-density waves.

6. Concluding remarks

In conventional superconductors, the neutron scattering technique has been used to study the vortex lattice in the
superconducting state, the phonon density and the renormalization of phonons in the superconducting state. Similar
studies are also performed in high temperature superconductors, but the possibility of a superconducting pairing
mediated by magnetic properties has stimulated an unprecedented study of the spin excitation spectrum in these
systems by using neutron scattering.

We have shown how, in the superconducting state, the inelastic neutron scattering technique has brought to light the
existence of an unusual S = 1 spin collective mode. Using an itinerant approach, this excitation can be understood as a
spin exciton. This excitation may further interact with quasi-particles in the superconducting state, yielding anomalies
in the charge excitation spectrum, that are observed by angle resolved photo-emission and tunneling spectroscopy. If
an itinerant approach can account for the main features of the spin excitation spectrum close to optimal doping, its
relevance becomes more questionable in the strongly underdoped regime or for systems where Tc is reduced: localized
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spin degrees of freedom should be considered. A unique theoretical model that can capture all peculiarities of the spin
excitation spectra measured by INS in different cuprate families is still required in order to conclude about the role of
spin fluctuations in the appearance of d-wave superconductivity [10].

Finally, we mainly focused on the spin excitations in the superconducting state and ignored the normal state proper-
ties. Indeed, if the understanding of unconventional superconductivity remains a major challenge for condensed matter
physicists, the description of the normal state properties is as challenging since they are not normal at all. Cuprates
behave as conventional metals only in the overdoped regime (Fermi liquid state). Close to optimal doping they display
exotic electronic properties, such as a resistivity linear as a function of temperature at any temperature (non-Fermi
liquid state). In the underdoped regime, below a certain temperature T ∗, the systems enter a state characterized by the
opening of a pseudo-gap in both spin and charge excitation spectra (pseudo-gap state) (Fig. 1). The origin of these
anomalous electronic properties in the normal state is subject to intense theoretical and experimental studies [89–91],
but no consensus has yet been achieved. Interestingly, whatever the theoretical proposal for the pseudo-gap state,
there is always a magnetic signature that should be checked by elastic or inelastic neutron scattering. Among various
theoretical proposals, it has been proposed in particular that the pseudo-gap state is a new state of matter, implying the
existence of circulating nanoscopic currents and these circulating currents can be detected by elastic neutron scattering
(for a review, see Ref. [92]).
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