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Abstract

Quantum extensions of the Gallavotti–Cohen fluctuation theorem (FT) for the entropy production have been discussed by several
authors. There is a practical gap between microscopic forms of FT and mesoscopic (i.e. not purely Hamiltonian) forms for open
systems. In a microscopic setup, it is easy to state and to prove FT. In a mesoscopic setup, it is difficult to identify fluctuations
of the entropy production. (This difficulty is absent in the classical case.) We discuss a particular mesoscopic model: a Lindblad
master equation, in which we state FT and, more importantly, connect it rigorously with the underlying microscopic FT. We also
remark that FT is satisfied by the Lesovik–Levitov formula for statistics of charge transport. To cite this article: W. De Roeck,
C. R. Physique 8 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Théorème de fluctuations quantiques : peut-on aller du micro au méso ? Des extensions quantiques du théorème de fluc-
tuations (TF) de Gallavotti et Cohen pour la production d’entropie ont été discutées par plusieurs auteurs. Il y a une séparation
pratique entre les formes microscopiques du TF et les formes mésoscopiques (c’est-à-dire non purement hamiltoniennes) pour les
systèmes ouverts. Dans un schéma microscopique, il est facile d’énoncer et de démontrer le TF. Dans un schéma mésoscopique,
il est difficile d’identifier les fluctuations de la production d’entropie. (Cette difficulté est absente dans le cas classique.) Nous
discutons un modèle mésoscopique particulier : une équation maîtresse de Lindblad pour laquelle nous énonçons le TF et, ce qui
est plus important, nous le connectons rigoureusement avec le TF microscopique. Nous remarquons aussi que le TF est satisfait
par la formule de Lesovik–Levitov pour la statistique du transport de charges. Pour citer cet article : W. De Roeck, C. R. Physique
8 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

A goal of nonequilibrium statistical mechanics is to make good, yet simple, models of complicated phenomena
out of equilibrium and to analyze them. Such models should answer correctly questions like: “What is the structure
of an object’s state that is kept between two heat reservoirs at different temperatures? How does it look like locally
and how does it fluctuate?” or “When and how does a liquid flow become turbulent?”. In equilibrium, we have a good
and simple guiding rule for making dynamical models: detailed balance. Surely, any nonequilibrium dynamics should
break detailed balance, but can one formulate a general rule as to how to fix this detailed balance breaking?

It is here that the celebrated Gallavotti–Cohen fluctuation theorem (FT) (see [1–3]) for the entropy production
comes into the picture. It turns out that there is such a general rule and it reads (for every path σ of the dynamics, with
corresponding probability Prob[σ ])

log
Prob[σ ]

Prob[θσ ] = Entropy production along σ + o(t) (1)

where θσ is the time reversed path σ . The FT itself

log
Prob[Entropy production up to time t equals st]

Prob[Entropy production up to time t equals −st ] = st + o(t) (2)

is an immediate consequence of the above rule (1). The LHS are expected to be linear in time t , the o(t) term vanishes
after dividing by t and taking t ↑ ∞. See [4] for a discussion focusing on the universality of (1).

For our purposes, it is good to emphasize that there are two reasons to appreciate (1), (2), even if those reasons are
obviously intimately related:

(I) Formulas (1) and (2) can be derived on a microscopic level, starting with Hamiltonian dynamics, using its time-
reversibility and identifying entropy production as the log of phase space volume. This was outlined in [5].

(II) The rules (1) and (2) do apply to a lot of effective (not purely Hamiltonian) or mesoscopic models. It is actually
in effective models that the FT was observed and that it is studied most often. In [1–3], one treats thermostatted
systems, while in e.g. [6–8], as well as in most later publications, one deals with stochastic models.

Note that (II) does morally, but not exactly follow from (I) since mesoscopic or effective models are merely good
approximations of the Hamiltonian microscopic dynamics.

This article is concerned with the question how rules (1) and (2) extend to quantum mechanics. On the microscopic
level (cf. (I) above), there is an obvious problem with deriving (1); quantum mechanics does not have the concept of
paths with associated pathwise entropy production. However, (2) still makes sense and, in fact, it remains true, as was
pointed out in [9–12] and as we review in a streamlined version in Section 2.

As to the status of quantum FT in effective or mesoscopic models (cf. (II)), the majority of research has focused on
master equations for small systems (see recently [13]). A very explicit discussion can be found in [14], a simplified
version of which is presented in Section 3.3. The ideas developed there are also implicit in [12] and [15].

The fact that not more effective or mesoscopic models have been investigated is perhaps not too surprising. With
the possible exception of the master equations discussed in Section 3, there are not many Markovian models of open
quantum systems which are healthy in all respects. One frequent pathology is the appearance of nonpositive density
matrices. A review of this problem and a list of possible approaches is given in [16]. We should mention that these
problems are not inherent to nonequilibrium models. Already the notion of detailed balance is somehow problematic
for Markovian quantum models since the existing definitions [17,18] are so restrictive that the master equation in
Section 3 is essentially the sole example.

Moreover, even if one has a trustworthy model, there still remains to identify the fluctuating entropy production. It
should be clear from Section 3 and Remark 1 in Section 3.3 that this is not trivial.

We remark hence that in quantum mechanics, there is a practical gap between (I) and (II). This might be disconcert-
ing, but possibly it also offers opportunities: perhaps one can improve upon some models of open quantum systems
by imposing FT.

In the case of master equations which we treat in this article, not only (2) holds but there is also a convenient
framework to state (1). This framework is the formalism of unraveling of master equations. Our results imply that
these unravelings are rigorously linked to fluctuations of currents. This is discussed extensively in [19].
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1.1. Brief summary

In Section 2, we review and sharpen the Hamiltonian approach to the FT. In Section 2.3, we give an example of
a known counting formula in mesoscopic physics which satisfies FT. We introduce the master equation describing
a small system in contact with different heat baths in Section 3 and we develop the necessary tools (unravelings) to
identify the entropy production. Finally, in Section 4, we connect the master equation with the Hamiltonian approach
and we show that fluctuations of the entropy production in the Hamiltonian model converge to fluctuations calculated
by means of unravelings. The importance of this result is:

(1) It shows that the FT is valid in the thermodynamic limit (at least in the weak coupling limit);
(2) It rigorously justifies the technique of unravelings, which is quite popular in quantum optics.

2. The quantum fluctuation theorem

To fix our thoughts, we introduce a model and corresponding notation. Imagine several heat reservoirs indexed
by k ∈ K and modeled by Hilbert spaces Hk and self-adjoint Hamiltonians Hk on Hk . Each reservoir is in thermal
equilibrium at inverse temperature βk . One connects all heat reservoirs with a small system S, modeled by a finite-
dimensional Hilbert space HS and a self-adjoint Hamiltonian HS. The connection between S and reservoir k is through
a self-adjoint coupling term H I

S−k on HS ⊗Hk . The coupling is controlled by a factor λ and the total Hamiltonian is

Hλ = HS +
∑

k

Hk + λ
∑

k

H I
S−k (3)

The dynamics of the full system is given by the unitary group Uλ
t = e−itHλ on the Hilbert space H := HS ⊗

[⊗k Hk]. The initial state ρ0 is a product state on H

ρ0 = μ0 ⊗
[⊗

k

ρk,βk

]
(4)

where the states ρk,βk
are equilibrium states on Hk with respect to the Hamiltonians Hk at inverse temperatures βk

and μ0 is an arbitrary density matrix on HS.
In the thermodynamical limit, the states ρk,βk

are no longer density matrices and one needs the machinery of
operator algebras, see e.g. [20,21], to define these states properly. We will completely ignore this problem (since its
solution belongs to standard knowledge in mathematical physics), and we avoid writing ill-defined expressions by
using the notation

ρk[A] := Tr[ρkA] with A an operator and ρk a density matrix on Hk (5)

The LHS can still be used when ρk is no longer a density matrix, but instead a state in the sense of operator algebras.2

Note finally that models as (3) have received a lot of attention lately in mathematical physics. E.g. in [22] one proves
the Green–Kubo relations and Onsager reciprocity in the spin-fermion model at finite λ > 0.

2.1. What do we mean by quantum fluctuations?

It is not a priori clear what one means by fluctuations of heat currents, or fluctuations of the entropy production.
(See [23] for an elaboration on that question.)

One encounters at least three approaches (see, however, [23] for a different view).

(1) Measure the energies Hk in the beginning and at the end of the experiments and make statistics of the difference
of both measurements. This approach yields the FT [12,9,10,24].

2 In fact, the situation is even more complicated. For fermions, one can indeed find a subalgebra of B(Hk)—the Weyl-C∗-algebra—on which the
state ρk,βk

can be appropriately defined. For bosons, one has to invoke W∗-algebras and the Araki–Woods representation to give rigorous meaning
to the model.
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(2) Calculate the fluctuations of the operator UtHkU−t − Hk . In [25], a deviation from the fluctuation theorem was
established for the fluctuations of a related operator.

(3) In [26], one studies the fluctuations of the relative modular operator—a C*-algebraic concept. These fluctuations
satisfy the FT, but the meaning of this relative modular operator is a priori unclear to us.

The advantage of the first approach is that it is more relevant in an experimental setup. A possible argument for
the second would be that it seems better suited for taking the thermodynamic limit, since it avoids the measurements.
However, by slightly reformulating the first approach, one can also meaningfully study the thermodynamical limit
(see also [27]), as we point out now.

Assume for simplicity that the Hk have discrete spectra, indicating that we have not taken the thermodynamic limit
and let x ∈ X label a complete set of eigenvectors |x〉 of (Hk)k∈K with eigenvalues (Hk)k∈K(x). Let the projectors Px

stand for 1 ⊗ |x〉〈x| where 1 stands for identity on HS. The probability of measuring an entropy production r is

Pt,λ(r) =
∑

x,y∈X,
∑

k βk(Hk(y)−Hk(x))=r

ρ0
[
PxU

λ−tPyU
λ
t Px

]
(6)

The idea behind the formula is clear: measure (thereby projecting on the eigenstates x), then switch on the time
evolution Uλ

t , finally measure again (projecting on the eigenstates y). For later convenience, instead of studying the
probability distribution Pt,λ(r), we focus on the Laplace transform.

F(κ, t, λ,ρ0) :=
∫
R

dPt,λ(r)e
−κr (7)

which, in the case when Pt,λ(r) is given by (6), reads

F(κ, t, λ,ρ0) :=
∑

x,y∈X

ρ0
[
PxU

λ−tPyU
λ
t Px

]
e−κ

∑
k βk(Hk(y)−Hk(x)) (8)

We now use that the initial state ρ0 is diagonal in the basis |x〉 to rewrite (8) into

F(κ, t, λ,ρ0) = ρ0
[
Uλ−te

−κ
∑

k βkHkUλ
t eκ

∑
k βkHk

]
(9)

This last expression is perfectly suited for taking the thermodynamic limit, since it remains well-defined when the
operators Hk have continuous spectrum and the state ρ0 is not given by a density matrix. (This does not mean that
the expression (9) is necessarily finite. After all, the physics could be such that the Laplace transform is infinite for
some κ .)

2.2. Derivation of the quantum fluctuation theorem

If one defines the fluctuations through (9), FT is easily derived. Assume that the initial state ρ0 is given by

ρ0 = 1

d
⊗

[⊗
k

e−βkHk

Zk

]
, Zk := Tr e−βkHk , d := dimHS (10)

hence the initial state on the small system is the trace state, or infinite temperature state. Assume further that the
dynamics is reversible, i.e. there is an anti-unitary time-reversal involution T which commutes with both the free and
interacting Hamiltonians

[T ,Hk] = 0, [T ,Hλ] = 0, T T = 1, T Uλ
t T = Uλ−t (11)

Abbreviating W = ∑
k βkHk , using the above relations and cyclicity of the trace, one calculates

F(κ, t, λ,ρ0) = Tr
[
e−WT T Uλ

t T T e−κWT T Uλ−t T T eκW
](

d
∏
k

Zk

)−1

(12)

= Tr
[
e−WUλ

t e−(1−κ)WUλ−te
(1−κ)W

](
d

∏
Zk

)−1

= F(1 − κ, t, λ,ρ0) (13)

k
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which is equivalent to (2) without the o(t)-correction term. The above derivation relies on a particular initial state for
the small system. It is known as a transient FT. Obviously, for large t , one expects the initial state of the small system
to be irrelevant and (2) follows under some additional ergodicity assumptions.

2.3. Example: counting statistics for charge transport

As argued in Section 1, it is interesting to investigate to what extent the fluctuation symmetry is actually present in
known expressions for current statistics. We briefly discuss the Lesovik–Levitov formula [28] for electronic transport
between leads. We base our treatment on a neat version of the formula presented in [27] wherein the electrons do not
interact and the formula (16) can be derived without any approximation. It is also assumed that all Hilbert spaces are
finite-dimensional (see [29] for a discussion of the thermodynamical limit).

Let h be the Hilbert space of one electron. The presence of two leads is made explicit by splitting h = h1 ⊕h2 where
the spaces h1,h2 contain all the states in respectively lead 1, 2. The projectors on h1,h2 are denoted 1h1,1h2 and the
decoupled one-particle Hamiltonian is h1 ⊕ h2. Let the inverse temperature be β and let the leads have respective
chemical potentials μ1,μ2. Let n be the occupation number operator (dictated by Fermi–Dirac statistics)

n = (
eβ(h1−μ11h1 )eβ(h2−μ21h2 ) + 1

)−1 (14)

The contact between the leads is modeled by a scattering process with unitary scattering matrix S. We assume, that
the scattering process conserves total energy and that both scattering process and decoupled evolution are reversible

[S,h1 ⊕ h2] = 0, T h1,2T = h1,2, T ST = S∗ (15)

for some anti-unitary operator T modeling time-reversal.
At time t = 0 and t = τ , one measures the total charge in, say, lead 1 (for simplicity, we set the charge to unity, so

that ‘charge’ just means ‘number of particles’). Let F(κ) be the Laplace transform of the distribution of transported
charge F(κ) = ∑+∞

q=−∞ p(q)e−κq where p(q) is the probability to find at time t = τ an excess charge q , as compared
to t = 0.

The Lesovik–Levitov formula reads (see [27]):

F(κ) = det
(
1 + n

(
S∗e−κ1h1 Seκ1h1 − 1

))
(16)

Obviously, the entropy production in this scenario is just −β(μ1 −μ2)q and hence one expects that FT implies the
following symmetry (cf. (12), (13))

F
(−κβ(μ1 − μ2)

) = F
(−(1 − κ)β(μ1 − μ2)

)
(17)

That relation is easily verified by starting from (16), using (15) and the fact that det(AB) = det(A)det(B) for matrices
A,B (recall that our one-fermion space is finite-dimensional).

3. A good effective model: the master equation

3.1. Construction of the master equation

Having in mind the Hamiltonian model introduced in Section 2, we can construct a master equation that approxi-
mates the evolution of a general density matrix μ0 on the small system HS. This master equation describes essentially3

two effects:

(1) Decoherence: non-diagonal elements in the eigenbasis of HS vanish;
(2) The fluctuations of the diagonal elements, which evolve independently of the off-diagonal elements.

In view of this behavior, we choose to restrict attention to diagonal elements. This allows for a less technical presen-
tation, as we can replace the Lindblad master equation by a classical Markov process.

3 That is, if we assume HS to be nondegenerate. If it is degenerate, the picture is slightly more complicated but the results still hold, see [14].
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Let e, e′, . . . be the eigenvalues of the system Hamiltonian HS and let Pe,Pe′ , . . . be the projectors on the corre-
sponding eigenspaces which we assume one-dimensional.

Define transition probabilities for each separate k ∈ K as

pk(e, e
′) :=

∫
R

dteit (e′−e)(1 ⊗ ρk,βk
)
[
eiHktPe′H I

S−kPee−iHktPeH
I
S−kPe′

]
(18)

where 1 is the (unnormalized) density matrix 1 on HS. The total transition probabilities are hence given as

p(e, e′) =
∑

k

pk(e, e
′) (19)

The information about the temperatures βk is encoded into the RHS of (18) through the state ρk and in fact one can
show

Reservoir k is at thermal equilibrium at βk ⇒ pk(e, e
′)/pk(e

′, e) = eβk(e−e′) (20)

As said, the density matrix of the system is diagonal. We denote the time-dependent diagonal elements by μe(t).
The (Pauli) master equation now reads

dμe(t)

dt
=

∑
e′

(
μe′(t)p(e′, e) − μe(t)p(e, e′)

)
(21)

3.2. Derivation of the master equation

The only information missing is in what sense this master equation (21) approximates the true dynamics generated
by (3). Physically, one needs to perform the Born–Markov approximation and the rotating wave approximation, on
which we will not comment here (see instead [30,31]). Mathematically, one can make the convergence to the master
equation precise in the so-called weak coupling limit: let the initial state ρ0 = μ0 ⊗ [⊗k ρk,βk

] be as in (4). Let μλ(t)

be the density matrix obtained by reducing the full state of the interacting system at time t , i.e.

μλ(t) = TrR

[
Uλ

t μ0 ⊗
[⊗

k

ρk,βk

]
Uλ−t

]
(22)

where TrR is a conditional expectation. (If ρ is a state on HS ⊗ HR, then TrR ρ is a state on HS such that for any
operator A on HS: ρ(A) = (TrR ρ)(A). If ρ is a density matrix, then TrR is just the partial trace over the reservoirs.)
The statement, rigorously proven in [32] under mild assumptions (about which we will be more explicit in Section 4),
is

Peμ
λ
(
λ−2t

)
Pe −→

λ↘0
μe(t) (23)

As is clear from the scaling and the expression (18), the master equation emerges in second-order perturbation
theory. Hence we require that TrR[H I

S−k] = 0 such that the first order term perturbation term vanishes (which can
always be achieved by redefining HS).

3.3. Guessing path-wise entropy production

Given the very suggestive form of the transition probabilities (18), one is inclined to supplement the master equation
in the following way:

The paths σ of the Markov process defined by formula (21) are sequences of energy levels ei with transition times
ti (jump from ei−1 to ei ) with P

t
e0

the path probabilities up to time t

σ = (e0; t1, e1; t2, e2; . . . ; tn, en), P
t
e0

(σ ) = e−λe0 t1p(e0, e1)e
−λe1 (t2−t1) · · ·p(ej−1, ej )e

−λej
(t−tj ) (24)

where j is the highest index such that tj < t and λe = ∑
e′ p(e, e′) are the escape rates. The subscript e0 in P

t
e0

indicates the process has been started from e0.
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Clearly, to speak about currents and entropy production, we need more information; we need to know which bath
k triggered the transition. Hence, we need a process with paths σ̃ and probabilities P̃

t
e0

(σ̃ ):

σ̃ = (e0; t1, k1, e1; t2, k2, e2; . . . ; tn, kn, en)

P̃
t
e0

(σ̃ ) = e−λe0 t1pk1(e0, e1)e
−λe1 (t2−t1) · · ·pkj

(ej−1, ej )e
−λej

(t−tj ) (25)

We simply define a new process corresponding to the pathspace measure (25). Remark that obviously,
∑
σ̃→σ

P̃
t
e0

(σ̃ ) = P
t
e0

(σ ) (26)

where the sum is over all σ̃ which reduce to σ by omitting all ki .
One can just as well calculate the matrix elements μe(t) from the path probabilities P̃ as from P:

μe(t) =
∑

σ̃ ,en(σ̃ )=e

P̃
t
μ(0)(σ̃ ) =

∑
σ,en(σ)=e

P
t
μ(0)(σ ) (27)

where

P̃
t
μ(0) =

∑
e0

μe0(0)P̃t
e0

, P
t
μ(0) =

∑
e0

μe0(0)Pt
e0

(28)

and with n(σ̃ ), n(σ ) being the number of jumps in the paths σ̃ , σ . Hence, we have extended our pathspace probability
measure P

t into a pathspace probability measure P̃
t . In the theory of open quantum systems, one calls such an exten-

sion an unraveling and the paths σ̃ are called quantum trajectories, see [31,33] for an overview and [34] for similar
reasoning.

Having the pathspace probability measure P̃
t at our disposal, we can do all the manipulations which are familiar

from classical Markov processes. The function on paths σ̃

wt (σ̃ ) = −
n∑

i=1

βki
(ei − ei−1) (29)

which we identify as the path dependent entropy production, is equal to the ratio of probabilities of forward and
backward paths;

wt(σ̃ ) = log
dP̃μ0(σ̃ )

dP̃μt (θ σ̃ )
with θσ̃ = (en; t − tn, kn, en−1; . . . ; t − t2, k2, e2; t − t1, k1, e0) (30)

as follows from (20). From (30), we retrieve the FT (2), or its Laplace-transformed version

log
∫

dP̃
t
μ0

(σ̃ )e−κwt (σ̃ ) = log
∫

dP̃
t
μ0

(σ̃ )e−(1−κ)wt (σ̃ ) + o(t) (31)

Obviously, one can push on and prove the Green–Kubo relations, Onsager reciprocity and strict positivity of the
entropy production from (31). This is discussed at length in [14].

At this point, one should note that this unraveling and the construction of the pathspace measure P̃t was a product
of our intuition. Hence, it not a priori clear whether the fluctuations of entropy production which we can calculate
through formula (29) and the measure P̃

t coincide with the entropy fluctuations in the original model. This problem
motivates the following section.

Remark 1. However intuitive the above reasoning, one should keep in mind that we have used more information than
is contained in the bare master equation (21). In particular, we used (19). To put things even sharper: given a master
equation without any additional information, one could associate to it baths in different ways, thereby obtaining
completely different expressions for the entropy production.
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4. Linking the microscopic fluctuations with the quantum trajectory fluctuations

The idea of this section is to justify the guesses in Section 3.3. We do this by connecting fluctuations of the entropy
production in the Hamiltonian model, as in expression (9) to the fluctuations calculated by the probability measure
Pt

μ0
. This connection is made sharp in the regime in which the master equation is derived, i.e. in the weak coupling

limit. To be as concrete as possible, we make explicit the model which was outlined in the beginning of Section 2.
Let for each k, Hk be a fermionic4 Fock space, i.e.

Hk := C ⊕ L2(
R

d
) ⊕ L2(

R
d
) ⊗a L2(

R
d
) ⊕ · · · (32)

where the ⊗a denotes the anti-symmetrized tensor product, which accounts for the fermion statistics. Let the Hamil-
tonian Hk describe free fermions with one-particle dispersion relations hk(q) = hk(|q|) where q ∈ R

d is the momen-
tum, i.e.

Hk =
∫

Rd

dqhk

(|q|)a∗
k (q)ak(q) (33)

with ak(q), a∗
k (q) creators/annihilators of fermions in reservoir k with momentum q , that is{

ak(q), a∗
k′(q ′)

} = δk,k′δ(q − q ′) (34)

Let now the interaction H I
S−k be given as

H I
S−k =

∫

Rd

dq fk(q)Dk ⊗ a∗
k (q) + f̄k(q)D∗

k ⊗ ak(q) (35)

for some operators Dk on HS and coupling functions fk ∈ L2(Rd). The thermal states ρk,βk
on Hk are defined as

quasi-free states determined by their two-point correlation function (determined by the Fermi–Dirac distribution)

ρk,βk

[
a∗
k (g′)ak(g)

] = 〈
g,

(
1 + eβkhk

)−1
g′〉 (36)

We recall the definition of F(κ, t, λ,ρ0) in (9) as the Laplace transform of the distribution of entropy production:

F(κ, t, λ,ρ0) = ρ0
[
Uλ−te

−κ
∑

k βkHkUλ
t eκ

∑
k βkHk

]
(37)

where again, as in (4), ρ0 = μ0 ⊗ [⊗k ρk,βk
] with μ0 an arbitrary density matrix on HS.

We can now state the main message of this article:

The generating function F(κ, t, λ,ρ0) (37) from the microscopic Hamiltonian model
converges in the weak coupling limit to the generating function defined by unravelings,

F(κ, t,μ0) =
∫
R

dre−κr
P̃

t
μ0

[
wt = r

]

where P̃
t
μ0

is the measure constructed in Section 3.3. That is, under some conditions
(see below) and for all t > 0 and initial density matrix μ0 on HS,

F
(
κ,λ−2t, λ, ρ0

)−→
λ↘0

F(κ, t,μ0)

Rephrasing the fluctuation relation within the Hamiltonian model and taking t ↑ ∞ one gets:

lim
t↗+∞ lim

λ↘0
t−1 logF

(
κ,λ−2t, λ, ρ0

) = lim
t↗+∞ lim

λ↘0
t−1 logF

(
1 − κ,λ−2t, λ, ρ0

)
(38)

4 One could just as well take bosons here, but then formulas like (37) need more elaboration to get rigorous meaning; see also the footnote in the
introduction to Section 2.
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which is a mathematical statement about large deviation generating functions.
The limit λ ↘ 0 can be omitted altogether from the above statement since the FT holds without small-coupling

approximation (see [35] for a proof of existence of the limit t ↗ +∞ in that case).
These statements are essentially a rephrasing of technical results in [36], and they are more extensively commented

upon in [19]. The results are proven by extending the convergence in the weak coupling limit to the full system
(including reservoirs). One proves that the full Hamiltonian evolution converges to a quantum stochastic evolution.
Similar results (though in a weaker form, not permitting the conclusions of this paper) have been proven in [37]
and [38].

To make the discussion complete, we give an example of a set of assumptions that is sufficient to prove the above
statements.

Define the set of Bohr frequencies F := {e − e′ | e, e′ ∈ spHS} and assume that:

(1) The dispersion functions hk : R
+ �→ R

+ are monotone increasing, and continuously differentiable with nonzero
derivative in h−1

k (F). The coupling functions fk are also continuous in h−1
k (F). Write hk for the self-adjoint

operator associated to the dispersion function hk by (hkg)(q) = hk(|q|)g(q) for g ∈ L2(Rd).
(2) For γ = 0, κ , the functions

R � t →
{

ρk,βk
[a(e−ithk e−γβkhkf )a∗(f )]

ρk,βk
[a∗(e−ithk eγβkhkf )a(f )] (39)

are bounded and L1-integrable.

5. Conclusion

We have investigated the question of generalization of FT to quantum systems. We remarked in Section 2.2 that
in a microscopic (= Hamiltonian) framework, one can unambiguously state FT. In practice, it is more common to
start from a mesoscopic (= effective, non-Hamiltonian) description of an open quantum system. In Section 3.3, we
discussed a very straightforward and successful approach for the dynamics given by a specific master equation; one
can guess what are fluctuations of entropy production and one can state FT. Finally, in Section 4, we state the link
between fluctuations of the entropy production, defined in the microscopic model in Section 2 and the fluctuations
which are the result of the guess-work in Section 3, which hence turns out to be good guess-work.
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