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Abstract

This article gives a simple and original presentation of various coronagraphs inherited from the Lyot coronagraph. We first
present the Lyot and Roddier phase mask coronagraphs and study their properties as a function of the focal mask size. We show
that the Roddier phase mask can be used to produce an apodization for the star. Optimal coronagraphy can be obtained from two
main approaches, using prolate spheroidal pupil apodization and a finite-size focal mask, or using a clear aperture and an infinite
mask of variable transmission. To cite this article: A. Ferrari et al., C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Introduction à la coronographie stellaire. Cet article propose une présentation simplifiée et originale des divers coronographes
issus du coronographe de Lyot. Le coronographe de Lyot et celui de Roddier à masque de phase sont d’abord présentés. Leurs
comportement est étudié en fonction de la taille du masque focal. Il est ainsi mis en évidence que le coronographe de Roddier peut
agir comme un apodiseur pour l’étoile. On montre ensuite qu’une coronographie ayant des propriétées optimale peut être obtenue
avec une taille de masque finie en apodisant la pupille par une fonction prolate ou avec un masque de transmission variable mais
de taille infinie. Pour citer cet article : A. Ferrari et al., C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Direct imaging of faint companions or planets around a bright star is a very difficult task, where the contrast ratio
and the angular separation are the observable parameters. The problem consists of detecting a faint source over a bright
and noisy background, mainly due to the diffracted stellar light. High contrast ratios and small angular separations
correspond to the most difficult case. Typically, for giant exoplanets, contrast ratios of about 10−7 are expected in the
near infrared (J;H;K bands), based on models for relatively young objects of about 100 Myr [1–3]. According to these
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models, older objects would be an order of magnitude fainter. Terrestrial planets are much fainter than giant planets,
about 3 to 4 orders magnitudes fainter depending on the wavelength range.

The aim of this article is to give a short review of basic concepts and techniques used in focal plane mask coron-
agraphy for exoplanets detection. The paper will focus on derivation of a general formalism which allows one to gain
deeper insight in the behaviour of the principal coronagraphic techniques. It will not consider important problems
related, for example, to the effects of adaptive optics residual speckles, slow-varying speckles caused by mechanical
or thermal deformations, telescope central obstruction, chromaticity.

2. Coronagraph general formalism

A common formalism can be used for Lyot and Roddier and Roddier coronagraphs [4,5] in their classical or
apodized version [6–8], four quadrants coronagraph (4QC) [9], band-limited mask coronagraph [10] and shaped pupil
coronagraph [11].

We will follow the notations of [6]. The successive planes of the coronagraph are denoted by A, B , C and D. A is
the entrance aperture, B denotes the focal plane with the image mask, C is the image of the aperture with the Lyot
stop and D is the image in the focal plane after the coronagraph. The general setup is illustrated in Fig. 1. The position
vector in each plane of the coronagraph will be noted in bold.

– We denote by p(x) the telescope pupil and a(x) its possible transmission if a pupil apodization is used. We assume
that x in A is in units of wavelength.

– The mask transmission is t (x). We will consider without loss of generality that t (x) = 1 − m(x), where m(x) is
the image mask. The units for the coordinates in B and D are angles on the sky.

– The Lyot stop, denoted as ps(x) will clearly acts as a low pass filter and consequently its size will be chosen at
most equal to the size of the entrance pupil so that ps(x)p(x) = ps(x).

We denote as P , S and M the areas defined by the pupil, the stop and, if pertinent, the mask. We will make the usual
approximations of paraxial optics. Moreover we neglect the quadratic phase terms associated with the propagation of
the waves or assume that the optical layout is properly designed to cancel it [12]. The constant propagation terms
between the successive planes will be omitted. In this case the coronagraph can be easily described using classical
Fourier optics: a Fourier transform exists between each of the four planes.

The wavefront complex amplitude just before the pupil plane is Ψ (x). The expression of the complex amplitude in
the successive planes A, B , C and D are:

ΨA(x) = Ψ (x)p(x)a(x) (1)

ΨB(x) = t (x)Ψ̂A(x) = Ψ̂A(x) − m(x)Ψ̂A(x) (2)

ΨC(x) = Ψ̂B(x)ps(x) = ΨA(x) − (
ΨA(x) ∗ m̂(x)

)
ps(x) (3)

ΨD(x) = Ψ̂C(x) = Ψ̂A(x) − (
Ψ̂A(x)m(x)

) ∗ p̂s(x) (4)

where ĝ is the Fourier transform of g and ∗ denotes convolution.

Fig. 1. Schematic illustration of Lyot, Roddier and Roddier, 4QC and band-limited mask coronagraph.
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The effect of the coronagraph clearly appears in Eq. (3). The first term is the direct wave corresponding to the
entrance pupil. The second term corresponds to the wave diffracted by the mask for which the light diffracted outside
the aperture in C has been removed. A coronagraph correctly designed for exoplanets imaging can operate one of
these two techniques:

(i) cancel the on-axis star without altering an off-axis source: for the star the two terms in (3) must interfere destruc-
tively whereas for the planet the second term of (3) must cancel. In this case the response of the coronagraph is
no longer invariant by translation;

(ii) concentrate the on-axis star light reducing the off-axis diffracted light. This approach corresponds to the apodiza-
tion techniques [12].

These two techniques can be achieved by a proper choice of the apodization a(x) and the transmission t (x). This
article will focus on the first solution. For a general overview of pure apodization techniques see [12] and included
references.

Section 2 will present the main solutions to this problem that have been derived in the literature. First the ‘historical’
Lyot coronagraph and the Roddier coronagraph are presented. Whereas the first attempts to cancel the star light, it
appears that the second one can also operate by an apodization of the star light. Whereas these coronagraphs can
provide acceptable results when the dynamic is not too high, their performance appears to be insufficient for the
detection of Earth-like planets. Section 3 addresses the problem of optimal coronagraphy which try to maximize a
criterion quantifying the star light rejection. In this context a complete star light rejection can be obtained using an
infinite size mask (4QC and band-limited mask) or a finite size π phased mask (Roddier coronagraph) with a properly
apodized entrance pupil. In the case of a Lyot coronagraph, an apodized aperture allows us to maximize the star light
rejection for a given mask size. Through all this presentation we will try to be, when possible, as general as possible
with respect to the geometry of the system without specializing, for example, on a specific pupil shape.

3. Lyot and Roddier coronagraphs

The first solution was proposed by Lyot [4] and consists in cancelling the major contribution of the star energy
located in the telescope point spread function (PSF) inside a disk of radius rm. This is simply achieved setting for t (x)

an opaque mask at the center of the image plane B .
The results will be presented for a circular aperture of radius R and without central obstruction. The use of polar

coordinates will be preferred. Under this assumption p(x) = Π(r/R), m(x) = Π(r/rm) and ps(x) = Π(r/rs) where
Π(r) = 1 for r ∈ [0,1) and 0 if r � 1 and for example: p̂(x) = Rr−1J1(2πRr). Note that as long as ΨA(x), a(x)

and m(x) are radial functions, the complex amplitudes at the different stages of the coronagraph will exhibit the same
symmetry.

Fig. 2 illustrates the response of the Lyot coronagraph to an on-axis point source (Ψ (x) = 1) for different values of
the mask radius rm. These values of rm are located on Ψ̂A(r) in Fig. 3.

We seek to obtain the best subtraction of the two wavefronts ΨA(r) and ΨA(r) ∗ m̂(r) inside the Lyot stop. Fig. 2
clearly shows that this result is achieved increasing the mask size. In fact, as rm increases, m̂(x) will be more ‘concen-
trated’ around the origin. As long as m̂(x) always verifies

∫
m̂(x)dx = m(0) = 1 we have m̂(x) → δ(x) as rm → +∞,

which is the neutral element for the convolution product. On the other hand, as rm decreases m̂(r) widens around
m̂(0) = πr2

m. At the limit rm → 0, m̂(x) → πr2
m and ΨA(x) ∗ m̂(x) tends to the constant π2R2r2

m, which does not sub-
tract to ΨA(x) = 1. It is interesting to note that this problem is formally equivalent to the problem of digital low-pass
filter design with finite impulse response using the windowing method where the infinite impulse response of the ideal
filter is truncated using a window, see for example [13].

The results of Fig. 2 suggest the following comments:

– The performance of the coronagraph is not strictly linear with the mask size. The choice of mask b is as an
evidence more appropriate than mask c. This is confirmed by the general shape of the second plot in Fig. 3 which
gives the integrated intensity in C for a Lyot stop of radius R.

– A large amount of the residual star energy is located at the edges of the pupil. Consequently a moderate reduction
of the diameter of the Lyot stop radius rs will provide a significant gain in starlight rejection with a reasonable
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Fig. 2. Illustration of Lyot coronagraphy for circular aperture (radial cuts) and an on-axis point source. The first row represents the two complex
amplitudes that should interfere destructively in C. The second row gives the intensity in C and the third and fourth raw the intensity in D. In the
two last rows, the continuous line represents the intensity in D for a coronagraphed point source and the dashed line the PSF associated to a pupil
of radius rs . The vertical dashed line in the last row indicates the radius of the mask.

Fig. 3. The left plot locates the different masks used in the simulation on the response of an on-axis point source. The right plot gives the integrated
intensity in C for rs = R as a function of the mask size.

loss of transmission. The effect of a Lyot stop reduction is visible in the last two lines of the plot. The value of rs
for the last line is indicated in the plots of the intensity in C by a dashed line.

– The off-axis transmission of the coronagraph is of course a crucial point for planet detection. As long as the
angular distance from the optical axis is sufficient to guaranty that the response of the planet in B will not
interfere with the mask, we can consider that the response of the planet will be the shifted PSF of a pupil with
radius rs . In order to quantify the loss of transmission for an off-axis source, this PSF has been added in Fig. 2.
Finally, note that a solution to the analytical computation of ΨC(r, θ), ΨD(r, θ) of a point source which can be
close to the optical axis has been addressed in [14].
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Fig. 4. Illustration of Roddier coronagraphy for circular aperture (radial cuts) and an on-axis point source. The first row represents the two complex
amplitudes that should interfere destructively in C. The second row gives the intensity in C and the third raw the intensity in D. In the last row, the
continuous line represents the intensity in D for a coronagraphed point source and the dashed line the PSF associated to a pupil of radius rs .

The Lyot technique was improved by Roddier [5] replacing the opaque mask by a π phase mask: m(x) =
2Π(r/rm). Fig. 4 show that for very small values of rm, the Roddier coronagraph tends to behave like the Lyot
coronagraph, trying to cancel out the light of the star. This behavior totally differs when rm increases: for mask size a

or b the effect of this coronagraph is to produce in the plane C an apodized version of the wavefront originated by an
on-axis source. Note that a coronagraphic technique relying on a similar principle was proposed in [15] using a π/2
phase mask and a defocus. The effect of this apodization is visible in D: the main lobe of the response is broadened
whereas the side lobes decrease. Moreover, it is worthy to note that this apodization has a maximum value for x = 0
that can be higher than 1.

These results suggest the following comments:

– The choice of rm remains a crucial point. However, according to the preceding remark the integrated energy in C

plotted in Fig. 3 is no longer a valid criterion for selection of an optimal value of rm.
– As the second row of Fig. 4 shows, a reduction of the Lyot stop is not crucial as long as the Roddier coronagraph

operates in its ‘apodization mode’.
– The effect of a Roddier coronagraph on a planet relies on the same principle as the Lyot coronagraph. Conse-

quently the apodization effect mentioned above will not operate for an off-axis source. Moreover, the fact that for
this latter coronagraph the mask will be smaller and a reduced stop is not necessary will increase its performances
in terms of resolution and planet flux.

According to the previous remarks, a Roddier coronagraph with an extended mask can be used as an angular
selective apodizer for the star’s wavefront complex amplitude. The star rejection of such a system being insufficient
for planet detection such a device should be considered as the first stage of a ‘classical’ coronagraph.

4. Optimal coronagraphy

According to Eq. (3) the ideal coronagraph equation is:

ΨA(x) = (
ΨA(x) ∗ m̂(x)

)
ps(x) (5)

where ΨA(x) = a(x)p(x). Following Lyot and Roddier coronagraphs, a first solution is to set m(r) = εΠ(r/rm) where
ε = 1 for Lyot and ε = 2 for Roddier and to find, if it exists, the optimal apodization a(x) solution of the integral
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equation (5). This solution was first proposed by [16] and [17]. The other solution is to suppress the constraint on the
mask shape and to find the function m(x) solution of Eq. (5) when a(x) = 1. This approach includes the band-limited
masks proposed by [10] and the four quadrants coronagraph [9].

4.1. Finite size masks: apodized Lyot and Roddier coronagraphs

As long as m(x) has a bounded symmetric support M, we can write using the notations of Appendix A: m̂(x) =
εKM(x). Consequently, Eq. (A.3) implies that if a(x) is proportional to a spheroidal prolate function associated to M
and P , the residual in C when ps(x) = p(x) is obtained replacing in (3) the second term by εΛΨA(x):

ΨC(x) = (1 − εΛ)ΨA(x) (6)

which states that the residual wavefront in C originated by an on-axis source is proportional to the apodized entrance
pupil. If we assume that the angular distance of the planet is sufficient, its response in C is obtained setting ε = 0
in (6). The tradeoff between the reduction of the planet flux by the apodization and the reduction of the star flux by
the coronagraph can be evaluated by the quantity η defined as the ratio between the total planet intensity in D and the
total star intensity outside the mask in D.

From Eq. (6) the star intensity in D is simply (1 − εΛ)2|Ψ̂A(x)|2. The total energy outside the mask is:

(1 − εΛ)2
(∫

R2

∣∣Ψ̂A(x)
∣∣2 dx −

∫
M

∣∣Ψ̂A(x)
∣∣2 dx

)
= (1 − εΛ)2

(∫
R2

∣∣Ψ̂A(x)
∣∣2 dx − Λ

∫
R2

∣∣Ψ̂A(x)
∣∣2 dx

)
(7)

where the last equality comes from the fact that εΛ is the ratio between the energy encircled in the bounded frequency
domain M and the total energy of ΨA(x). As a consequence we have:

η = (1 − εΛ)2(1 − Λ) (8)

The objective will be to minimize η for a given coronagraph type (ε = 1 or 2). This is achieved by a modification of
the size of M which will affect Λ and the pupil apodization shape a(x).

Any eigenvalue of the integral equation minimizing (8) leads to a valid solution. However, we will only consider
in the sequel the largest eigenvalue, i.e. corresponding to the maximum encircled energy behind the focal plane mask.
This choice will in fact ‘generally’ lead to a positive prolate function which will be normalized by its maximum
value on the pupil in order to achieve an apodization with maximum transmission. Finally, it is worthy to note that
this development does not require a specific shape of the pupil and the mask. However, further analytical derivations
based on Eqs. (A.4) and (A.5) require that the mask is a scaled version of the pupil (in this case if the pupil has a
central obstruction m(x) has a hole). This point will not be considered here.

– We consider first the case of an apodized Roddier coronagraph, η = (1−2Λ)2(1−Λ). The results of Appendix A
prove that 1/2 is a valid eigenvalue and consequently a mask size can be chosen to achieve η = 0, i.e. a total
extinction of the star.
For example, in the case of a circular pupil without obstruction, Fig. 8 in Appendix A shows that the coefficient
c = rmR ≈ 0.25 corresponds to Λ = 1/2. This value defines the apodization shape and fixes the mask size to
rm ≈ 0.25/R. Fig. 5 gives the corresponding apodization. This figure also illustrates the loss in transmission for
an off axis planet comparing the prolate apodized pupil PSF with the PSF of the unapodized pupil.

Fig. 5. Illustration of the Roddier apodized coronagraphy for circular aperture (radial cuts). The left plot shows the optimally prolate apodized
pupil. The right plot shows the PSF corresponding to the prolate apodized pupil and the PSF of the unapodized pupil.
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Fig. 6. Illustration of the prolate apodized coronagraphy for circular aperture (radial cuts) and an on-axis point source. The first row represents
the two complex amplitudes that should interfere destructively in C. The second row gives the intensity in C. In the last row, the continuous line
represents the intensity in D for a coronagraphed point source and the dashed line the PSF associated to the apodized telescope pupil.

– We consider now a prolate apodized Lyot coronagraph (PALC), η = (1 − Λ)3. The eigenvalues being upper-
bounded by 1, a prolate apodized Lyot coronagraph (PALC) cannot achieve total extinction of an on-axis point
source. The trivial solution Λ = 1 would correspond to an infinite size opaque mask. However, approximate solu-
tions can be obtained for eigenvalues Λ close to 1 and finite mask size. Taking advantage of the rapid saturation
of the eigenvalue curve we can choose a mask size corresponding to an eigenvalue close to 1.
Fig. 6 illustrates the response of the PALC to an on-axis point source for different values of the mask radius
rm given in Fig. 3. To each value of rm corresponds a coefficient c and an optimal apodization function given
in the first row. The second row gives the residue in C and the last row the response of the star and the PSF
associated to the apodized telescope pupil. Note that contrarily to the unapodized Roddier coronagraph operating
in its ‘apodized regime’ (see columns 2 and 3 of Fig. 4) the residue in C is here both apodized and attenuated. An
analog comment can be done for the apodization alone coronagraphs.
The Lyot stop wave amplitude is proportional to the entrance apodized pupil amplitude and creates the possibility
for multiple stage coronagraphs described in [18]. A multiple stage PALC only requires a single apodizer in
the entrance pupil. The Lyot stop plane is naturally apodized and can be used as the entrance pupil of a second
coronagraphic stage without further loss of throughput due to apodization. In this case the residual amplitude in
the second Lyot stop plane is (1 − Λ)2ΨA(x) and the parameter η becomes (1 − Λ)5.

4.2. Infinite size masks band limited and four quadrants coronagraphs

A simple solution to define a mask m(x) that verifies (5) is to chose m(x) such that m̂(x) is nonzero only on a small
bounded region B included inside the pupil. In this case if we define S such as ∀x0 ∈ S the support of m̂(x0 − x) is
strictly included in the pupil P :

∀x0 ∈ S, ΨA(x0) ∗ m̂(x0) =
∫
P

m̂(x0 − x)dx = m(0) (9)

Consequently, if we impose m(0) = 1 we will clearly verify Eq. (5) on S ⊂ P . Fig. 7 illustrates the definition of
the various sets S , P and B. A simple solution to block the residue in P\S is to use as a Lyot stop the indicator
function of S , ps(x) = 1S(x) (ps(x) = 1 if x ∈ S and 0 elsewhere). Consequently a properly defined band limited,
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Fig. 7. Left: relation between the pupil (P), support of the mask Fourier transform (B) and the Lyot stop S in a band-limited coronagraph. Right:
illustration of three different masks. Dashed lines: second and fourth order Bessel cardinal masks. Continuous line: prolate spheroidal function.

and necessary infinite size mask m(x) must verify: m(0) = 1, 0 � m(x) � 1 and m(x) is band-limited on B ⊂ P . This
approach was proposed by [19].

A fundamental result for understanding of band limited coronagraphs states that the complex amplitude in D

associated to an off-axis point source at an angle x1 is the response of the Lyot stop attenuated by the transmission
at x1:

ΨD(x) = t (x1)p̂s(x − x1) (10)

This result is demonstrated in [19]. This result suggests the following comments:

(i) The loss of throughput of a band-limited coronagraph is principally due to the undersizing of the Lyot stop.
Consequently B should be as small as possible. However the general consequences of a reduction of B are a
widening of the central lobe of m(x) and an increase of the ripples in the tails of m(x). From Eq. (10) the first
effect implies an increase of a blind zone around the star and the second a reduction of detectability for given
locations of a planet.

(ii) The behavior of the coronagraph when the star is slightly off-axis is perfectly described by Eq. (10): in order to
reduce the effect of a misalignmemt m(x) must be as ‘flat’ as possible in 0. This effect is quantified in [19] by the
degree of the first term in the series expansion of t (x). Note that the flatness of m(x) around x = 0 is, of course,
closely related to the constraints previously mentioned. Finally, a technique to construct a mask of given order
adding and multiplying simple band-limited masks is proposed in [19].

To conclude, Fig. 7 compares the behavior of three different radial transmissions in the case of a circular aperture.
To facilitate this comparison the three masks have been normalized to the same B in order to guarantee that the Lyot
stop will be the same: for these simulations the flux reduction equals 4/9. The first transmission is a Bessel cardinal
function and the second one the square of a Bessel cardinal function. These functions have been properly scaled and
shifted in amplitude in order that t (r) occupies all the interval [0,1]. The properties detailed in the item (i) of the
discussion above can also be expressed in term of concentration of the energy of m(x) around the origin. In this case,
the additional band-limited constraints leads naturally to a prolate function. Such a solution is illustrated in Fig. 7. In
this case the coefficient c has been chosen empirically equal to 6.8 in order to achieve a good compromise between the
ripples and the width of the main lobe. This result shows that the behavior of such a prolate mask and a squared Bessel
cardinal mask are similar. Finally, it is important to emphasize that the masks illustrated in Fig. 7 correctly behave
with respect to the requirement (i). On the contrary they do not fulfil (ii) (the order of the squared Bessel cardinal and
the prolate is only 4) and will have a poor behavior in the case of a resolved star or a misalignment.

To conclude, it is important to mention in this section devoted to optimal coronagraphy with infinite size masks the
4QC. This coronagraph will be developed in a separate article by D. Rouan et al. [20] in this volume. It relies on the
fact that for a circular aperture and a transmission t (x) = sign(x) sign(y), the complex amplitude in C is identically
zero inside the pupil for a point source on the axis. This beautiful result relies on a nontrivial property of the Fourier
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transform (see the paper of D. Rouan and included references for a proof). A coronagraphic technique based on a
similar principle is developed in [21].
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Appendix A. Prolate spheroidals functions

This section presents some facts about prolate spheroidals functions. For a detailed presentation refer to the seminal
papers [22] and references therein. Application of prolate spheroidals functions to optics can be found in [23].

In order to gain deeper insight in their principal properties using simple mathematics the Cartesian coordinates
have been preferred. Derivations using specific coordinates can be found in the references. We consider a real valued
square-integrable function f of d variables having a bounds support P (in our case f (x) = a(x)p(x) and P is the
telescope pupil):

f̂ (x) =
∫
P

f (y)e−ı 2πxyt

dy (A.1)

The ratio between the energy encircled in the bounded frequency domain M (here the Lyot mask) and the total
energy of f̂ is obtained integrating the squared modulus of (A.1) on M:∫

P

KM(x − y)f (y)f (x)dy dx
/∫

P

f (y)2 dy (A.2)

where KM(x) is the inverse Fourier transform of the indicator function of M, 1M(x). Standard results on functional
analysis, see for example [24], prove that the maximum of this ratio is the largest eigenvalue Λ of the integral equation:∫

P

KM(x − y)ψ(y)dy = Λψ(x), x ∈P (A.3)

or equivalently: (ψ(x)1P (x)) ∗ KM(x) = Λψ(x), x ∈ P . Note that, according to (A.3), in order to obtain ψ(x) real,
KM(x) must be real and consequently M must have a central symmetry.

The prolate spheroidal functions are defined as the solution of this integral equation. The extrema of (A.2) is
reached when f (x) is the corresponding eigenfunction. The kernel being positive defined the eigenvalues of (A.3) are
positive and from (A.2) upper bounded by 1. The eigenfunctions of (A.3) are orthogonal and complete on L2(P) and
orthogonal on R

d when extended on outside P using (A.3).
Considerable simplifications occur when P and M are both scaled versions of a ‘normalized’ domain U : ∃R ∈ R

d ,
∃rm ∈ R

d such that x ∈ P ⇔ x./R ∈ U , x ∈ M ⇔ x./rm ∈ U , where a./b (resp. a.b) defines the vector having
a(k)/b(k) (resp. a(k)b(k)) as components. A simple change of variable in the definition of KM(x) shows that
KM(x) = (

∏d
k=1 rm(k))KU (rm.x). Substitution of this result in (A.3) shows that ψ(x) = φ(R.x) where φ(x) is the

solution of the normalized problem:(
d∏

k=1

rm(k)R(k)

)∫
U

KU
(
rm.R.(x − y)

)
φ(y)dy = Λφ(x), x ∈ U (A.4)

– Consider for example the case where d = 2 and U is a disk. Consequently P and M are ellipses. Eq. (A.4) shows
that the prolate functions associated to an ellipse are obtained by a scaling of the prolate function associate to a
disk.

– If ∀k,R(k) = R and rm(k) = rm, Eq. (A.4) shows that the prolate spheroidal functions for a given U form essen-
tially a one-parameter family of functions depending of the parameter c = rmR.
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Fig. 8. Circular prolate functions. Left plot gives the largest eigenvalue Λ as a function of 4c. The right plot gives the prolate functions for three
values of c.

Additional simplifications in this last case are obtained when the region U is symmetric: x ∈ U ⇔ −x ∈ U . In
this case the solutions of (A.4) are real, either even with a real eigenvalue or odd with a pure imaginary eigenvalue.
Moreover, finding the solutions of (A.4) is equivalent to finding the solutions of:

αφ(x) =
∫
U

e−ı 2πcxyt

φ(y)dy, x ∈ U, where Λ = |α|2cd (A.5)

This equation states that the Fourier transform of φ(x)1U (x) is proportional to φ(x/c). This result can be easily veri-
fied taking the complex conjugate of (A.5), substituting in the integral φ(y) by the right side of (A.5) and identifying
with (A.4).

Circular prolate functions correspond to the case d = 2 where U is the unit disk. They decompose, up to a nor-
malisation factor as φN,n(r, θ) = RN,n(r)[cos, sin](Nθ). Consequently (A.5) shows that they can be defined by their
invariance to a finite Hankel transform of order N , e.g.:

2π

1∫
0

R0,0(r)J0(2πrρ)r dr =
√

Λ

rm
R0,0

(
ρ

rm

)
(A.6)

Fig. 8 represents the radial circular prolate function φ0,0(r) for three different values of c.
A crucial point is the numerical computation of prolate functions. For simple geometries, the functions can be

computed using rapidly converging series as the one derived for a circular aperture in [22]. For general geometries,
prolate spheroidal functions can be computed directly solving Eq. (A.3) using one of the numerous iterative algorithm
that can be found in the literature for the computation of the eigenelements of linear integral operators, e.g. the
algorithm used in [17,25].
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