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Abstract

Rigorous deterministic models of physical phenomena are important for understanding the fundamental characteristics of in-
teractions, but if we neglect the uncertainties in the various components of these models, the correspondence between predictions
based on such models and real-life situations can be very weak. This article addresses the important question of how to account,
rigorously, for uncertainties in classical macroscopic electromagnetic interactions between fields and systems of linear material
(considering uncertainties in the field incident on the system as well as in the geometrical realisation of the system itself). In the
first part, we develop the general ideas which lead to the expression of the variances of the observables of the problem in terms
of field- and system covariance operators. In the second part, we study the covariance operator which characterises a stochastic
system. In the third part, we investigate stochastic electromagnetic fields and present the definition of a canonical stochastic field of
which the spatial covariance operator has the real part of the Green tensor function as kernel function. In the final part, we present
an illustration by studying the interaction of a stochastic plane wave with a stochastic twisted pair of wires. To cite this article:
B.L. Michielsen, C. R. Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modélisation probabiliste des interactions stochastiques entre champs électromagnétiques et système. Pour comprendre
la nature des interactions physiques, il est important d’avoir des modèles rigoureux et déterministes, par contre, si l’on néglige les
incertitudes des différentes paramètres de ces modèles la correspondance entre prédictions basées sur ces modèles et les situations
pratiques peut être très faible. Cet article traite de la question importante à savoir comment prendre en compte, rigoureusement, les
incertitudes dans l’interaction macroscopique entre champs électromagnétiques et systèmes de matériaux linéaires (en considérant
à la fois les incertitudes dans le champ et celles de la réalisation du système). Dans une première partie, les idées générales
sont développées conduisant aux expressions des variances d’observables en termes des opérateurs de covariance du champ et du
système. Dans la deuxième partie, l’opérateur de covariance qui caractérise le système est étudié en plus de détail. La troisième
partie présente l’étude du champ stochastique canonique, qui est telle que sa covariance spatiale est proportionnelle à la partie
réelle de la fonction de Green tensorielle du problème électromagnétique de l’environnement. Dans la dernière partie de cet article,
un exemple de l’interaction entre une onde plane stochastique et une paire de fils torsadée à géométrie stochastique est élaboré en
tout détail. Pour citer cet article : B.L. Michielsen, C. R. Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The theory we develop in this article applies to ‘observables’ in macroscopic, linear time-harmonic electromagnetic
interaction theory. Examples of such observables are, in antenna theory, the voltage on the port of a receiving antenna
placed in some incident electromagnetic field, in ElectroMagnetic Compatibility (EMC), an interference source in-
duced in an interconnect system due to the presence of some unforeseen electromagnetic source in the system’s
environment or again, in scattering theory, a scattering coefficient corresponding to the amplitude of a wave in a scat-
tered field expansion due to some field incident on a linear scatterer. In all these cases, we can express the observable
as a linear form, determined by the antenna, the interconnect system or the scatterer etc., on an ‘incident’ field as it
would exist in absence of the antenna, the interconnect system, the scatterer etc. In order to fix ideas, we shall present
our development in the context of electromagnetic compatibility theory, where the need to account for uncertainties in
both the system and the incident field is most obvious. This means that we shall concentrate on the characterisation of
interference sources induced in multi-port systems built of linear conductors and dielectrics. In particular, we want to
show how uncertainties in the system geometry and in the incident field influence the strength of these interferences.
(Of course, this also serves to characterise noise sources in antennas, etc.).

The interaction between electromagnetic fields and electronic systems plays an important role in every-day tech-
nological applications. Ever since the Maxwell equations have been established, computational models have been
elaborated to describe the behaviour of real-life phenomena and to predict the essential characteristics of them. The
usefulness of such models is two-fold: in the first place, the model improves the understanding of the physical phe-
nomena and, in the second place, the model makes possible the study of the behaviour of systems, relying on these
phenomena, without having to realise them. That means, if we are able to make reliable predictions on the behaviour
of a physical system by computation, we can make faster and safer technological progress.

The truth of the story is that actual technological progress is built on incomplete models. Maxwellian models have
been simplified into Low-Frequency circuit-theory models and transmission-line models, for example, and all other
sorts of pragmatical hypotheses have been introduced to cope with the computational limits of man and computing
machines, however powerful they may be these days. In many cases, these approximate models are sufficiently pre-
cise for the purpose they were derived for, i.e., to describe the system’s behaviour under certain idealised working
conditions complying with the hypotheses underlying the approximation. The typical situation, however, is that the
actual operational context of the system is much richer than these idealised conditions allow for. It is therefore often
a matter of good-luck that the system works correctly in many different practical circumstances. This may be due to a
certain fault tolerance built into the system, implicitly or explicitly.

The heart of research in ElectroMagnetic Compatibility (EMC) consists of handling situations where systems have
to work in operational contexts their design did not sufficiently account for. The immediate reaction to such situations
is to change the system by adapting it to the new situation. A more thoughtful approach would be to change (more
precisely to extend ) the models designers use when conceiving their systems. This model extension should have two
stages: a deterministic one and a probabilistic one. In the deterministic extension, one includes representations of the
system’s true operational conditions into the approximations to the (supposedly) complete Maxwellian models. In
the probabilistic extension, one goes one step further and one also models the uncertainties which exist in both the
environment the system has to operate in, and the physical-geometrical realisation of the system itself. (Of course,
similar extensions are useful in other domains than EMC, any model wanting to be realistic should be extended in
some way or another to account for uncertainties in the realisation.)

There exists a vast literature on the modelling of the interaction of electromagnetic fields and systems, in which
induced perturbations are described through a great number of different approaches, theoretical models and numerical
computation techniques (see [1] for further references). The majority of these studies, though, is limited to the appli-
cation of classical, deterministic, electromagnetic theory. Models of stochastic fields have been proposed in the past
and the statistical point of view has been elaborated in much detail (see [2]). In particular, the statistical description
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of fields in so-called Mode Stirred Chambers (MSC) has been the subject of many investigations (see [3] and, for
a probabilistic approach, [4,5]). Much less work has been done, though, on the interaction with stochastic systems.
The case of stochastic cable bundles seems to be the most accessible and has been investigated from the statistician’s
point of view in [6–8]. There is an early sketch of ideas for the analysis of a probabilistic interaction theory with
stochastic cable bundles (see [9]), but the proposed way to use reciprocity does not seem to be the most convenient
one. Alternatively, rigorous, but non-probabilistic methods have been developed such as those related to sensitivity
analysis (see [10]).

A complete probabilistic formulation of the theory of interaction between stochastic fields and stochastic systems
seems to be lacking today. It is the purpose of this paper to establish a fundamental approach to this important problem
area.

1.1. Outline of the article

As announced above, this article presents an analysis of a rigorous way to make the deterministic and probabilistic
extensions to macroscopic electromagnetic interaction models as they are used in ElectroMagnetic Compatibility
theory. For that purpose, we shall concentrate on the time-harmonic electromagnetic interaction with linear multi-port
systems, which is the most frequently used interaction model for ElectroMagnetic Compatibility problems.

In Section 2, we recall the basic multi-port models used in electronic system design. Then we single out the
Thévenin model and concentrate on the Thévenin source vector for illustrating the interaction theory. The dominant
statistics, being the mean and variance (or standard deviation), can be readily expressed in terms of mathematical
objects associated to the stochastic system, i.e., the system with a probabilistic model for its geometry and physical
constitution, and the stochastic fields incident on the system.

This theoretical development identifies the kind of objects we have to compute for the extended models. On the
system side, the probabilistic model of the system should result in an average current distribution and a covariance
operator of a stochastic current distribution with zero mean. On the incident field side, we need a probabilistic model
for the ambient field, from which the average field and the field’s covariance operator can be derived.

In Section 3, we introduce the basic formulation of a system with a stochastic geometry. There remains much
work to be done on the computation of stochastic distributions, but a non-trivial case can readily be studied using a
zeroth order approximation for the fluctuating values of the distribution and a first-order approximation in its stochastic
support combined with a Taylor expansion of the test functions it evaluates on. This leads to the simplest representation
of a non-trivial stochastic distribution representing the response of a stochastic system to an incident field. In this
case, we can derive explicit expressions for the system’s covariance operator in terms of the probabilistic model for
its geometry.

In Section 4, we present a definition of canonical stochastic electromagnetic fields in reciprocal lossless configu-
rations. This is a complement to earlier results in [11], where we presented a constructive proof for the existence of
stochastic electric fields of which the spatial covariance function is proportional to the real part of the ‘electric cur-
rent to electric field’ part of the Green tensor function of the Maxwell equations. This section, presents the complete
electromagnetic covariance operator, including cross-covariances between the electric and magnetic fields, of such
canonical fields.

In Section 5, we combine the system covariance operator of Section 3 and the field covariance operator of Section 4,
in the expressions derived in Section 2, to compute the variance of the voltage induced on the terminal ports of a
stochastic twisted pair of wires in a stochastic isotropic plane wave, which is the canonical field in free space. The
results show some typical aspects of how probabilistic modelling can fill-in the gap between conventional deterministic
modelling and practical situations.

2. Basic interaction theory

In the linear theory of electromagnetic interactions the electromagnetic field itself is not considered an observable.
The field is only there to describe the way certain distributions of matter behave under the remote influence of each
other. In this paper, we shall be concerned with electronic systems applications and we shall consider the coefficients
of the linear multi-port models, relating the voltages and currents on the ports, as observables. In a certain way, these
coefficients are the measurable responses of the system when we apply internal or external excitations to the system.
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The most general representation of a linear observable in electromagnetic field theory has the form of the evaluation
of two ‘current’ distributions on the incident electric and magnetic field, as they would exist in absence of the system,

A = 〈
j,Ei

〉 + 〈
k,H i

〉
The two current distributions, j (electric current) and k (magnetic current), which represent the system, correspond
to solutions of specific boundary value problems (BVP) for the Maxwell equations. The precise definition of these
BVPs depends on the exact observable one is interested in. Generally speaking, these are problems where sources are
imposed on the responsive system itself (internal excitations).

The above representation is a not-so-direct consequence of the field reciprocity relations. It may be worth noting
that there is an essential difference, which is not always well-understood, between, on the one hand, making a direct
use of field reciprocity to express the induced voltage as an integral over the source of the incident field and, on the
other hand, using reciprocity for deriving the above representations, where the integrals extend over the incident field
and system determined current distributions (see [12]). In the latter, the fields scattered by the system have been shown
not to contribute to the value of the observable. As will become clear below, this makes the above representations much
more useful than those where the total fields in the two states appear.

In the particular case of electronic multi-port systems, the current distributions, j and k, correspond to applying
unit sources to the ports of interest. The various representations of multi-port systems in terms of Thévenin, Norton,
Hybrid or S-parameter models all lead to similar formulations. For ease of presentation, we shall simply handle the
Thévenin case, the reader will understand how to transform the presentation to adapt it to other choices. Our system
model is therefore

V = E + ZI

where V and I are the vectors of port voltages and currents respectively and Z is the system’s impedance, or response,
matrix. The inhomogeneity of this system of equations, E , represents the port voltages in absence of port current
excitations and, therefore, represents the presence of electromagnetic fields incident on the system.

In what follows, we shall assume that any inhomogeneity in the model is a perturbation with respect to the desired
model. We shall concentrate on this model extension exclusively. We can safely assume that the perturbations in the
response coefficients are second order effects and because the very design of the system needs to have the coupling to
the environment weak we can neglect their effect with respect to the effects of E .

We can obtain integral representations for the components of the Thévenin source vector (see [12]):

Ep = 〈
jp,Ei

〉 + 〈
kp,H i

〉
where {Ei,H i} is the incident electromagnetic field and jp and kp are electric and magnetic contrast current distrib-
utions corresponding to a unit current source applied to the pth port of the system.

In order to simplify the presentation a little, we shall write this representation in a more succinct form, which also
emphasises the fact that the formulation applies to general linear observables and not only to induced voltages

A = 〈ω,ψ〉
where ψ represents the pair of regular incident electric and magnetic fields, Ei ⊕ Hi , and ω = j ⊕ k the pair of
distributions with support on the stochastic system corresponding, for the induced voltage observable, to a unit current
source at the port considered, or, more generally, to the system in an appropriate (internal excitation) state.

What we have obtained thus far is an explicit expression of a model extension which allows us to account for the
presence of externally generated electromagnetic fields. As it appears we have to solve a number of boundary value
problems, one for each port we are interested in, and the resulting current distributions on the system allow us then to
compute the model modifications for any incident electromagnetic field our system might be placed in.

We now pass on to the second model extension, which should account for uncertainties in the interaction config-
uration. That means, uncertainties in the externally generated field and uncertainties in the realisation of the system.
The uncertainties in the environment lead us to consider stochastic incident fields (precise models for such fields will
be presented in one of the subsequent sections). The uncertainties in the realisation of the system make that the distri-
butions, introduced above, must be stochastic distributions resulting from boundary value problems for the Maxwell
equations with a stochastic system geometry and/or stochastic physical constitution.
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From these basic integral representations, presented above, we derive the following representations for the two
essential statistics of the observable A = Ep , assuming that the stochastic distribution ω and the stochastic field ψ are
statistically independent. The average is given by,

E(A) = 〈
E(ω),E(ψ)

〉
and the variance is given by,

var(A) = E
(〈ω,ψ〉〈ω,ψ〉〉 − ∣∣E(A)

∣∣2

where the first term can be written as a scalar product of operators

E
(〈ω,ψ〉〈ω,ψ〉〉 = Tr(CωCψ) = 〈Cω,Cψ 〉

where Cψ is the covariance operator1 of the stochastic incident field and Cω the covariance operator of the stochastic
distribution ω. The scalar product in the last equation is the inner product in the Hilbert space of Hilbert–Schmidt
operators, in which we would like to represent the introduced covariance operators. However, the feasibility of this
has yet to be shown and necessitates some development, in particular on the side of the distributions ω. As to the
field covariance operator there is no problem as soon as we define stochastic fields as finite, or sufficiently rapidly
convergent infinite, stochastic linear combinations of solutions of the homogeneous Maxwell equations. Also in the
particular case of canonical stochastic fields, according to the definition given in [11], we have sufficiently explicit
knowledge concerning the covariance to show that the operator in question is compact (see Section 4). In Section 3,
we shall elaborate a particular type of stochastic systems for which the covariance operators are indeed of a suitable
type for evaluating the scalar product. We then get the satisfactory situation that the first and second moments of
our observables are both given in terms of a scalar product. The average is determined by a scalar product defining
a pairing of distributions and functions. The variance is determined by a scalar product defining a pairing between
operators.

3. Stochastic systems

In the present section, we shall elaborate on the covariance operator of a stochastic system. In order to keep the pre-
sentation as simple as possible, we shall only consider systems made of perfectly conducting material. Then, in order
to obtain the stochastic distributions which characterise the system’s response to externally generated electromagnetic
fields, we have to solve boundary value problems for the Maxwell equations on domains with stochastic boundaries.
These distributions can also be found from boundary integral equations over stochastic surfaces.2 However, the com-
plete mathematical treatment of this problem seems not yet accessible and we will have to content ourselves with a
few approximations.

In the first place we assume that the fluctuations of the boundary surfaces can be parameterised as deviations from
an average surface, which are small relative to the variations of the functions the distributions are to be evaluated on.
Let X denote the stochastic surface and let M be the, smooth, average surface. We assume that X is parameterised by
M through,

μ :M → X

a stochastic diffeomorphism. This diffeomorphism induces a transformation,

μ∗ :F(X) � u �→ [μ′]−1u ◦ μ ∈ F(M)

where [μ′] is the Jacobian matrix and F(X) and F(M) are spaces of vector fields over X and M respectively. This
provides a parameterisation of fields over X by fields over M . The inverse image, (μ∗)−1u, for some vector field u

1 The covariance operator of a zero-average, stochastic field, ψ , is formally defined as E(ψψ†), i.e., the average of the rank 1 operator, ψψ†

(ψ† is the linear form associated to the field, this determines the domain of the operator). The kernel distribution of this operator is given by
the spatial covariance function E(ψ(x)ψ(y)). Of course, care has to be taken as to the nature of the stochastic field, but in our analysis we shall
only work with smooth stochastic fields and stochastic distributions which are finite stochastic linear combinations of compactly supported normal
distributions.

2 At the time of publication, the analysis of stochastic interaction problems through stochastic integral equations is the subject of a joint research
project at ONERA and the TU/e in Eindhoven, The Netherlands.
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over M will be called the μ-deformation of u. This corresponds to the vector field on X obtained by following, ‘in a
natural way’, the deformation of M into X through μ−1.

In order to keep the equations relatively simple without having to introduce too much machinery from differential
geometry, we shall consider electric and magnetic current distributions as a special kind of vector fields (vector-
valued densities, in fact) which transform under induced transformations getting the Jacobian, |μ′|, as a multiplier,
e.g., μ∗j = |μ′|[μ′]−1j ◦ μ. This implies that the evaluation of a distribution with support on X can be replaced by
one on M in the following way:

〈j,E〉X = 〈μ∗j,μ∗E〉M
We shall use the stochastic μ-deformation of the deterministic current distribution, j0, representing the average system
with surface M , as a zeroth order approximation of the true stochastic distribution j . This means j = (μ∗)−1j0 or,

μ∗j = j0

In this way, we get the simplest, non-trivial, representation of a stochastic distribution representing an observable
defined by a stochastic system. In this ‘zeroth order’ approximation, we only have to solve for the average system
distribution, j0.

In order to get convenient expressions for the corresponding covariance operator, we shall assume that the defor-
mation μ is a deviation in a direction along the unit normal to M ,

μ :M � m �→ m + h(m)ν(m)

with ν the unit normal on M and h a stochastic function over M , given as a stochastic linear combination

h(m) =
∑
q

Aqhq(m)

where each hq is a smooth scalar function on M . It can be shown that, if M is a smooth surface, the set {(m+hν(m)) ∈
R

3: m ∈ M ∧ h ∈ R}, equipped with a suitable topology, is locally (i.e., for sufficiently small h) diffeomorphic to an
open neighbourhood of M (see [13]). Therefore, we can indeed represent sufficiently small deformations in this way.

We shall now transform the stochastic distributions with stochastic support into stochastic distributions with support
on the fixed average manifold. The first step is to use the parameterisations discussed above. In the case of electric
surface current distributions, we have

〈j,E〉X = 〈μ∗j,μ∗E〉M
and, using the 0th order approximation introduced above,

= 〈j0,μ
∗E〉M

Now j0, the current distribution characterising the average system, has fixed support, but μ∗E is a stochastic parame-
terisation which makes the evaluation non-linear in the field E. Because of the supposed smallness of the fluctuations
(with respect to the variations in the test functions they have to be evaluated on) we can use a Taylor expansion of the
test function on a neighbourhood of the average manifold.

The second step, then, is to approximate the values of the test functions using

E
(
m + n(m)

) = E(m) + [(
n(m) · ∇)

E
]
(m) + O

(∣∣n(m)
∣∣2)

where n is some normal vector field over M . The first-order approximation gives

E
(
m + n(m)

) ≈ E(m) + [∇(
n(m) · E)]

(m) − [
n(m) × (∇ × E)

]
(m)

using the fact that the test function corresponds to an incident electromagnetic field satisfying vacuum Maxwell
equations on a neighbourhood of the surface, we get

E
(
m + n(m)

) ≈ E(m) + [∇(
n(m) · E)]

(m) + jωμ0n(m) × H(m)

This is a point-wise equation where the scalar product with the fixed vector n(m) precedes the gradient operator. This
is inconvenient for functional manipulations. Therefore, we rewrite this to make the underlying differential operator
explicit,

= E(m) + Dn(m)E(m) + jωμ0n(m) × H(m)
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where Dn(m) = ∑3
k=1 nk(m)∇itk , with ik the unit vector along the kth coordinate on R

3 and nk(m) = ik · n(m).
According to the definitions above, (μ∗E)(m) = (μ′(m))−1E(m + n(m)). Substitution into the representation gives

〈j,E〉X = 〈j0,μ
∗E〉M = 〈

j0, (μ
′)−1[E + DnE + jωμ0n × H ]〉

M

= 〈(
μ′ t)−1

j0, [E + DnE + jωμ0n × H ]〉
M

This representation can be put in the form of an evaluation of electric and magnetic current distributions on an elec-
tromagnetic field using the transposition Dt

nu = ∑3
k=1 ik∇ · (nku),

〈j,E〉M = 〈p,E〉M + 〈m,H 〉M
where,

p = (
I + Dt

n

)(
μ′ t)−1

j0, m = −jωμ0n × (
μ′ t)−1

j0

Given the special form of the parameterisation, we can derive explicit expressions for the derived map.

μ′ = I + νdh + hωn

where ωn is the connection form on the surface M corresponding to the differential of the normal, dν = ωk
nqτkθ

q ,
and (τ1, τ2, ν) is an orthonormal moving frame over M and θq = τ t

q . Using the smallness of h again, we get an
approximation for the inverse,

μ′−1 = I − νdh − hωn = I − dnh

where dnh = νdh + hωn. This means that the distributions characterising the stochastic system, are given by

p = (
I + Dt

n

)(
I − (dnh)t

)
j0, m = −jωμ0hν × (

I − (dnh)t
)
j0

and, to first order in h, by

p = j0 + (
Dt

n − (dnh)t
)
j0, m = −jωμ0hν × j0

where (dnh)t = ∇hνt +hωn. (Observe that, in the case of perfect conductors, the magnetic current distribution has no
zeroth order term, it arises only for non-vanishing deviations from the average M .) The stochastic perturbation with
respect to the average is written as a stochastic linear combination

πe = p − p0 =
∑
q

Aqπe
q , πh = m − m0 =

∑
q

Aqπh
q

with

πe
q = (

Dt
n;q − (dnhq)t

)
j0, πh

q = −jωμ0ν × hqj0

Supposing that the amplitudes {Ap} in the representation of the stochastic deformations are statistically indepen-
dent, we can readily write the explicit expression for the covariance operator of the chosen port of the stochastic
system

Cω :E 6 � ψ �→
∑
q

var(Aq)ωq〈ωq,ψ〉 ∈ E ′6

where

ωq = (
πe

q ⊕ πh
q

)
This completely defines the covariance operator for a stochastic system in terms of objects associated to the average
surface and the (small) fluctuations of that surface. The operator can be seen to be of the type we have introduced in our
presentation of the general interaction theory. With that result we have the operator which characterises the response
of the system to a field. If the incident field would be a deterministic field, we can readily evaluate the variance of the
system’s response using a degenerate form of the formula, i.e. by replacing the field covariance operator by a simple
tensor product. In the next section, we study the operator which characterises a stochastic incident field such that the
complete stochastic interaction can be evaluated.
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4. Canonical stochastic fields

The general problem we have to face in the field-to-system interaction modelling is the choice of a model for the
stochastic field. It appears that in the free space situation a natural choice of stochastic field is an isotropic plane wave.
This corresponds to assuming that there is a very remote source of electromagnetic energy but there is no knowledge
about its position nor about its orientation and only the mean and standard deviation of its strength are given. Such
ideas lead to the isotropic plane wave model of which it is known that the spatial covariance coincides with the real
part of the Green function in free space. As this isotropic plane wave seems to be the most natural choice in a free
space context, we may call it the canonical stochastic field in free space.

Inspired by these ideas, we can turn the situation inside out and take the Green function as the starting point. This
is also because the tensorial Green function encompasses, in principle, all information concerning the geometry and
physical constitution of the configuration. This opens the way to defining generalisations of the free space situation.
The natural generalisation of the isotropic plane wave is then defined as the stochastic electric field of which the spatial
covariance is proportional to the real part of the corresponding electric field Green function in the configuration.
A constructive proof of the existence of such canonical fields in arbitrary configurations with reciprocal, linear and
lossless material, has been given in [11].

According to the general interaction theory, we need the following operator,

Cψ = E
(
ψψ†) = E

(
(E ⊕ H)(E ⊕ H)t

) =
[

E(EE†) E(EH †)

E(HE†) E(HH †)

]

The construction of the canonical fields in [11], was entirely dedicated to the electric field covariance, E(EE†).
Therefore the cross-covariance between electric and magnetic fields was not presented there. In this section, we shall
give the complete covariance operator in terms of the Green tensor functions.

For the definition of the Green tensor functions, we shall use the following system of equations,[−jωε +∇×
−∇× −jωμ

][
Gee Geh

Ghe Ghh

]
=

[
I 0
0 I

]

where I = ∑3
k=1 eke

t
kδ is the tensor valued Dirac measure, defined by ∀ϕ ∈ E 3

I(ϕ) = ϕ(0), and (e1, e2, e3) a global
orthonormal frame. The Maxwell equations, supplemented with boundary conditions on the boundary of the domain
of the fields, are supposed to represent lossless and reciprocal material, so ε and μ are real and symmetric tensor
functions.

From this definition, it follows

Ghe(x, y) = 1

−jωμ
∇x × Gee(x, y), Geh(x, y) = 1

jωε
∇x × Ghh(x, y)

and from the field reciprocity relation, we derive

Gee(x, y) = Gee(y, x)t , Ghh(x, y) = Ghh(y, x)t , Geh(x, y) = −Ghe(y, x)t

For a canonical stochastic field, the spatial covariance of E and H can both be found using the method developed
in [11]. This gives,

cEE(x, y) = E
(
E(x)Et (y)

) = 2 Re
(
Gee(x, y)

)
and

cHH (x, y) = E
(
H(x)H t (y)

) = 2 Re
(
Ghh(x, y)

)
We can now derive the cross-covariance operators for a canonical stochastic electromagnetic field. Note that the

stochastic magnetic field follows from the stochastic electric field through the local relation

H = 1

−jωμ
∇ × E

As a consequence, the cross-covariance of E and H is

cHE(x, y) = E
(
H(x)Et (y)

) = 1 ∇x × E
(
E(x)Et (y)

) = 1 ∇x × 2 Re
(
Gee(x, y)

)

−jωμ −jωμ
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and, according to the relations above,

= j2 Im
(
Ghe(x, y)

)
and similarly for cEH (x, y)

cEH (x, y) = E
(
E(x)H t(y)

) = 1

jωε
∇x × E

(
H(x)H t (y)

) = 1

jωε
∇x × 2 Re

(
Ghh(x, y)

) = j2 Im
(
Geh(x, y)t

)
We observe that the real part of the functions Gee and Ghh satisfy a source-free Helmholtz equation with real C∞

coefficients (because we included losslessness in the definition of the canonical field). Therefore, this real part of the
Green state is infinitely differentiable. From the above development, it follows that, in fact, all the components of the
spatial covariance tensor function of a canonical stochastic field are infinitely differentiable.

This property has the immediate consequence that the four covariance operators of a canonical stochastic field in
Ω , are continuous mappings

C :E ′(Ω)3 → E (Ω)3

This determines the complete covariance operator of a canonical electromagnetic field. The idea is that, in ab-
sence of any knowledge concerning the sources of electromagnetic energy in a certain configuration, one resorts to a
canonical stochastic field and if the Green function is accessible one does not have to construct the stochastic field to
compute the variance of the response of the system to it.

Of course, Green functions are explicitly known in only relatively few configurations with many symmetries.
However, the identification of the covariance operator and the Green function can also serve in a perturbation analysis
where one estimates the modification of the Green functions in a certain region due to geometrical or constitutive
modifications in another. In this way, conventional scattering theory can provide information on the relevance of such
modifications for the fluctuations of the observables under consideration. It has been observed, for example, that the
free space covariance operator can even provide useful results in Mode Tuned Reverberation Chambers, which are
very far from free space but which tend to present a kind of isotropic plane wave ambient field for sufficiently high
frequencies (see the example in [5]).

The most important general conclusion of this section is that we have covariance operators applicable to any
distributions of electric and magnetic contrast sources representing observables. That means that we can compute
the variances of observables characterised not only by regular functions on a volume but also by point-, line- or
surface-distributions. In the following section, we shall see an example of a stochastic distribution with support on a
line.

5. Example: a stochastic pair of wires in a stochastic isotropic plane wave

The twisted pair of wires is a typical example where conventional deterministic modelling fails to give directly
usable information. If the twisted pair is analysed with deterministic modelling, the (more or less perfect) symmetry of
the twisted pair and the smallness of the cross-section can give very low coupling to certain incident fields. However,
an additional quarter of a twist, which is a negligible geometrical perturbation in practical situations, or a slightly
different incident field can completely change the response characteristics. In order to get information concerning
realistic behaviour, one therefore has to either consider large numbers of different interaction geometries or, as we
propose in this paper, turn to probabilistic modelling.

The interaction of a deterministic plane wave with a stochastic twisted pair of wires has been presented before
(see [14]), but here we extend the interaction computation to the case where the incident field is also a stochastic
wave. The model for the stochastic twisted pair is recalled in Section 5.1. As to the stochastic incident field, we
shall consider the most simple model, the isotropic plane wave, detailed in Section 5.2. The results of the interaction
computations presented in Section 5.3 illustrate the essential characteristics of a complete probabilistic model for the
interaction between stochastic fields and stochastic systems.

5.1. A stochastic pair of wires

In this section, we present the model of the stochastic twisted pair. The average geometry will be taken to be the
perfectly regular twisted pair. The geometry fluctuations are modelled as a stochastic linear combination of spatial
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harmonics and in accordance with the perturbation theory presented in Section 3, the stochastic distributions defining
the observable are obtained from the stochastic deformation of the deterministic current distribution on the average
geometry. In addition, this current distribution is assumed to be essentially the twisted deformation of a distribution
known from the transmission-line theory for parallel pairs of wires. All these approximations are quite well-established
in the engineering literature and it is not our purpose here to be overly pedantic as to the accuracy of the numerical
results. We want to present an illustration of the general ideas and the reader will know what additional effort has to
be done to apply stochastic interaction theory in more complicated situations where the various distributions are to be
obtained from numerical solutions of boundary value problems.

5.1.1. The perfect twisted pair of wires
The stochastic twisted pair of wires we want to consider is defined by geometrical fluctuations around an average

geometry for which we take a perfectly regular twisted pair (see Fig. 1). The geometry of a perfect twisted pair cable
of length L can be defined by the parameterisations of the two wire axes, �+ ∪ �−, in terms of the axial coordinate,
z ∈ Z = (0,L) ⊂ R (the cable is assumed to be lying on the third coordinate axis in R

3):

μ± :Z � z �→ μ±(z) = (±rT (z), z
) ∈ R

3

where rT :Z � z �→ rT (z) = (a cos(ξz), a sin(ξz)) ∈ R
2 is the transversal position of the axis of �+, a is the ca-

ble radius and ξ = 2π/T the twist number for a given twist period T . Note the following relations: the Jacobian
of the parameterisation is |μ′±(z)|, which, in the perfect twist case, is a constant given by |μ′±(z)| = √

1 + (ξa)2,

τ±(z) = μ′±(z)/

√
|μ′±(z)| is the unit tangent vector on the wire axis, the z-component of this vector is given by

τ±
z = 1/

√
|μ′±(z)| and the transversal position vector is related to the transversal part of this tangent vector by

τ±
T (z) = ±iz × rT (z)/

√
|μ′±(z)|. Also, in the general case, we have |μ′±(z)|τ±

T (z) = ±∂zrT (z).

5.1.2. Model for the geometry fluctuations
The stochastic twisted pair of wires is defined through a perturbation, ρ, of the transversal position function rT .

This ρ is chosen to be a stochastic vector function with vanishing average, such that the average of the stochastic
twisted pair is the above described perfectly regular twisted pair.

We further suppose that these fluctuations vanish at the terminals because the wire positions on the ends are usually
fixed by the connectors, so

ρ(0) = 0 = ρ(L)

In our computations, we shall use a finite harmonic expansion consistent with the above considerations,

ρ(z) =
N∑

p=1

Ap sin(pπz/L) (1)

where the amplitudes Ap are, statistically independent, stochastic vectors in two dimensions, the components of which
are given by two uniform probability distributions on an interval (−Δ/p,Δ/p), for some Δ < a. Although, any finite
linear combination of the harmonics gives a smooth perturbation we make the intervals decrease as 1/p such that even
in the limit N → ∞ the perturbation remains regular.

Fig. 1. Geometry of a perfect twisted pair.
Fig. 2. Sample realisation of a stochastic twisted
pair according to the model of Eq. (1).
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Fig. 2 shows an example of one realisation of a twisted pair of wires issued from this model to give an idea of the
kind of cables we are considering here.

5.1.3. Model for the current distribution
In the integral representation of the induced voltage, E , a normalised current distribution appears, which corre-

sponds to a source applied to the port under consideration. On the twisted pair of wires, this current distribution can
be approximated in transmission-line theory. We shall work with the following approximation:

I |�±(z) = ± sin
(
β(L − z)

)
/ sin(βL)

applying to the voltage on the terminal port in z = 0. The propagation coefficient β will be chosen to account for
phase speed reduction due to the average twist speed, i.e., we shall use

β = k0

√
1 + (ξa)2

with k0 = ω/c0 the wave number of free space and ξ the twist number, but we suppose that the geometrical fluctuations
do not influence the phase velocity along the transmission-line axis (see the approximation hypotheses introduced in
Section 3).

5.1.4. The covariance operator of the stochastic twisted pair of wires
The model for the stochastic geometry and the approximation of the fluctuating current distribution through de-

formation of the deterministic one allows us to make a representation for the covariance operator, along the lines of
Section 3.

As the evaluation of wire currents on fields can be advantageously handled in the so-called thin-wire approximation,
the perturbation theory, presented above, should be adapted to the case of a stochastic curve in three-dimensional
space. Now, we could choose the perfect wire geometry as the parameterising manifold, however, as these wires
themselves are very close to the cable axis we might as well use the simple straight line segment as the parameterising
manifold which serves already as such for the perfect wires. The first step then is to substitute a Taylor expansion of
the electric incident field, to first order around the cable axis. This gives, with the above introduced notations,

E
(
rT (z), z

) = E(0, z) + [(
rT (z) · ∇)

E
]
(0, z)

where rT ∈ R
3 is the (stochastic) transversal coordinate of the centre of the wire we consider. Using basic relations

from vector analysis, and the Maxwell equation ∇ × E = −jωμ0H , we can show that this is equivalent to,

E
(
rT (z), z

) = E(0, z) +
3∑

k=1

(
rT (z) · ik

)[∇(ik · E)
]
(0, z) + jωμ0

[
rT (z) × H

]
(0, z)

where ik is the unit vector along the kth coordinate axis in R
3. The integral over a wire, �, appearing in the general

integral representation of induced voltages, can now be rewritten as an integral over functions evaluated on the (fixed)
cable axis

∫
�

j · E =
L∫

z=0

IW (z)

[
τ(z) · E(0, z) +

3∑
k=1

(
rT (z) · ik

)
τ(z) · (∇(ik · E)

)
(0, z)

+ jωμ0H(0, z) · (τ(z) × rT (z)
)]∣∣μ′(z)

∣∣dz

where τ(z) is the unit vector tangent to the wire at z. Using the symmetry properties of the twisted pair, which are
preserved in the stochastic perturbations, we can derive the following expression for the induced voltage source

E = 2

{
aix · Ei(0,0)

+
L∫

IW (z)

[∣∣μ′(z)
∣∣τT (z) · E(0, z) +

3∑
k=1

(
rT (z) · ik

)
(∂zik · E)(0, z) + jωμ0H · (iz × rT (z)

)]
dz

}

z=0
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where 2aix ·Ei(0,0) is the contribution due to the unit current distribution on the port in z = 0 and we used |μ′(z)|τz =
1. In this representation we can do a partial integration to transpose the z-derivative and obtain a linear form on the
electric and magnetic field on the cable axis. This integral representation now has the general form

E =
∫
�

(p · Einc + m · H inc) (2)

where

p(z) = −2(∂zIW )(z)rT (z), m(z) = 2IW (z)jωμ0
(
iz × rT (z)

)
The p and m are distributions on the cable axis depending linearly on the transversal position function rT . In this way
we have obtained a representation in terms of evaluations on a fixed domain, �, and we can represent the covariance
operator as an integral operator on functions over this domain.

In order to find the covariance operator of the twisted pair, we study the variance of the observable on a deterministic
field. First note that

E − E(E ) =
∫

z∈�

[
πe(z) · Ei(0, z) + πh(z) · Hi(0, z)

]
dz

where

πe(z) = p − E(p) =
∑

k

Akπ
e
k , πh(z) = m − E(m) =

∑
k

Akπ
h
k

and, owing to the linear dependence of p and m on rT , the expressions for πe,h are obtained from those of p and m,
respectively, by simply replacing rT with ρ. The harmonic constituents π

e;h
k are obtained by substitution of the kth

harmonic of the expansion of the fluctuation into the expressions. Now, we get

var(E ) =
∫

z∈�

[
Ei

H i

]
(0, z) ·

[ ∫
ζ∈�

C(z, ζ ) ·
[

Ei

H i

]
(0, ζ )dζ

]
dz

and the covariance operator of the twisted pair, C(z, ζ ), is seen to be given by

C(z, ζ ) =
∑
kl

E(AkAl)

[
πe

k (z) ⊗ πe
l (ζ ) πe

k (z) ⊗ πh
l (ζ )

πh
k (z) ⊗ πe

l (ζ ) πh
k (z) ⊗ πh

l (ζ )

]

and due to the statistical independence of the amplitudes Ak

C(z, ζ ) =
∑

k

var(Ak)

[
πe

k (z) ⊗ πe
k (ζ ) πe

k (z) ⊗ πh
k (ζ )

πh
k (z) ⊗ πe

k (ζ ) πh
k (z) ⊗ πh

k (ζ )

]

This concludes the analysis of the stochastic twisted pair of wires.

5.2. Stochastic isotropic plane wave

The isotropic plane wave is a canonical stochastic field in free-space according to the definitions given in [11],
that means that the real part of the Green function for Maxwell’s equations in free space provides the field’s spatial
covariance. We can therefore write down the explicit expressions for the field covariance operators

(CEEJ )(x) = −ωμ0

∫
CxJ − 1

ωε0
∇∇ · CxJ, (CEH K)(x) = j∇ ×

∫
CxK

(CHEJ )(x) = −j∇ ×
∫

CxJ, (CHH K)(x) = −ωε0

∫
CxK − 1

ωμ0
∇∇ · CxK

where

Cx(y) = 2
sin(k0‖x − y‖)

4π‖x − y‖
is twice the imaginary part of the free-space Green function of the Helmholtz equation.
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5.3. Computing the variance of the induced voltage

In this section, we detail the computation of the variance of the observable voltage appearing on a terminal port of
the twisted pair of wires. According to the formulation presented in Section 2, the variance is given by the following
expression:

var(E ) = Tr(CωCψ) =
∑
p

var(Ap)〈ωp,Cψωp〉 (3)

where we have used the covariance operator of the incident field, Cψ , and the spectral expansion of the covariance
operator of the twisted pair, Cω = ∑

p var(Ap)ωp ⊗ ω
†
p with ωp = πe

p ⊕ πh
p .

To illustrate the theory we shall present the results of some computations on a twisted pair with the following
characteristics:

– Cable length, L = 0.5 m,
– Cable radius, a = 2 mm,
– Twist period, T = 0.01 m,
– Number of harmonics in the fluctuation expansion, N = 5,
– Fluctuation extent, Δ = 1 mm.

The incident field is an isotropic stochastic plane wave with an electric field polarisation with unit variance, i.e., zero
mean value and a standard deviation of 1 V/m.

Before presenting the illustrations of the stochastic interaction theory, we show some results on deterministic cases
which illustrate a typical situation where probabilistic modelling is almost unavoidable. In Fig. 3, we show the induced
voltage due to a plane wave with propagation direction along the y-axis and electric field of strength 1 V/m parallel
to the z-axis, i.e., the cable axis. It can be seen that the induced voltage is very low and increases monotonously with
frequency in the frequency range considered. If we change the propagation direction by turning it over 45 degrees
towards the cable axis and keep the electric field of equal strength in the y–z plane orthogonal to the propagation
direction, we observe that the behaviour of the induced voltage as function of the frequency changes radically. There
are apparent resonance peaks in this case, which make the induced voltage orders of magnitude greater than in the
case of transversal incidence. What happens physically here is that, in the case of transverse incidence, the integer
number of complete twists makes the induced voltage a superposition of contributions with alternating signs. Hence,

Fig. 3. Comparison of two deterministic interaction situations leading to completely different responses.
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the perfect symmetry together with the negligible phase variations over the cable cross-section leads to very weak
interaction. In many other situations with the same cable this accidental cancelling does not occur.

The problem with this kind of modelling is that one does not know whether one has chosen the most favourable
case, a typical case or the worst case. For non-trivial interaction problems, this information can only be obtained
from large series of different case studies or by specific mathematical elaborations dedicated to the extraction of these
global characteristics. Probabilistic modelling is, in fact, one way to study the problem of characterising the nature of
the global behaviour we are interested in. As we shall see, the variance or standard deviation is capable to give much
of the information we are after.

We shall now test the representation of the stochastic twisted pair through the line distributions presented above,
by comparing the induced voltage computed from the representation formula (2), with the value obtained from a
numerical average and variance computation using an increasing number of realisations drawn from the ensemble. The
fixed incident plane wave, oscillating at 200 MHz, propagates parallel to the y-axis and has electric field polarisation
parallel to the principal axis of the twisted pair.

The results are shown in Fig. 4. In fact the induced voltages are imaginary for all sample configurations. This is due
to the special choice of a wave with transversal incidence. It also appears that the induced voltages are quite uniformly
distributed on an interval. This is related to the fact that the probabilistic model for the stochastic twisted pair leads
to a stochastic induced voltage given by a weighted superposition of only a few statistically independent stochastic
variables, each of them uniformly distributed but on different intervals. For the present model, it seems evident that
twice the standard deviation corresponds to a hard upper limit. In this paper, we shall not try to precisely characterise
the distribution of the voltages.3 The results show that a brute force computation of the average and standard deviation
converges to the values obtained from probabilistic modelling. The practical importance of this model is also clear
because the perfect situation, giving an induced voltage of the order of 10−5 V, is shown to be quite exceptional as
the standard deviation due to relatively weak geometry fluctuations is of the order of 10−3 (both counting on a typical
electric field strength of 1 V/m).

The standard deviation around one of the resonance frequencies is shown in Fig. 5, together with the sample values
at 200 MHz.

Fig. 4. Average and variance of a port-voltage induced by a plane wave in a stochastic twisted pair of wires. Convergence of a ‘Monte Carlo’
computation to the values computed from the probabilistic model.

3 However, if one is interested in computing the probability that a given level will be superseded, the nature of the precise probability distribution
must be known.
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Fig. 5. Standard deviation of the induced voltage as function of frequency (Hz) and the sample voltages at 200 MHz of a stochastic twisted pair in
a deterministic plane wave.

Fig. 6. Standard deviation of the induced voltage as function of the frequency (Hz) in a perfect twisted pair in an isotropic plane wave.

Now we characterise the induced voltage when the twisted pair is perfect and the incident field is an isotropic
stochastic plane wave. In this case the covariance operator of the twisted pair reduces to the simple tensor product of
the distributions appearing in the representation formula (2). The results are shown in Fig. 6.

Finally, we compute the induced voltage in a stochastic twisted pair in an isotropic stochastic plane wave using the
complete interaction theory. The results in Fig. 7, show that the standard deviation captures both the differences due
to the fluctuations in the cable cross-section as those due to fluctuations in the incident field. However, the nature of
the two constituents is different and the composition of the two is not a simple addition.



558 B.L. Michielsen / C. R. Physique 7 (2006) 543–559
Fig. 7. Computed standard deviations of the induced voltage as function of the frequency (Hz) for various combinations of stochastic and deter-
ministic components.

6. Conclusion

In this article, we have developed an analysis of the probabilistic modelling of the interaction of electromagnetic
fields and systems, where both of them have uncertainties. The uncertainties in the incident fields represent uncer-
tainties on the operational environment of the system and the uncertainties of the system represent uncertainties in
the manufacturing of the system and, possibly, incomplete specification of the positioning of various of its parts. In
particular, the routing of cables through conduits or even through only vaguely specified zones is a true source of
uncertainty when the ambient fields are rapidly oscillating.

As to the stochastic fields, we have presented a straightforward extension of a previously developed analysis of
canonical stochastic fields, with a given spatial covariance in the electric field component. Here, we have presented
the complete field covariances, including the cross-covariance terms between the electric and magnetic fields, in terms
of the Green tensor functions of the configuration.

For the case of relatively small fluctuations in systems of perfectly conducting surfaces, we have been able to derive
a first, non-trivial, approximation to the stochastic distributions which characterise the response of the system. In this
approximation, only the geometrical fluctuations have to be modelled and the values of the stochastic distributions are
induced from those on the deterministic average system.

The resulting probabilistic model gives an estimate of the average and variance statistics of observables defined
by stochastic systems in stochastic fields. The theory has been illustrated through a complete, but simplified, example
concerning a stochastic twisted pair of wires in an isotropic stochastic plane wave. This example shows some interest-
ing features. Most notably, the fact that isolated deterministic computations can possibly miss important resonances
in an interaction which do indeed show up in the computed standard deviation. This corroborates the conjecture that
deterministic computations alone cannot be used to make reliable estimates about practical interaction situations.

References

[1] F. Tesche, M. Ianoz, T. Karlsson, EMC Analysis Methods and Computational Models, John Wiley and Sons, 1996.
[2] R. Holland, St. John, Statistical Electromagnetics, Taylor & Francis, 1999.
[3] P. Corona, G. Ferrara, M. Migliaccio, Reverberating chambers as sources of stochastic electromagnetic fields, IEEE EMC 38 (3) (August

1996) 348–356.
[4] C. Fiachetti, Modèles du champ électromagnétique aléatoire pour le calcul du couplage sur un équipement électronique en chambre réver-

bérante à brassage de modes et validation expérimentale, Ph.D. dissertation, Université de Limoges, Novembre 2002.



B.L. Michielsen / C. R. Physique 7 (2006) 543–559 559
[5] C. Fiachetti, B. Michielsen, Electromagnetic random field models for analysis of coupling inside mode tuned chambers, Electron. Lett. 39 (24)
(November 2003) 1713–1714.

[6] G. Capraro, C. Paul, A probabilistic approach to wire coupling interference prediction, in: Proc. Int. Zurich Symp. and Technical Exhibition
on Electromagnetic Compatibility, Zurich, Switzerland, 1981, pp. 267–272.

[7] F. Brouaye, M. Hélier, J.-C. Bolomey, Estimation de la tension sur une ligne de transmission de géométrie aléatoire, in: Proc. 10me Colloque
CEM, Clermont-Ferrand, France, 2000, pp. 94–97.

[8] S. Salio, F. Canavero, D. Lecointe, W. Tabbara, Analyse de la propagation sur un toron aléatoire, in: Proc. 10me Colloque CEM, Clermont-
Ferrand, France, 2000, pp. 90–93.

[9] M. Morgan, F. Tesche, Statistical analysis of critical load excitations induced on a random cable system by an incident driving field: Basic
concepts and methodology, Interaction Note 0249, Tech. Rep., 1975.

[10] E. Laermans, F. Olyslager, D. de Zutter, Sensitivity based statistical analysis of circuit parameters obtained from a quasi-TEM analysis of
multiconductor transmission lines, J. Electromagnet. Waves Appl. 11 (11) (1997) 1483–1508.

[11] B. Michielsen, C. Fiachetti, Covariance operators, Green functions and canonical stochastic fields, Radio Sci. 40 (5) (2005) 1–12.
[12] B. Michielsen, A new approach to electromagnetic shielding, in: Proc. Int. Zürich EMC Symposium, March 1985, pp. 509–514.
[13] J.W. Milnor, Topology from the Differential Viewpoint, Princeton Univ. Press, 1965.
[14] B. Michielsen, Analysis of the coupling of a deterministic plane wave to a stochastic twisted pair of wires, in: Zürich Symposium and Technical

Exhibition on EMC, Zürich, February 2005, pp. 439–442.


