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Abstract

We present the first numerical observation of Lyapunov modes (mode structure of Lyapunov vectors) in a system maintained
in a nonequilibrium steady state. The modes show some similarities and some differences when compared with the results for
equilibrium systems. The breaking of energy conservation removes a zero exponent and introduces a new mode. The transverse
modes are only weakly altered but there are systematic changes to the longitudinal and momentum dependent modes. To cite this
article: T. Taniguchi, G.P. Morriss, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Modes de Lyapounov pour un système de non-équilibre avec un flux de chaleur. Nous présentons les premières observations
numériques de modes de Lyapounov (structure en mode des vecteurs de Lyapounov) dans un système maintenu dans un état
stationnaire de non-équilibre. Les modes présentent des similitudes et des différences quand ils sont comparés avec les résultats
pour les systèmes d’équilibre. La non conservation de l’énergie enlève un exposant nul et introduit un nouveau mode. Les modes
transverses sont seulement faiblement altérés mais il y a des changements systématiques dans les modes longitudinaux et dépendant
de l’impulsion. Pour citer cet article : T. Taniguchi, G.P. Morriss, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The difference of two trajectories starting from infinitesimally nearby initial conditions, which is called the Lya-
punov vector, plays an essential role in the description of stability or instability in dynamical systems. The exponential
rate of expansion or contraction of the absolute value of the Lyapunov vector is the Lyapunov exponent, and its pos-
itivity means that the system has a dynamical instability and is called chaotic. The Lyapunov vector is introduced in
each independent direction of phase space, so in general we have to consider a set of Lyapunov exponents, called the
Lyapunov spectrum, and the corresponding Lyapunov vectors in a high-dimensional chaotic system. An algorithm
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to calculate the Lyapunov exponents and vectors in many-body systems has been developed by Benettin et al. [1–3],
and Shimada and Nagashima [4], and the behavior of Lyapunov vectors has been investigated from various points of
view, for example, the conjugate pairing rule for Lyapunov spectra in some thermodynamic systems [5–8], and the
localization behavior of Lyapunov vectors [9–16], etc.

Recently, wavelike structure of Lyapunov vectors, called Lyapunov modes, and the corresponding stepwise struc-
ture of Lyapunov spectra has drawn attention in many-particle chaotic systems [17–23]. This structure appears in the
region of Lyapunov exponents with small absolute values. Lyapunov exponents have the dimension of inverse time,
so the structure in the small Lyapunov exponents is supposed to be a reflection of the slow and macroscopic behav-
ior of many-particle systems. Since the first observation of Lyapunov modes in computer simulations of hard disk
systems [18,24–27] they have been found in systems with soft potentials, independent of dimensionality and system
geometry. It is now believed that the zero modes arise due to the presence of conserved quantities [28], and the spatial
dependence of the non-zero modes is essentially analogous to higher order Fourier components. It has been shown
that the breaking of conserved quantities, by, for example, a change from periodic to hard wall boundary conditions,
leads to the absence of particular modes. It is also known that there are stationary modes and time-oscillating modes
among the non-zero Lyapunov modes, and the time-oscillating period of the Lyapunov modes is connected to that of
an equilibrium momentum auto-correlation function [26,28].

In this article we consider the effect of breaking energy conservation by adding energy at one end of the system
and removing it at the other. Although this leads to a flow of heat energy through the system, this is not intended
to be a realistic model of low dimensional heat flow. Quasi-one-dimensional systems have been extensively used to
investigate Lyapunov modes and the localization or delocalization of Lyapunov vectors for many-particle systems at
equilibrium [25,26,15,16], and these systems can easily be adapted to maintain a heat flow. Using such a system, we
investigate nonequilibrium effects of the Lyapunov modes and the momentum auto-correlation functions.

2. Quasi-one-dimensional heat model

We consider a quasi-one-dimensional many-hard-disk system with a mechanism to insert energy at one end of
the system and to remove energy from the other end. It consists of N hard disks of radius R and mass m in a two-
dimensional rectangular region of length Lx and width Ly , with Ly < 4R so that the disk order remains invariant. We
choose periodic boundary conditions in the transverse y-direction, and in the longitudinal x-direction we use a special
boundary condition that allows the transfer of energy between the system and walls:

p′
x = −(1 − ε)px − ε

√
mkBT sgn(px) (1)

p′
y = py (2)

where sgn(x) ≡ x/|x|, kB is Boltzmann’s constant and ε is a parameter (0 � ε � 1). In a collision, (px,py) is the
incoming momentum of the particle and (p′

x,p
′
y) is the outgoing momentum. The parameter ε controls the strength

of the coupling to the ‘heat reservoir’ of temperature T = Tα (where α is either L or R). When ε = 1 the incoming
momentum px is completely replaced by the mean thermal momentum −√

mkBT sgn(px) of the reservoir and all
information contained in the incoming momentum is lost. At ε = 0 the connection with the reservoir is removed and
the collision process is hard wall. Here we consider values of ε between 0 and 1 so that the reservoir is coupled to
the system but the loss of information is not complete. We choose the temperatures of the reservoirs independently,
so the temperature of the left-hand side reservoir is TL = 10, and the right-hand side reservoir is TR = 1. A schematic
illustration of this system is given in Fig. 1. For the numerical results that are shown in this paper, we use the values
m = 1, N = 100, R = 1, Ly = 2R(1 + 10−6) and Lx = 1.5NLy .

Fig. 1. The quasi-one-dimensional hard-disk system with a heat flux. The system width is narrow so that the disks remain in the same order
(numbered 1,2, . . . ,N from left to right). When disks collide with walls at either end of the system energy is transferred between the disks and
walls depending upon the values of the temperatures TL and TR .
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Note that boundary condition (2) with periodic boundary conditions in the y-direction guarantees that the total
momentum in the y-direction is conserved. The parameter ε determines the strength of the coupling between the
reservoir and the system, and specifies the fraction of incoming momentum px that is retained after the collision.
If TL �= TR and ε �= 0 then an energy transfer (heat) occurs across the system, and a nonequilibrium steady state is
established after a long time.

3. Stepwise structure of Lyapunov spectra

Fig. 2 is a graph of the absolute value of the normalized Lyapunov spectrum {|λ(n)|/λ(1)}n with ε = 0.5. Here the
largest Lyapunov exponent is λ(1) ≈ 1.79. From this figure we see that the positive branch and the negative branch
of the Lyapunov spectrum are not symmetric, namely λ(j) �= −λ(4N−j+1) particularly for the exponents of smallest
magnitude near N = 200. This is different from the equilibrium case (ε = 0) where the dynamics is Hamiltonian with
the symplectic structure guaranteeing the conjugate pairing rule for the Lyapunov spectra λ(j) = −λ(4N−j+1) [29].
The system has 3 zero-Lyapunov exponents, due to total momentum conservation and spatial translational invariance
in the y-direction, and time-translational invariance. In the nonequilibrium case (ε �= 0) the total energy of the system
is no longer conserved and this is the reason that λ(202) �= 0, although it is zero at equilibrium.

In Refs. [25,26,28], it is shown that for the equivalent equilibrium system (that is, ε = 0 and hard-wall boundary
conditions in the longitudinal direction and periodic boundary conditions in the transverse direction), the Lyapunov
spectrum consists of 1-point steps and 2-point steps. The 1-point steps correspond to Lyapunov vectors containing
transverse Lyapunov modes, and have their origin in total momentum conservation (and translational invariance) in
the y-direction. On the other hand, the 2-point steps correspond to longitudinal and momentum proportional mode
contributions. In Fig. 2 we can see that, away from equilibrium, the 1-point steps and 2-point steps remain (see
Table 1 for meaning of 1-point and 2-point steps of the Lyapunov spectrum). The positive and negative branch 1-point

Fig. 2. The Lyapunov spectrum for the quasi-one-dimensional heat model consisting of 100 disks with ε = 0.5. The reduced Lyapunov exponents
({|λ(n)|/λ(1)}n) with smallest magnitude are shown in the main plot. The inset is a plot of the positive exponent region of the full Lyapunov
spectrum. The circles are the smallest positive exponents, while the crosses are the absolute values of the conjugate negative exponents. The
horizontal axis is the exponent number n, numbered from 1 (the largest) to 4N = 400 (the smallest).

Table 1
Classification of the exponents in the Lyapunov spectrum for the quasi-one-dimensional
system of 100 particles. The four zero exponents are 199, 200, 201 and 202 at equilibrium

Step number Positive branch Negative branch

1-point step 2-point step 1-point step 2-point step

First 198 197, 196 203 204, 205
Second 195 194, 193 206 207, 208
Third 192 191, 190 209 210, 211
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steps are symmetric, that is λ(n) ≈ −λ(4N−n+1), for n = 198,195,192,189,188,185, . . . . This may be because total
momentum conservation and spatial translational invariance in the y-direction is preserved regardless of the value of
ε. On the other hand, the step-heights of the 2-point steps are clearly different in the positive and negative branches.
Indeed, the asymmetry of the positive and negative exponents appears to be of the same magnitude for each 2-point
step, and as well as for exponent 202 that has shifted from zero.

There is no Gaussian thermostat [6,7] in this system so conjugate pairing of Lyapunov exponents would not be
expected to hold. The magnitudes of the largest and smallest Lyapunov exponents appear to be almost equal, and
there is only weak evidence for phase space dimensional contraction because dissipation as the origin of such a
contraction can occur only at the two particles at the ends of the system.

4. Mode structure of Lyapunov vectors

For each Lyapunov exponent in the Lyapunov spectrum there is a corresponding Lyapunov vector which will, in
general, have both coordinate and momentum components. For the exponents of smallest magnitude, the Lyapunov
vectors often contain either coordinates of momentum components that vary sinusoidally with particle position form-
ing a delocalized structure. We refer to such Lyapunov vectors containing delocalized structures as Lyapunov modes.

4.1. Modification of zero-Lyapunov modes

The introduction of the nonequilibrium boundary condition ε �= 0 leads to a change in the structure of the Lyapunov
mode corresponding to exponent λ(202). The x-component of the new mode is shown in Fig. 3. The fact that λ(202) �= 0,
is a purely nonequilibrium effect. Fig. 3 shows the longitudinal component δx

(202)
j of the Lyapunov vector δ�(202)

as a function of the collision number nt and the normalized particle position for ε = 0.5. Note that in this paper the
Lyapunov vector δ�(n) corresponding to the Lyapunov exponent λ(n) is normalized so that |δ�(n)| = 1. In order to
obtain a clear graph, we take a local time average, indicated by the notation 〈· · ·〉t , over 8N collisions using data just
after collisions. Fig. 3 shows an approximately steady structure with a slope which is steepest near the two ends of

Fig. 3. The local time average 〈δx(202)
j

〉t of the longitudinal spatial com-
ponent of the Lyapunov vector corresponding to Lyapunov exponent
λ(202) as a function of the collision number nt and the normalized local
time average of the particle position 〈xj 〉t /Lx , for ε = 0.5.

Fig. 4. The transverse Lyapunov modes for the quasi-one-
dimensional heat model as shifted plots of the normalized

transverse Lyapunov vector component 〈δy(n)
j

〉/〈δy(n)
1 〉 as

functions of 〈δx(n)
j

〉/Lx for ε = 0 (crosses), ε = 0.5 (circles)
and ε = 0.9 (triangles). The first 1-point step (n = 198) is
shifted so that zero corresponds to 4 on the vertical axis, the
second 1-point step (n = 195) is shifted so that zero corre-
sponds to 2 on the vertical axis and the third 1-point step
(n = 192) is not shifted. Notice that the transverse modes are
largely independent of the parameter ε.
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the system. This structure is quite different from the equilibrium case, where the longitudinal component δx
(2N+2)
j is

found numerically to be almost zero in both space and time.

4.2. Transverse Lyapunov modes

Each 1-point step of the Lyapunov spectrum has an associated Lyapunov vector containing a transverse mode. The
y-component δy

(n)
j for the j th disk of the nth Lyapunov vector has a sinusoidal dependence on the particle position

xj /Lx at equilibrium [25,26]. We show that this structure is only slightly changed when the system is driven away

from equilibrium, ε �= 0. In Fig. 4 we present the time average of the transverse mode 〈δy(n)
j 〉 as functions of the

average position 〈δx(n)
j 〉/Lx of the j th disk for different values of ε. The first (198), second (195) and third (192)

transverse modes are clearly visible for the nonequilibrium cases. Note that the transverse Lyapunov modes in Fig. 4
show a weak ε-dependence. In the nonequilibrium case ε �= 0, there is a deviation from a sinusoidal curve in the
transverse mode, while in the equilibrium case ε = 0, the mode structure can be fitted nicely by a sinusoidal curve.
Fig. 4 shows that the amplitude of the transverse mode decreases slightly from the high temperature region (left
side) to the low temperature region (right side). This change in amplitude in the transverse Lyapunov modes is a
nonequilibrium effect.

4.3. Longitudinal and momentum-proportional Lyapunov modes

Some of the structure of the longitudinal modes in the system remains as the system departs from equilibrium.
There is a π/2 phase shift in time between the δx components of modes in the same 2-point step, that is between
〈δx(197)

j 〉 and 〈δx(196)
j 〉, see Fig. 5. As the momentum components are approximately the same functional form as the

spatial components, there is the same phase shift between 〈δp(197)
xj 〉 and 〈δp(196)

xj 〉. The same behavior is observed for

the components of the modes in the first 2-point step in the negative branch of the spectrum, 〈δx(204)
j 〉 and 〈δx(205)

j 〉
differ by a π/2 phase shift in time, as do the contributions 〈δp(204)

xj 〉 and 〈δp(205)
xj 〉. In the positive branch 2-point step

the spatial contributions are larger than the momentum contributions, in the negative branch the relative sizes of the
contributions are reversed.

The principle new feature is that nodal lines are curved, with those contributions to the positive branch of the
spectrum having the center of the system reaching the node later than the two ends. This gives the appearance of a
‘forward’ moving wave in the positive branch modes and a ‘backward’ moving wave in the negative branch modes.
It is less apparent in Fig. 5 that the time-oscillating period in the negative branch is larger than that for the positive
branch. Also, the δx components in the negative branch do not have nodes at the two ends but these are shifted within
the boundaries.

The momentum proportional components of the modes in Fig. 6 are also similar to those at equilibrium. The phase
differences of π/2 and the straight nodal lines remain the same. However, the central nodal line at 〈xj 〉t /Lx = 0.5
is now shifted towards the high temperature end of the system for both 〈δyj /pyj 〉t and 〈δpyj /pyj 〉t . As with the
longitudinal modes, the time-oscillating period in the negative branch is larger than in the positive branch. The other
modes that are not shown in Fig. 6 have a similar structure, for example 〈δxj /pxj 〉 for 196 and 197 have a similar
structure to 〈δyj /pyj 〉 but with more apparent noise. Also, 〈δpxj /pxj 〉 for 204 and 205 have a similar structure to
〈δpyj /pyj 〉 but with more apparent noise.

5. Time-oscillating periods of Lyapunov modes and velocity auto-correlation

The period Tacf (in numbers of collisions) of the auto-correlation function (acf) Cx for the longitudinal component
of the momentum increases, and the amplitude decreases as a function of ε (see Table 2). The time oscillating period
T (k) of the Lyapunov vectors for the kth longitudinal (and the momentum proportional) mode in the positive branch
of the Lyapunov spectrum decreases slightly as a function of ε, whereas in the negative branch the period increases
as a function of ε. Such changes of T (−k) are especially large for small k’s, which correspond to the ones close to
the zero-Lyapunov exponents. The relation T (1) = 2Tacf is not correct away from equilibrium, while it is justified in
equilibrium [26,28]. This does not contradict the proof of this relation as that required equilibrium and is based on the
functional form of the Lyapunov modes, in particular that they are purely sinusoidal.
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Fig. 5. Contour plots of longitudinal Lyapunov modes for the quasi-one-dimensional heat model for ε = 0.5. Exponents 196 and 197 are the first
2-point step in the positive branch of the spectrum and 204 and 205 are the first 2-point step in the negative branch of the spectrum.

Table 2
Time-oscillating period of the momentum auto-correlation function and Lyapunov modes

ε 0 0.5 0.9

Tacf 8210 8560 8830

T (3) 5700 5700 5600
T (2) 8300 8200 8100
T (1) 16 400 16 200 14 900
T (−1) 16 400 19 600 56 400
T (−2) 8300 9300 12 500
T (−3) 5700 6300 8100
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Fig. 6. Contour plots of momentum proportional Lyapunov modes for the quasi-one-dimensional heat model for ε = 0.5. Notice that in all of these
figures the nodal lines that would be at 〈xj 〉t /Lx = 0.5 for ε = 0 are shifted to a smaller values.

Fig. 7. The oscillating part of the normalized velocity auto-correlation function Cx as a function of the collision number nt . Here ε varies from
0 to 0.9. The values of Cx are the arithmetic averages of the auto-correlation for 11 disks in the center of the system, and is normalized so that
Cx |nt=0 = 1.

6. Conclusion and remarks

The changes in the structure of the Lyapunov modes for a system maintained away from equilibrium by a boundary
imposed heat flow are described in detail. The breaking of conservation of energy is shown to introduce systematic
effects, changing the number of zero exponents, and modifying the form of other modes, with the basic structure
of transverse, longitudinal and momentum proportional modes remaining. This work is largely descriptive and the
theoretical origin of the changes in modes is yet to be developed, as it is for the equilibrium case. However, it is clear
that the modes are not only equilibrium properties of many-particle systems, but also fundamental for nonequilibrium
steady states.
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The original purpose in introducing the nonequilibrium boundary conditions (i.e. Eqs. (1) and (2)) was to keep
dynamical properties, like the momentum conservation in the transverse direction and deterministic property of orbit,
etc., in a nonequilibrium dynamics while breaking energy conservation. The equilibrium case is recovered in the limit
as ε → 0. Therefore this choice of the boundary conditions was not intended to provide a realistic model for the
interaction between a heat reservoir and a particle system. For example, a consequence of these boundary conditions
is that the momentum distribution function for a particle in contact with the reservoir is very different from a Gaussian.
Indeed, we found that the incoming momentum is close to Gaussian but the outgoing momentum is strongly peaked
around the mean momentum of the reservoir, with the width of its distribution determined by the degree of mixing
with the incoming momentum (that is, determined by the value of ε).
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