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Abstract

Hybrid nanostructures not only open new routes for studying the coexistence of superconductivity and ferromagnetism, but they
also provide new insights into the fundamentals of quantum electronics. We have investigated, by a series of experiments, the
change in the superconducting wavefunction resulting from the interaction between the spins of a Cooper pair and the exchange
field. Tunneling spectroscopy reveals an inhomogeneous Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) superconducting state in-
duced in a ferromagnetic thin film by the proximity effect. As a consequence, critical current and macroscopic quantum interference
(SQUID) experiments show π -coupling between two superconductors coupled through a ferromagnetic thin film. π -coupling orig-
inates a spontaneous half quantum flux in a superconducting ring. This phase transition has been observed by Josephson and Hall
magnetometry. To cite this article: M. Aprili et al., C. R. Physique 7 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Supraconductivité et effets quantiques macroscopiques dans les nanostructures hybrides supraconducteur/ferromagné-
tique. Les nanostructures hybrides ouvrent des nouvelles perspectives pour étudier la coexistence entre deux états fondamentaux
antagonistes : la supraconductivité et le ferromagnétisme. Elles permettent également de créer des nouveaux dispositifs pour l’élec-
tronique quantique. Nous avons étudié par une série d’expériences l’état supraconducteur original qui se produit à l’intérieur d’un
matériau ferromagnétique à cause de l’interaction entre les spins d’une paire de Cooper et le champ d’exchange. Les mesures de
spectroscopie tunnel montrent qu’un état supraconducteur inhomogène, de type Fulde–Ferrell–Larkin–Ovchinnikov (FFLO), est
induit dans une couche mince ferromagnétique par effet de proximité. Nous avons montré par ailleurs que le couplage Josephson
entre cet état et une électrode supraconductrice est négatif (couplage-π ) par des mesures de courant critique et d’interférence quan-
tique macroscopique (SQUID). Le couplage π représente une « batterie de phase » et produit un supercourant spontané lorsque
la jonction ferromagnétique est insérée dans un anneau supraconducteur. Le flux magnétique associé à ce courant est d’un demi-
quantum de flux. Cette transition de phase à basse température a été observée par magnétométrie Josephson et magnétométrie Hall.
Pour citer cet article : M. Aprili et al., C. R. Physique 7 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Ferromagnetic order breaks time-reversal symmetry. It is therefore detrimental to conventional superconductiv-
ity which relies on the pairing of time-reversed states. The Clogston criterion [1] sets the maximum energy that
completely destroys the superconductivity. For a three dimensional system EClogston = ∆s/21/2, where ∆s is the su-
perconducting gap. In fact, as the exchange energy becomes greater than the superconducting gap, corresponding to
the bounding energy of a Cooper pair, two electrons in a pair obtain enough energy to align their spins and destroy the
pair. Fulde and Ferrell [2], and Larkin and Ovchinnikov [3] have shown independently that a new superconducting
state, the so-called FFLO state, can be realized in a ferromagnetic superconductor. For Eex ≈ EClogston, the super-
conducting ground state consists of pairs with non-zero center of mass momentum, directly proportional to Eex. Two
main difficulties make the FFLO state particularly hard to be observed in bulk materials:

(i) as in the FFLO state, the superconducting gap oscillates in real space (we will address the origin of these oscilla-
tions later), in the dirty limit (when the mean free path is smaller than the superconducting coherence length, i.e.,
l < ξo), collisions mix electron wave vectors at the Fermi level and the superconducting gap is zero;

(ii) since the exchange field of a ferromagnet is typically much greater (100 meV – 1 eV) than the gap energy
(∆s ≈ meV), the exchange energy can be replaced by the Zeeman energy (Pauli limit) in a non-magnetic mate-
rial. In this case, the FFLO state occupies a small part of the magnetic field-temperature phase diagram, around
Hc = EClogston/µB.

These constraints are fundamental and are related to the coexistence of pairing with a ferromagnetic ground state.
We overcome this obstacle by spatially decoupling superconductivity and ferromagnetism.

This paper is organized as follows. In Section 2, we describe the superconducting proximity effect in a ferromag-
net and the spectroscopic evidence for an induced FFLO state. Then, in Section 3, we show that proximity effect
tunneling spectroscopy can directly address the exchange enhanced spin fluctuations and the exchange energy at the
ferromagnetic- paramagnetic transition. In Sections 4 and 5 there the critical current and macroscopic quantum in-
terference experiments, respectively, are reported, showing Josephson π -coupling for thickness of the ferromagnetic
layer corresponding to a negative induced pair wave function in the ferromagnet. Finally, in Section 6, we show that
a π -junction is a ‘phase-battery’ and can generate spontaneous supercurrents when introduced in a superconducting
ring.

2. Superconductor/ferromagnet proximity effect

If we consider a superconductor (S) in direct contact with a ferromagnet (F ), Cooper pairs can penetrate into
the ferromagnet (F ) realizing a state equivalent to FFLO. Since the total energy is conserved, a Cooper pair gains
finite momentum �p = Eex/�vF in F [4]. In fact, because of the exchange field, the spin up electron must increase
its kinetic energy while the spin down electron has to reduce it by the same amount. A center of mass momentum
translates into wave function phase variation �φ = �p∗x as function of distance, x, from the S/F interface. As
a result, the pair wave function in the singlet state (up*down-down*up) becomes:

ΨF = Ψo
(
ei(φ+�φ)

) + Ψo
(
ei(φ−�φ)

)
(1)

and consequently the superconducting order parameter oscillates in real space. We shall call this new superconducting
state, induced in the ferromagnet, a π -state to emphasize that a sign change in the pair wave function correspond to
a π shift in the superconducting phase. This nomenclature is borrowed from that used for the symmetry of the wave
function of unconventional superconductors (i.e., d-wave, p-wave, . . .).

If the transport in the ferromagnet is diffusive, the pair function becomes [4]:

ΨF = f+ + f− ∼ cos(x/ξF )e−x/ξF (2)
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where

f± =
∞∫

0

1/(πDt)1/2e−x2/2Dte±2iEext dt

The superconducting state is evanescent in F since singlet correlations are destroyed by the exchange field as
a result of the non-ergodic dephasing of the electrons of opposite spin forming the Cooper pairs in the diffusive
system. The characteristic length scale of this state, ξF = (D�/Eex)

1/2, corresponds to the pair oscillation length
scale.

Since ξF is of the order of a few nanometers, it is necessary to use nanostructures. As the pair reservoir is separated
from the ferromagnet, S/F nanostructures allow one to make a difference between phase coherence and pairing. In
fact, oscillations result only from exchange field induced dephasing of the pair function in F . They are therefore less
sensitive to elastic collisions and can exist even in the dirty limit. Similarly, the π -state does not require the gap and
the exchange energy scales to be comparable. So the π -state is a fundamental manifestation of the FFLO state without
the related constraints and is easier to realize experimentally.

The superconducting density of states induced in the ferromagnet is sensitive to interference of the pair wave func-
tion with itself (formally this comes from the fact that the density of states is given by Re(1−FF ∗)1/2, where F is the
anomalous Green function [4]). Oscillations of the pair wave function in the real space manifest themselves through
an interference term in the density of states. In particular, the tunneling spectrum is capsized with respect to that of the
normal state at the distance from the S/F interface corresponding to the superconducting wave function sign change
(see Fig. 1(a)) [5]. We measure the sign reversal of the density of states in the ferromagnet by tunneling spectroscopy
using planar S2/F /I /S1 junctions with different F layer thicknesses. The ratio between dynamical conductance mea-
sured when electrode S1 is in the normal state (GSN) and when two electrodes S1 and S2 are in the normal state (GNN)
gives the superconducting density of states induced in F convolved by the Fermi function. Cross geometry junctions
(inset of Fig. 1(a)) are fabricated by UHV in situ evaporation through removable mechanical masks.

The materials we have used are S1 = Al, I = Al2O3, F = Pd0.9Ni0.1 and S2 = Nb. We have chosen a weakly
ferromagnetic alloy with a Curie temperature of the order of 100 K to diminish the exchange energy and augment ξF .
Niobium is the natural choice because it has a high critical field and a small coherence length, making it less sensitive

Fig. 1. Spectroscopy of the π -state [5]. (a) Density of states for two thicknesses of PdNi corresponding to a positive (50 Å) and a negative pair
wave function (75 Å). The density of states is sensitive to dephasing by the ferromagnetic layer and it is capsized when the pair function is negative.
Inset: cross geometry of the planar junctions. (b) Density of states at zero energy as function of the PdNi layer thickness reproduces the decaying
oscillations described by Eq. (2). The full curve is best fit obtained using the formalism of the proximity effect in the diffusive material when
a PdNi/Nb interface resistance of 10−6 � is taken into account [5].
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to the domain structure of the ferromagnetic layer. In fact if ξo � ldomaine (where ldomaine is the length of a magnetic
domain), the ferromagnet can be considered as a single domain on the length scale defined by a Cooper pair. By
measuring densities of states for different Ni concentrations, it is possible to determine the exchange energy, as shown
below. The sign reversal of the density of states for two different PdNi thicknesses corresponding to either a positive
(5 nm) or a negative (7.5 nm) pair wave function, is shown in Fig. 1(a). The density of states at zero energy as
a function of the normalized PdNi layer thickness dPdNi/ξF is shown in Fig. 1(b). It reproduces the oscillations of
the pair wave function (See Eq. (2)). It is important to stress that the variations in the density of states in comparison
with the normal state are of the order of one percent or less, due to the exponential decay of the pair wave function
amplitude in the ferromagnet and a finite resistance of the Nb/PdNi interface that reduces the number of Cooper pairs
entering the ferromagnet. The interface resistance has directly been measured in the junctions without the insulator
RNb/PdNi ≈ 10−9 � cm2 [6]. An additional phase shift at the interface has been recently suggested [7] and it may
explain the off-set in the value of dF introduced in the theoretical curve presented in Fig. 1(b).

Finally, it is worthwhile underlining:

(1) Spin-orbit coupling: if in the π -state the momentum does not need to be a good quantum number, spin, however,
has to be a quantum number. If spin is not a good quantum number, the average momentum transfer to a Cooper
pair is zero and the oscillations of the pair wave function disappear [4]. The spin diffusion length therefore needs
to be longer than ξF . This imposes a limitation on the spin-orbit coupling energy: vF τSO = vF /ESO > ξF .

(2) Spin injection: the description of the superconducting proximity effect in a ferromagnet is formally identical to the
description of the spin polarized transport when an out-of-equilibrium magnetization, MHE is injected in a normal
metal [8]. In this case, spin dephasing is due to spin precession. Eq. (2) reads:

MHE =
∞∫

0

1/(4πDt)1/2e−x2/4Dt cos(ωLt)e−t/τsf dt (3)

where ωL is the precession frequency and τsf is the spin relaxation time. Of course, the phase relation between
electrons is arbitrary.

3. Spin fluctuations

A potential well whose dimension is comparable to the electron Fermi wavelength forms bound states. A similar
phenomenon happens in a SNS junction, and here the potential well discontinuity is in the pair potential (or supercon-
ducting gap). Bound states in the normal metal interlayer are called Andreev bound states and their energy spectrum
depends on the N interlayer thickness and the transport inside the normal metal.

Let us consider an electron in N arriving at the interface with energy E below the superconducting gap, ∆s. At zero
temperature, this electron with energy E (measured from the Fermi level) cannot penetrate the superconductor in any
other way than as a part of a Cooper pair. The electron it pairs up with leaves a hole of energy −E propagating with
opposite momentum and spin sign (approximately, in reality the difference in momenta between the electron and the
reflected hole is 2E/�vF ). The hole has the same trajectory as the electron in the opposite direction (see Fig. 2(a)). In
fact, incident electron penetrates the superconductor by length of the order ξo before it is reflected as a hole (Andreev
reflection [9]).

If we limit ourselves to diffusive transport in the normal metal, which most frequently corresponds to the experi-
mental situation, it is better to think in terms of energy instead of momentum. The dephasing in the wave functions
between an incident electron and the reflected hole is �φ = 2Et/�. For electrons at the Fermi level, E = 0, supercon-
ducting correlations are in principle limited only by loss of the phase coherence.

Spectroscopy allows us to probe the Andreev bound states in the normal metal [10]. Let us first consider the S/N
geometry, when two Andreev reflections take place at the same S/N interface. Bound states in the semi-infinite normal
metal are related to trajectories displayed in Fig. 2(a). We stress that these states, and therefore the superconducting
correlations, are formed in N because the Andreev reflection couples two trajectories that are reversed in time. At
the distance d = (Dt)1/2 from the S/N interface, �φ = 2Ed2/D�, the interference between an electron and a hole
depends on their energies, and that gives the bound states spectrum. The inset in Fig. 2(a) shows the expected density
of states. The characteristic energy ETh = �D/d2 (Thouless energy) corresponds to �φ = 2π [11].
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Fig. 2. Propagation of superconducting correlations in a normal metal. (a) Andreev reflection at the S/N interface: electron of the energy less than
∆s is reflected as a hole. Bound states are formed in a semi-infinite metal corresponding to two Andreev reflections. The density of states in the
normal metal is modified by these states. It shows a characteristic energy ETh that depends on distance d from the S/N interface [11]. (b) In
a finite size system (normal metal layer thickness is smaller than the coherence length), bound states are modified. A gap appears in the excitation
spectrum, Eg, while the gap ∆s stays visible in the density of states, but with a reduced spectral weight [12].

Let us now consider finite size effects. If the metal thickness is dN < ξo (i.e., ETh > ∆s), the interference between
an electron and a hole will be given by trajectories represented in Fig. 2(b). In particular, the diffusion time has to
be replaced by the time an electron spends in N , τN ∼ dN/vF , that becomes comparable to the time it spends in S.
Constructive interference between the electron and the hole (�φ = 2π ) can take place only for energies higher than
Eg = πσ�/τN , which is of the same order as the superconducting gap (σ is the transparency). Eg defines a mini-gap in
the N excitation spectrum [12]. It is called the induced gap and it also depends on the S/N interfacial transparency, or,
in the other words, on the length of the trajectory of an electron in the normal metal before it undergoes to an Andreev
reflection. The density of states for a system of finite size is shown in the inset in Fig. 3(b). Two characteristic energies
appear: the induced gap Eg and the superconducting gap ∆s.

Bound states in the normal metal are sensitive to interactions. We can therefore use the proximity effect as a probe
of electron correlations. Specifically, in a paramagnetic metal, the exchange between electrons increases approaching
the ferromagnetic transition and gives rise to spin fluctuations (paramagnons [13]). If the fluctuation energy is bigger
than the superconducting gap, the effect on the electrons with energy E < ∆s is to renormalize the energy E which
becomes E(1 + λp) [14], where λp is the electron-spin fluctuation coupling constant. The gap induced in the normal
metal is reduced as Egs = Eg/(1 + λp). Measurement of the induced gap by tunneling spectroscopy gives directly the
coupling constant λp [15].

Recent developments in the theory of the superconducting proximity effect in the diffusive limit allow a quantitative
analysis of the density of states in the normal metal [16,17]. In particular, the effect of electron energy renormalization
by the spin fluctuations is easily incorporated in the Usadel formalism [18]:

�DN

2

∂θ

∂x2
+ i(1 + λsf)E sin θ + ∆N cos θ = 0 (4)

where DN , ∆N and λN are, respectively, the diffusion constant, the gap and the effective electron-electron coupling in
the normal metal. The Pairing angle θ that is related to the Green functions by angular parametrization, also contains
information on equilibrium properties and in particular the density of states as function of the distance from the S/N
interface, N(E,x) = Re(cos θ).

The superconducting density of states induced in the thin layers of Ag, Pt, Pd and PdNi of the same thickness of
5 nm is given in Fig. 3(a), as well as the theoretical curves obtained self-consistently from the Usadel equation (4) [18].
The junction geometry is the same as that described above. The Nb mean free path is 90 Å, its critical temperature
8.5–8.7 K and coherence length is 80 Å. In the paramagnetic regime, the electron-spin fluctuations coupling constant
increases when approaching the ferromagnetic instability while the induced gap diminishes as can be seen in Fig. 3(a).
From the fits one gets λp to be 0.05, 2.05, 4.15, 5.3 for Ag, Pt, Pd and Pd0.99Ni0.01, respectively (here the density of
Ni impurities in Pd is less than 2.4% and the alloy is paramagnetic). The Stoner factor S is 1, 3.3, 10 and 18 for Ag,
Pt, Pd and Pd0.99Ni0.01, respectively. The Stoner factor diverges when approaching the paramagnetic/ferromagnetic
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Fig. 3. Superconducting proximity effect approaching the paramagnetic-ferromagnetic transition [15]. (a) Superconducting density of states induced
in Ag, Pt, Pd and PdNi as function of the voltage across the junction. In the paramagnetic state interactions electron-paramagnon reduce the induced
gap Eg. Proximity-Effect-Tunneling Spectroscopy (PETS) [16] gives the constant of electron-paramagnon coupling and the Stoner factor. (Best
fits obtained as self-consistent resolution of the Usadel equations are presented as blue curves). (For interpretation of the references to colour, the
reader is referred to the web version of this article.) (b) Density of states in the ferromagnetic state for PdNi layers (Ni concentration is between
5.5 and 12%). The curve N(V ) presents only one characteristic energy: ∆s. Strong pair-breaking in F destroys finite size effects and the induced
gap disappears. Curves are normalized by an amplitude factor directly related to the exchange energy (see Eq. (6)). The theoretical calculation is
presented in the red line. The paramagnetic and ferromagnetic layer thickness is 50 Å.

transition. When we increase the concentration of Ni in Pd, the magnetically polarized area around every Ni impurity
(neutron diffraction measurements give ξpl ≈ 1.5 nm) [19] becomes of the same size as the distance between the
impurities and the system becomes ferromagnetic.

In the ferromagnetic state, the pair breaking by the exchange energy is so strong that the system loses the finite
size effects because d > ξF . This is seen as a modification of the continuum of bound states and more precisely by the
disappearance of the induced gap. The density of states shows only one characteristic energy, the niobium gap energy.
Like the spin fluctuation effects, the exchange energy is naturally incorporated in the Usadel equations [4]:

�DN

2

∂θσ

∂x2
+ i(E + σEex) sin θσ = 0 (5)

where σ = ±1 is the electron spin orientation. The total density of states is given by N(E,x) = Re{cos θ++cos θ−}/2.
Linearization for small values of θ gives the density of states in the ferromagnet

N(E,x) = 1 + [
No(E) − 1

]
exp

(−2
√

Eex/Eth
)

cos
(
2
√

Eex/Eth
)

(6)

where No is the density of states at the S/F interface and ETh is the Thouless energy.
This expression illustrates the sign change of the density of states described above. In fact, the phase term Eex/ETh

(equivalent to �φ = �p.x in (1) in the dirty limit) modulates the amplitude and sign of the density of states, while
the energy dependence is factorized. In general, unlike in a normal metal, the superconducting proximity effect in
a ferromagnet is very short range (10–100 Å) as the Thouless energy must be comparable to the exchange energy and
not to the thermal energy.

Fig. 3(b) shows the density of states measured for 50 Å Pd1Ni1−x layer thickness for different Ni concentrations
(5.5 < x < 12% Ni) and therefore different exchange energies. Densities of states, normalized by the amplitude factor
e−2(Eex/ETh)

1/2
cos(2(Eex/ETh)

1/2) (or in an equivalent way e−2d/ξF cos(2d/ξF ), are independent of the exchange
energy as Eq. (6) indicates. Eq. (6) is represented in Fig. 4(b) by a thick curve. We obtain the exchange energy from
the amplitude factor and the Thouless energy, which depends only on the magnetic layer thickness (d = 50 Å) and the
diffusion constant. Eex is 0.1, 0.5, 2.8, 3.3 and 3.9 for a Ni concentration of 5.5, 6.0, 7.0, 9.8, 11.5%, respectively [15].
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(a) (b)

(c)

Fig. 4. Oscillations of the critical current of the SIFS junction [21]. (a) Dependence of the Andreev bound states of a short SNS Josephson junction
on the phase difference between two superconductors [6]. (b) π -SFS junction. The bound state is at zero energy for a zero phase difference. Arrows
define the direction of the current flow. (c) Josephson coupling as a function of the PdNi layer thickness. The critical current reaches zero for
approximately 6.5 nm. This is the critical thickness corresponding to the crossover between the 0 and the π -state of the junction. The full line is the
best fit from the theory. Insert: current-voltage characteristic of a junction without (black curve) and with (red curve) a ferromagnetic PdNi layer
(Ni 12%).

4. Ferromagnetic-π junctions

For a SNS junction, the Andreev bound states can transmit a non-dissipative current between the two supercon-
ductors. This is the Josephson effect [20] and it consists of a transfer of Cooper pairs between two superconducting
electrodes. Since the bound states energy depends on the phase difference between the two electrodes, �ϕ12, the cur-
rent across the junction depends on �ϕ12. Non-dissipative current density of every bound state depends on its energy.
It defines the maximum coherent current that every bound state can transport.

Andreev levels for a short SNS Josephson junction (∆s < ETh, or equivalently ξo > L) for different phase differ-
ences between two superconductors are represented in Fig. 4(a) [6]. Arrows note the current flow direction: positive
current corresponds to an electron going from right to left and vice versa. For a short junction, in the ballistic limit,
there is only one bound state between the Fermi level and the superconducting gap. We note that for �ϕ12 = 0 and π ,
the bound state is doubly degenerate, equal amounts of positive and negative current are transmitted and total current
is zero. For �ϕ12 = π/2, total current is positive because the bound states closer to the gap transmit more current.
For �ϕ12 = 3π/2, the current is negative. Andreev levels for a short SFS junction with Eex ≈ ETh are represented
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in Fig. 4(b). We note that the same bound states are obtained for a phase shift of π between two superconducting
electrodes. This shift is due to the exchange energy dependent phase factor given to an electron or a hole after the
Andreev reflection. This type of Josephson junction is called a π junction. If the transport in the ferromagnetic layer
is diffusive, we obtain a continuous spectrum of bound states. Then we consider the spectral density of current, i.e.,
non-dissipative current distributed by the bound states continuum as function of energy. Spectral current density for
an SFS junction changes sign for x ≈ ξF (Eex ≈ ETh), where x is the thickness of the ferromagnetic layer [21].

We can take into account this sign change of the Josephson current by a simple argument. If we couple the su-
perconducting wave function induced in F by proximity effect (S/F ) with the other superconducting electrode, if
this coupling is sufficiently weak (we take only the first harmonic in the current phase relation), and the Joseph-
son energy in the first order is: EJ = −Re(ΨF Ψ ∗

S2) then, by using Eq. (2), we obtain the Josephson current:
J = −∂E/∂(�ϕ12) = Jo cos(x/ξF )e−x/ξF sin(�ϕ12) = Jc sin(�ϕ12). This relation gives the value of non-dissipative
current across the Josephson junction as function of the phase difference between two superconductors. The product
Jo cos(x/ξF )e−x/ξF defines the critical current of the junction. It reproduces the exponential decay of the supercon-
ducting wave function in F . The sign change in the critical current corresponds to a π phase shift in the current phase
relation.

The critical current of a Josephson junction is measured from the I–V characteristic. It corresponds to the switching
current in the dissipative branch. The I–V characteristics are obtained by current bias. The I–V characteristic of an
SFIS junction is shown in the inset of Fig. 4(c). Here the insulating layer has the role of considerably reducing the
junction conductance.

For high values of the McCumber parameter, βc = 2eIc/� R2
NC the I–V characteristic is hysteretic (C is the

junction capacitance). As previously described, junctions are fabricated in situ with removable mechanical masks.
The bottom electrode is made up of 150 nm of Nb covered with 50 nm of Al oxidized by an oxygen plasma (P =
8 × 10−2 mbar). The ferromagnetic Ni concentration of the PdNi ferromagnetic layer is 12–14% of Ni. The upper
electrode is 500 Å of Nb. The Josephson coupling, i.e., the critical current multiplied by the junction resistance in
the normal state (V � ∆s), as function of the ferromagnetic layer thickness is given in Fig. 4(c). It reproduces the
oscillations of the superconducting wave function in F . Similar experiments performed using a CuNi alloy instead of
PdNi show the same results [22]. However, by measuring the I–V characteristic, one only addresses the absolute value
of the Josephson coupling, as it is impossible to control simultaneously the phase difference and the current across the
junction. The full curve corresponds to a theoretical calculation. A finite Nb/PdNi interface resistance ≈ 10−9 � cm2

is introduced.

5. π -SQUID

One can measure a phase difference with an interferometer. Let us consider a superconducting ring interrupted
by two Josephson junctions [23] (a dc-SQUID). The superconducting current in the SQUID is given by the sum of
Josephson currents of the two junctions: I = Ic1 sinϕ1 + Ic2 sinϕ2, where ϕ1 and ϕ2 are phase differences across the
junctions 1 and 2. The effective flux Φ in the ring is the sum of the applied flux Φex and the screening flux created by
the ring itself, LIs: Φ = Φext − LIs, where L is the inductance of the ring and Is is the induced current. The phase
relation across the ring is ϕ2 − ϕ1 = 2πΦ/Φo + 2nπ + δ1 + δ2, where δ1 and δ2 are intrinsic phase differences across
the two junctions. We get the critical current of the dc-SQUID by maximizing the total current (i.e., for dI/dϕ1 = 0).
When the critical currents of the two junctions are identical, Ic1 = Ic2 = Ico, we find:

Ic = Ico cos
(
πΦ/Φo + (δ1 + δ2)/2

)
(7)

The critical current of the ring depends on the flux [24] and on the intrinsic phase difference of each junction. Note
that if one junction of the dc-SQUID is in the 0-state and the other in the π -state (π -SQUID), the critical current
at zero flux is zero because currents in the two arms of the SQUID circulate in opposite directions. In that way, the
interference pattern of a π -SQUID presents a half flux quantum shift [25]. This corresponds to the π phase shift
produced by the π junction.

We have developed suspended masks for angle evaporation and lift off of Nb. These masks are produced by electron
lithography. A SEM (Scanning Electron Microscope) picture of the mask before evaporation is presented in Fig. 5(a).
A 50 nm thick Ge layer is deposited on a PES resist (Phenylene-Ether-Sulphone) that has a vitreous transition at
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Fig. 5. Measurement of the ground state of a π junction by an interferometer technique [26]. (a) SEM picture of a suspended mask prepared
by electron lithography to define the SQUID geometry. (b) SEM image of two SQUIDs after evaporation and lift off of the resist mask (PES).
A ferromagnetic junction is inserted in both arms of the SQUIDs. SQUID 1 is formed by two 0 junctions (0-SQUID) indicated by red squares.
SQUID 2 is formed by a 0 junction and a π junction (π -SQUID) indicated by a blue square. (c) Critical current, Ic, as function of the applied
magnetic field. The π -SQUID displays a shift by a half flux quantum in the Ic corresponding to the π phase shift produced by the π junction.

235 ◦C. The mask and the resist are lifted off after evaporation. The SQUIDs, whose size is approximately 8 µm, con-
sist of a Nb ring interrupted by two Josephson junctions Nb/NbO/Pd0.88Ni0.12/Nb. SEM pictures of two SQUIDs with
a 0 and a π junction (π -SQUID), and two 0 junctions (0-SQUID), are shown in Fig. 5(b) (red squares denote 0 junc-
tions and a blue square denotes a π junction). Zero and π junctions correspond to two different Pd0.88Ni0.12 layer
thicknesses. Ferromagnetic junctions are obtained by angle evaporation. The Nb layer is oxidized at P = 1 mBar
for 3–5 minutes in order to reduce the junction critical current. Thus we obtain normal state resistance of the order
of tenths of ohms for a surface 0.8 µm × 1 µm and critical current values of 10 µA at 5 K. The ring inductance is
around 30 pH, SQUID screening is weak IcL ≈ 0.1Φo at that temperature and the SQUID is in the linear limit.

In Fig. 5(c) we present variations of the critical current as function of the magnetic flux for the 0-SQUID and the
π -SQUID shown in Fig. 5(b). We observe a shift by a half flux quantum in the interference patterns as expected [26].
We note that the amplitude of oscillations of the critical current is much less than that expected from theory. Asymmet-
rical junctions and non-sinusoidal current-phase relation can explain this reduction in amplitude [27]. A π junction
can be used as phase generator for macroscopic quantum experiments.

6. Spontaneous macroscopic current

Let us consider a superconducting ring interrupted by a π junction. The free energy of this device is given by
adding the magnetic energy of the ring with the Josephson energy of the junction. It can be written as:

F = LI 2/2 − abs(EJ )Φo/2π cos(2πΦ/Φo + π) (8)

We present in Fig. 6(a) the free energy F as function of the magnetic flux in the ring for zero applied magnetic
field and different values of the parameter γ = IcL/πΦo. In the linear limit |γ | � 1 the magnetic energy dominates
the response of the ring and the energy minimum corresponds to zero magnetic flux in the ring. On the other hand,
in the non-linear limit |γ | � 1, the Josephson energy dominates and the free energy is a double-well potential. In the
ground state a spontaneous flux is generated in the ring [28]. This flux is produced by a spontaneous supercurrent that
compensates the π phase produced by the ferromagnetic junction. The ground state is twice degenerated because two
energy minima are identical and symmetric flux-wise. They correspond to a flux entering or leaving the plane of the
ring and current circulating respectively clockwise or anti-clockwise.

The detection of the half flux quantum in an isolated superconducting/ferromagnetic ring can be realized with
a magnetometric probe directly coupled to the ring. We have deposited by suspended mask technique described above
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Fig. 6. Spontaneous current of the superconducting ring interrupted by a ferromagnetic π junction [29]. (a) Free energy of the ring as function of the
flux in the ring for different values of the parameter gamma (see text). (b) Phase transition as function of the product IcL in the ring. If IcL � Φo
(non-linear limit), the phase difference produced by the PdNi π junction is compensated by the spontaneous supercurrent that generates a half flux
quantum in the ring. (c) SEM picture of the experimental setup used to measure the spontaneous flux. The S/F ring is placed on the Hall probe
obtained by electron lithography. The field associated with the spontaneous magnetic flux produces a Hall signal. Contact setup for current (I ) and
voltage (V ) on the Hall probe.

Fig. 7. Measurement of the spontaneous flux in a S/F ring [29]. (a) Diamagnetic signal appears in the π ring below the critical temperature of the
superconductor (Nb). At low temperature, this signal is equal to a half flux quantum in the ring. No signal is detected for the ring with a 0 junction.
(b) Field-cool measurements show that the spontaneous flux in the π -SQUID is cancelled by the screening current. The response of the 0 ring is
identical to the response of the π -SQUID in the zero cool field.

a superconducting ring of Nb (80 nm thick) interrupted by a PdNi junction of thickness 7.5 nm corresponding to
π -coupling over a Hall cross fabricated from 2DEG. (To have a control measurement, we have also prepared a ring
with a 0 junction.) We have chosen a PdNi thickness corresponding to maximum π -coupling (the Ni concentration
is 18–20%) in order to minimize the effects of thickness fluctuations. The Hall sensor measures the magnetic field
produced by the spontaneous current in the ring, the Hall voltage being directly proportional to the magnetic field.
An SEM picture of the device consisting of the ring and the Hall cross is shown in Fig. 6(c). The size of the Hall cross
is 8 µm × 8 µm, and the size of the ring is 6 µm × 6 µm.

The phase transition as function of the parameter IcL is second order. The flux in the ring as function IcL is shown
in Fig. 6(b). The critical point is given by 2πIcL = Φo. For rings with IcL � Φo, the spontaneous flux inside the ring
is equal to a half flux quantum.

In Fig. 7(a) we present the Hall signal measured as function of temperature for a π ring and a 0 ring, interrupted
respectively with one π and one 0 junction. As expected, the Hall signal is detected below the Nb critical temperature
only for a π ring [29,30]; as a function of temperature it follows the critical current of the junction [29]. In Fig. 7(b)
is shown the Hall signal as function of temperature in the presence of the magnetic field (field-cool) corresponding to
a half flux quantum in the ring for the same rings as Fig. 7(a). The behaviour is inverted: no Hall signal is detected for
a π ring while a signal appears for a 0 ring. Spontaneous current generated by the π junction is totally compensated
by the screening current. This allows us to calibrate the spontaneous flux as equal to the compensation flux, i.e., one
half flux quantum. Hall signals in zero-field-cool for a π ring and field-cool for a 0 ring are comparable. Indeed, the
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screening current trapped in the ring on a field cool corresponding to half flux quantum in the ring is identical to that
produced by a π junction.

7. Conclusions

We have presented a series of experiments in which the interplay between ferromagnetic order and superconduc-
tivity gives rise to new ground states. S/F nanostructures are unique in the sense that they do not require comparable
energy scales (i.e., an exchange energy of the order of the superconducting gap).

Specifically, tunneling spectroscopy at the paramagnetic-ferromagnetic transition allows one to address the en-
hanced exchange interaction between quasiparticles. By fitting the density of states, the Stoner factor is measured in
the paramagnetic regime, while the exchange energy is obtained in the ferromagnetic regime. Furthermore, a new in-
homogeneous superconducting state (“π”-superconductivity) is induced into F . This state is revealed by oscillations
of the induced superconducting density of states in F and it is the equivalent of the FFLO state predicted in bulk
superconductor. The proximity induced FFLO state is more robust that the bulk FFLO with respect to disorder and
exchange field, but it vanishes, in the dirty limit, on about 100 Åfrom the interface.

“π”-superconductivity produces “π”-coupling when ferromagnetic Josephson junction is formed by coupling the
ferromagnetic layer with a second superconductor (“π”-junction). The “π”-coupling has been measured by Joseph-
son interferometry and it corresponds to a π -phase shift in the current-phase relationship of the junction. Thus,
“π”-coupling can be used as a ‘phase-battery’ for macroscopic quantum effects. In particular, we have observed
a spontaneous half quantum flux in a superconducting ring with a “π”-junction. The ground state is degenerated and
corresponds to either a vortex or an antivortex with equal probability [30].
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