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Abstract

The basic physics of bulk magnetic superconductors (MS), related to the problem of the coexistence of singlet superconductivity
(SC) and magnetic order, is reviewed. The interplay between the exchange (EX) and electromagnetic (EM) interaction is discussed.
It is argued that the singlet SC and uniform ferromagnetic (F) order practically never coexist. In the case of their mutual coexistence
the F order is modified into a domain-like or spiral structure depending on magnetic anisotropy. It turns out that this situation occurs
in several superconductors such as ErRh4B4, HoMo6S8, HoMo6Se8 with electronic and in AuIn2 with nuclear magnetic order.
The latter problem is briefly discussed.

The coexistence of SC with antiferromagnetism (AF) is more favorable than with the modified F order. Very interesting physics
is realized in AF systems with SC and weak-ferromagnetism which results in an very rich phase diagram.

A number of properties of magnetic superconductors in magnetic field are very peculiar, especially near the (ferro)magnetic
transition temperature, where the upper critical field becomes smaller than the thermodynamical critical field.

The interesting physics of Josephson junctions based on MS with spiral magnetic order is also discussed. The existence of the
triplet pairing amplitude F↑↑ (F↓↓) in MS with rotating magnetization (the effect recently rediscovered in SFS junctions) gives
rise to the so called π -contact. Furthermore, the interplay of the superconducting and magnetic phase in such a contact renders
possible a new type of coupled Josephson-qubits in a single Josephson junction. To cite this article: M.L. Kulić, C. R. Physique 7
(2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Supraconducteurs magnétiques conventionnels : coexistence de la superconductivité singulet et de l’ordre magnétique.
Nous passons en revue la physique de base des supraconducteurs magnétiques massifs appliquée au problème de la coexistence
de la supraconductivité singulet (SC) et de l’ordre magnétique. L’interelation entre l’interaction d’échange (EX) et l’interaction
électromagnétique (EM) est discutée. Nous argumentons sur le fait que la SC singulet et l’ordre ferromagnétique (F) uniforme
ne coexistent pratiquement jamais. En cas de coexistence mutuelle, l’ordre F est modifié en une structure spiralée dépendant de
l’anistropie magnétique. Il s’avère que cette situation est réalisée dans plusieurs supraconducteurs, notamment dans ErRh4B4,
HoMo6S8, HoMo6Se8 avec un ordre électronique et dans AuIn2 avec un ordre magnétique nucléaire. Ce dernier problème est
brièvement discuté.

La coexistence de la SC avec l’antiferromagnétisme (AF) est plus favorable qu’avec l’ordre F modifié. La physique des systémes
AF avec SC et ferromagnétisme faible est très intéressante et produit un diagramme de phases très riche.
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Les supraconducteurs magnétiques sous champ magnétique présentent certaines propriétés très particulières, notamment au
voisinage de la température de transition (ferro)magnétique, température à laquelle le champ critique supérieur devient plus faible
que le champ critique thermodynamique.

Nous discutons aussi l’intéressante physique des jonctions Josephson à base de MS avec ordre magnétique spiral. L’existence
d’une amplitude d’appariement triplet F↑↑ (F↓↓) dans les MS avec aimantation tournante (effet récemment redécouvert dans les
jonction SFS) donne lieu au « contact π ». En outre, l’interaction entre phases supraconductrice et magnétique dans un tel contact
ouvre la voie à la réalisation de qubits Josephson couplés dans une jonction Josepson unique. Pour citer cet article : M.L. Kulić,
C. R. Physique 7 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The physics of magnetic superconductors is a very interesting subject due to the pronounced competition of
magnetic order and singlet superconductivity in bulk materials. The question of their coexistence was first raised
theoretically in the pioneering work by Vitalii Lazarevich Ginzburg [1] in 1956, where only the electromagnetic (EM)
interaction between magnetic moments and superconductivity was considered. However, the breakthrough in the
physics of MS came after the discovery of ternary rare earth (RE) compounds such as borides (RE)T4B4 with tran-
sition elements T = Rh, Ir, chalcogenides (RE)Mo6X8 (X = S, Se), silicides (RE)2T2Si5 and stannides (RE)TxSn5

[2–4]. In most of them, type-II superconductivity is realized and in all of them the localized RE magnetic moments
are regularly distributed in the crystal lattice. The basic crystallographic structure, for instance in RERh4B4, contains
localized moments (LMs) placed far a way from the Rh and B blocks which deliver conduction electrons. Due to this
spatial separation the conduction electrons rarely jump to magnetic ions, thus making the direct exchange interaction
(EX) Jsf much smaller than in transition metallic magnets, i.e., Jsf(�103 K). In these systems the 4f rare-earth shell
is responsible for localized moments, since the f-level lies much below the Fermi energy, Ef � EF . A number of
compounds belonging to the above families have shown coexistence of superconductivity and antiferromagnetism—
antiferromagnetic superconductors (AFS), such as (RE)Rh4B4 (RE = Dy, Sm, . . . ). In most of them the Néel (AF)
transition temperature TN is smaller than the superconducting one Tc, i.e., TN � Tc.

However, starting from the late seventies much research, both experimental and theoretical, was devoted to MS
systems in which ferromagnetic (F) order and singlet SC compete due to their strong antagonistic characters. These
systems are usually called ferromagnetic superconductors (FS) and they are the main subject of this review. It turned
out that SC and the modified F order can coexist under certain conditions, since the F order is transformed (in the
presence of superconductivity) into a spiral or domain-like structure—depending on the type and strength of magnetic
anisotropy in the system [4,5]. In the RE ternary compounds this competition is rather strong and therefore these two
orderings coexist in a limited temperature interval Tc2 < T < Tm (the re-entrant behavior), for instance in ErRh4B4
and HoMo6S8. The coexistence region in ErRh4B4 is narrow, with Tm ≈ 0.8 K, Tc2 ≈ 0.7 K while at Tc1 = 8.7 K
superconductivity appears in the paramagnetic state. In HoMo6S8 the coexistence interval is even narrower with
Tm ≈ 0.74 K, Tc2 ≈ 0.7 K, while Tc1 = 1.8 K—see [2,4,5]. In HoMo6Se8 where Tc1 = 5.5 K, Tm ≈ 0.8 the exchange
interaction is weaker than in the previous two systems and the coexistence persists down to T = 0 K.

A new and very interesting research field in the physics of ferromagnetic superconductors was opened in 1997
by the Pobell’s group in Bayreuth [6], which discovered the coexistence of superconductivity and nuclear magnetic
order in the type-I superconductor AuIn2. In this system SC appears at Tc1 = 0.207 K and Tm = 35 µK. Although in
this system there is a tendency to nuclear ferromagnetic order, superconducting electrons enforce the appearance of a
spiral or domain-like nuclear magnetic ordering in the SC state below Tm [7], depending on the strength of the nuclear
dipole–dipole interaction.

It turns out that not only the bulk properties of FS are exotic, but also Josephson junctions made of bulk MS with
spiral ordering show potentially fascinating properties, such as π -contact [8], a combination of a magnetic analog of
the Josephson effect for spin current with the ordinary Josephson effect for charge current [9]. In such a system a
realization of two qubits in a single Josephson junction is potentially possible.
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In the following we shall discuss mainly the microscopic and macroscopic theory of ferromagnetic and anti-
ferromagnetic superconductors which takes into account the most relevant interactions between localized moments
and conduction electrons—the exchange (EX) and electromagnetic (EM) interaction. This theory was elaborated by
Buzdin, Bulaevskii, Panyukov and the present author—see [4] and references therein, and successfully applied to a
number of systems. Due to the lack of space some interesting effects of magnetic field on magnetic superconductors
will be discussed briefly. For this subject we refer the reader to [4].

We would like to point out here that in recent years there has been a huge activity in studying of hybrid hetero-
geneous magnetic superconductors such as S–F multilayers and S–F–S Josephson junctions. This field is not only
of importance for fundamental solid state physics, but it is of enormous interest for applications in spintronics and
quantum computing, especially after the experimental confirmation [10] of the remarkable theoretical prediction of
the π -Josephson contact by Alexander Buzdin and coworkers [11,12]. This exciting, and for applications, important,
field will be covered elsewhere in this issue. The physics of other magnetic superconductors such as heavy fermions,
borocarbides (RE)Ni2B2C, cuprates RuSr2GdCu2O8, ferromagnets with triplet SC such as UGe2 will be discussed
elsewhere in this issue.

2. Competition between SC and F order in FS

Here we shall be limited to those magnetic superconductors in which the magnetic ordering of the localized 4f
moments (LM) is due to the indirect exchange interaction (RKKY) going via the conduction electrons. The charac-
teristic exchange energy (θex) is of the order of θex ≈ N(0)h2

0, where N(0) is the density of states at the Fermi level

(per LM) and h0(= (g − 1)nJsf(0)〈Ĵz〉) is the maximal exchange field acting on conduction electrons. Here, g is the
Lande factor, n is the density of localized magnetic moments (LMs), Jsf(0) is the direct exchange energy between
conduction electrons and LMs, 〈Ĵz〉 is the averaged total angular moment of the LM. Note that the exchange field
acting on electrons is hex(r) = h0S(r), where S(r)(= 〈Ĵz〉/J ) is the localized spin normalized to one. Let us mention
in advance that in a number of RE ternary compounds the exchange field h0 is still rather large, i.e., h0 ∼ 102 K
and h0 � ∆0 � 10 K. We shall see below that in spite of the fact that h0 is larger than the Clogston paramagnetic
field hp , i.e., h0 � hp ≈ 0.7∆0, there is a coexistence of SC and modified ferromagnetic order. In the presence of
magnetic ordering, characterized by the magnetization M(r), there is an electromagnetic interaction between local-
ized moments and (super)conducting electrons. The magnetization M(r) = nµS(r) creates a dipolar magnetic field
B(r) = rot A(r) which on the other side induces the screening current js of conduction electrons (the Meissner effect).
The Fourier transformed js is related to A by the kernel Ks(q), i.e., js(q) = −Ks(q)A(q). Having in mind those
magnetic superconductors which are based on RE ternary compounds we shall discuss the physics in the mean-field

approximation for both the SC and magnetic subsystem, i.e., in the Hamiltonian we replace Ŝ(r) → S(r) = 〈Ŝ(r)〉 and
gψ(r)↑ψ(r)↓ → ∆(r) = g〈ψ(r)↑ψ(r)↓〉. Here, ∆(r) is the singlet superconducting order parameter and g is the
electron–phonon coupling constant.

The total Hamiltonian of the system is given by

Ĥ = ĤBCS + ĤCF + Ĥimp +
∑

i

[−B(ri )gµB Ĵi + ĤCF
(
Ĵi

)]
(1)

ĤBCS =
∫

d3r

{
ψ̂†(r)

[
ε̂

(
p̂−e

c
A

)
− µ

]
ψ̂(r) + ψ̂†(r)V̂ex(r)ψ̂(r) + 1

2
∆(r)ψ̂†(r)iσyψ̂

†(r)

− 1

2
∆∗(r)ψ̂(r)iσyψ̂(r) + |∆(r)|2

gepi

}
. (2)

Here, ε̂(p̂− e
c
A) is the band energy of electrons in magnetic field, σ = {σ x,σ y,σ z} are Pauli matrices, while the

exchange field acting on electrons is given by

V̂EX(r) =
(

hz
ex(r) h⊥

ex(r)
h

⊥,∗
ex (r) −hz

ex(r)

)
(3)

For the moment we go in advance by informing the reader that in the SC phase the ferromagnetic order is modified into
a spiral or domain-like structure with the wave vector Q. Which magnetic structure occurs depends on the magnetic
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anisotropy which is contained in the operator ĤCF. If the magnetic anisotropy is small (or is of the easy-plane type)
than the spiral structure is realized with h⊥(r) = heiQz and hz(r) = 0, while in the opposite case, with an easy axis
anisotropy, one has h⊥(r) = 0 and hz(r) = hz(r + L), L = 2π/Q. The effect of nonmagnetic impurities is described
by Ĥimp whose effect is characterized by the mean-free path l and time τ .

2.1. Sinus magnetic structure due to SC for T � Tm

In RE ternary magnetic superconductors in which the singlet SC and ferromagnetic order compete, the supercon-
ducting critical temperature, Tc1, is much higher than the magnetic one, i.e., Tm � Tc1. Before discussing the complete
phase diagram we shall study the coexistence problem at temperatures near Tm, i.e., T � Tm, where the magnetic order
parameter is small S � 1. In the case when the easy-axis magnetic anisotropy D is sufficiently large, then the sinus
structure S(r) ≈ S(T ) sin Qr appears below Tm (for small D a spiral order is favored—see Section 2.3). In that case
hex(r) = h0|S(r)| � h0,∆ and the free-energy can be calculated by perturbation theory

F
{
S(r),∆(r),A(r)

} = FM{S} + FS{∆} + FInt{S,∆,A} (4)

Here, FM and FS are the magnetic and SC functional without mutual interaction, respectively. Near Tm0 the free-
energy has the form

FM

{
S(r)

} = n
∑
q

{
1

2

[
(T − Tm0) + θa2q2]∣∣S(q)

∣∣2 − D
∣∣Sz(q)

∣∣2
}

+
∫

d3r
(B − 4πM)2

8π
(5)

where S(q) is the Fourier transform of S(q). The last term in Eq. (5) is the magnetic energy for a given magnetization
M(r) = nµS(r) and in the equilibrium the magnetic induction is given by B = 4πM. The characteristic energy for the
EM interaction is given by θem = (B2/8πn) = 2πnµ2 which is ∼1 K in the RE ternary compounds—see Table 1.

At temperatures near Tm (� Tc1) the exchange field is small, i.e., h � ∆, and the SC free-energy density (FS =∫
d3r F̃S ) has the form

F̃S

{
∆(r)

} = −1

2
N(0)∆2 ln

e∆2
0

∆2
(6)

It is minimized for ∆ ≈ ∆0 and weakly affected by magnetism and therefore we omit it from the analysis at T near
Tm. The part FInt describes the EX and EM interaction between SC and magnetic order (note js(q) = −Ks(q)A(q))

FInt =
∑
q

{
θex

2

χn(q) − χs(q)

χn(0)

∣∣S(q)
∣∣2 + 1

2
Ks(q)

∣∣A(q)
∣∣2

}
(7)

Table 1
Basic parameters of the ferromagnetic superconductors ErRh4B4, HoMo6S8 and HoMo6Se8. The parameters are defined in the text

ErRh4B4 HoMo6S8 HoMo6Se8

n [cm−3] ∼1022 ∼4 × 1021 ∼ 4 × 1021

µ [µB ] 5.6 9.1
ã [Å] ∼1 2.5 2.7
λL(0) [Å] 900 1200
ξ0 [Å] 200 1500 470
∆0 [K] 15.5 3.2 10
N(0)−1 [K spinRE] 1850 3600 1754
vF [cm s−1] 1.3 × 107 1.8 × 107 1.8 × 107

θex [K] 0.5–0.8 0.2 0.1 < θex < 0.34
h0 [K] 40 24 ∼10
τ−1
m [K] 3 0.9

θem [K] 1.8 1.3 ∼1.3
Tc1 [K] 8.7 1.8 5.5
Tm [K] 0.8–1 0.7–0.74 0.53
Tc2 [K] 0.7 0.65 no
L = 2π/Q [Å] 90–100 200 70–100
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where χn(q) and χs(q) are electronic susceptibilities in the normal and SC state, respectively. The EM Kernel Ks(q)

describes the screening effect of the dipole–dipole interaction by the superconducting electrons.
After minimization of F {S(r),∆(r),A(r)} with respect to A(r) one obtains F {S(r),∆(r)} in the following form

(see more below and in [4])

F
{
S(r),∆(r)

} = n
∑
q

{
1

2

[
(T − Tm0) + θa2q2]∣∣S(q)

∣∣2 − Dz

∣∣Sz(q)
∣∣2 + θex

2

χn(q) − χs(q)

χn(0)

∣∣S(q)
∣∣2

+ θem

2

4πKs(q)|S(q)|2 + (qS(q))(qS(−q))

q2 + 4πKs(q)

}
(8)

The length a is of the order of the lattice constant (magnetic stiffness) and the bare critical temperature Tm0 and θ (note
Tm0 �= θ [4]) take into account, in a subtle way, the indirect EX and direct dipole–dipole (EM) interaction between
LMs—see [4]. θem = 2πµ2 characterizes the EM effects in the dipole–dipole interaction between LMs. Dz(>0) is
the magnetic anisotropy which orients spins along the z-axis.

Due to the singlet SC pairing χs(q) is reduced significantly at small wave vectors q < ξ−1
0 where ξ0 is the SC

coherence length. In the clean limit (l → ∞) and at T = 0 one has χs(0) = 0 which means that the ferromagnetic
order can not coexist with singlet superconductivity. In Fig. 1 we show χs,n(q) schematically for the cases when the
ferromagnetic (a) or antiferromagnetic order (b) is realized in the normal state. It is seen that a singlet superconductor
behaves as a normal metal at large momenta, i.e., χs(q ∼ kF ) is weakly affected by SC. Therefore AF competes
with SC much less than the ferromagnetic order does. This analysis has been first made in the remarkable paper by
Anderson and Suhl [17]. They were the first who predicted a nonuniform (‘crypto-ferromagnetic’) magnetic order
below the Curie temperature with the period much smaller than ξ . This idea was further elaborated in a number of
papers—see review [4], where all relevant interactions are included, such as the EX and EM interaction, effects of
non-magnetic impurities and also of magnetic anisotropy.

We stress that at finite temperature one has χs(0) �= 0 which is exponentially small in the singlet s-wave SC, while
in d-wave SC one has χs(0) ∼ χn(0)(T /∆0). In the presence of the spin-orbit (SO) scattering χs(0) is also finite. The
general expression for χs(q) is calculated in [18]

χs(q) = 1 − πT
∑
ωn

1

(1 + u2
ω)(P (ω,q) − 1/2τ1)

(9)

where uω = ω/∆ and

P(ω,q) = 1

2

qvF

arctan{ qvF

2∆

√
1 + u2

ω + 1/2τ− } (10)

Fig. 1. Schematic spin susceptibility in the normal and SC state χn,s (q): (a) for the ferromagnetic order in the normal state—peak at Q = 0; (b) for
the antiferromagnetic order—peak at Q0.
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Here, τ−1
1 = τ−1− − (4/3)τ−1

so , τ−1− = τ−1 + τ−1
so , lso = vF τso and ωn = πT (2n + 1). Later, we shall discuss the effect

of the SO interaction on the coexistence phase. The effect of the exchange scattering is similar, i.e., χs(0) is finite for
finite exchange scattering time τs . Concerning this point, as well as to other theoretical questions related to magnetic
superconductors, we refer the reader to the review [3].

Since in the following we study the competition between SC and ferromagnetism at low temperatures it is sufficient
to give a general expression for the EM kernel Ks(q) in the clean limit

Ks(q) = 3ne∆

mcqvF

1∫
0

dx
1 − x2

x

arcsh(
xqvF

2∆
)√

1 + (
xqvF

2∆
)2

(11)

The expression for Ks(q) for finite mean-free path l is rather complicated and therefore omitted here. Some limiting
cases of Ks(q), which are relevant for real magnetic superconductors, will be studied below.

By knowing χs(q) and Ks(q) one can minimize F {S(r),∆(r)} with respect to the wave vector q . In such a way
the equilibrium magnetic structure is obtained, which depends on the microscopic parameters a, ξ0, λL (the London
penetration depth), θex, θem. From Eq. (8) we conclude that the EM interaction is minimized for q · S(q) = 0, i.e., the
magnetic structure is transverse.

Let us analyze χs(q) and Ks(q) in the interesting range of parameters. In the clean limit and for qξ0 � 1 one has

Ks(q) = 1

4πλ2
L

χn(q) − χs(q) = χn(0)

(
1 − π2q2ξ2

0

30

)
(12)

while for qξ0 � 1 it holds

Ks(q) = 3

4λ2
Lqξ0

χn(q) − χs(q) = χn(0)
π

2qξ0
(13)

Based on Eqs. (12) and (13) and after the minimization of the free-energy F in Eq. (8) we obtain that just below the
transition temperature Tm = Tm0([1 − 3(πθexa/4θξ0)

2/3] a transverse (Qs⊥Sz) sinus structure Sz(r) ≈ S sin(Qsr) is
realized. In case when ξ2

0 � aλL the wave vector Qs is determined by the EX interaction and for θex/θem � (a/ξ0)
2

it is given by [19,20]

Qs =
(

π

4

θex

θa2ξ0

)1/3

(14)

For θex/θem � (a/ξ0)
2 the EM interaction prevails with

Qs =
(

1

aλL

)1/2

(15)

In the opposite limit ξ2
0 � aλL the EX interaction dominates for θex/θem � (a2ξ0/λ

3
L)2/5 which gives again [19,

20]

Qs =
(

π

4

θex

θa2ξ0

)1/3

(16)

For θex/θem � (a2ξ0/λ
3
L)2/5 the EM interaction dominates which gives

Qs ≈
(

1

a2ξ0λ
2
L

)1/5

(17)

From these expressions it is seen that for realistic parameters the wave-vector Qs is determined by the EX
interaction—it is independent of the EM parameter λL, while the EM interaction (with λL dependence of Q) is dom-
inant only for an extremely small EX interaction (θex � θem(a/ξ0)2 or θex � θem(a2ξ0/λ3 )2/5), i.e., for (θex/θem) �
L
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10−4–10−5. However, in typical ferromagnetic superconductors, such as ErRh4B4, HoMo6S8, HoMo6Se8, AuIn2, the
EX interaction dominates since θex > 0.1θem and a � ξ0 � λL.

In reality, nonmagnetic impurities are always present and the knowledge of χs(q, l) and Ks(q, l) as a function of the
mean-free path l is needed. The corresponding calculations show that if (l5/a2ξ0λ

2
L) � 1 and for θex/θem � a2ξ0/l3

one has [19,20]

Qs =
(

π

4

θex

θa2ξ0

)1/3

(18)

while

Qs ≈ θex

θ

(
1

la2ξ0

)1/4

(19)

for (a2ξ0/l3) � θex/θem � (l2/λ2
L), a2l/ξ3

0 .
In the case when (θex/θem) � (a2ξ0/l3), or (θex/θem) � l2/λ2

L, the EM interaction dominates and

Qs ≈
(

l

a2ξ0λ
2
L

)1/4

(20)

Let us stress some interesting properties of ferromagnetic superconductors:

(i) the ferromagnetic critical temperature Tferro is strongly reduced in the presence of SC due to the formation
of Cooper pairs in the SC state, i.e., one has Tferro = Tm0[1 − (θex + θem)/θ ] � Tm. In fact this result is more
general and holds also for the coexistence of SC and itinerant ferromagnetism (F) in the mean-field approximation
(MFA). Namely, in systems where the pairing is due to the electron-phonon interaction and the EX interaction
dominates the EM one, the singlet SC and ferromagnetism do not coexist in the MFA. In that sense a number of
recent papers which claim that the itinerant F and SC coexist in the MFA should be abandoned [21]. However,
in some itinerant ferromagnets such as Y9Co7 (with TF = 4.5 K) the microscopic parameters favor spiral or
domain magnetic structure in the SC state with Tc1 = 2.5 K as it was proposed in [22];

(ii) in isotropic magnetic systems and near the critical temperature Tm the inverse scattering time due to magnetic
fluctuations can diverge and thus destroy SC. However, this divergence is suppressed in the real RE ternary
compounds due to the long-range dipole–dipole interaction. The interaction of SC with magnetic fluctuations is
described by the free-energy contribution

Fsc,fl = θex

2

∑
q

〈Sz,qSz,−q〉χn(q) − χs(q)

χn(0)
(21)

where

〈Sz,qSz,−q〉 ∼ 1

τ + a2q2 + (θem/θ)q2
z /q2

(22)

with τ = (T − Tm0)/θ . Due to the large dipole–dipole temperature with θem ∼ θ these fluctuations look four-
dimensional, thus giving rather small value for the inverse scattering time τ−1

m ∼ θ � Tc1;
(iii) the relative strength of the EX and EM interaction is controlled by the parameter r

r = F
(EM)
Int

F
(EX)
Int

= θem

θex

1

Q2λ2
L

(23)

In the RE ternary compounds the case r � 1 always occurs, due to the large value of Q2λ2
L � 1. Therefore,

practically in all RE ternary compounds the EX interaction dominates in the formation of magnetic structure,
while the EM interaction makes it transversal—see exception in a weak ferromagnet below;

(iv) In the RE ternary compounds the ferromagnetism is stronger phenomenon than SC since the gain in the ferro-
magnetic energy (per LM and at T = 0 K) Em ≈ N(0)h2

0 is larger than the gain in the SC condensation energy
Ec ≈ N(0)∆2

0 since h0(∼102 K) � ∆0(�10 K). Nevertheless, the ferromagnetic order is more ‘generous’ since
it varies spatially in the SC state, while the SC order parameter is practically homogeneous. The reason for this
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peculiar phenomenon lies in the fact that the magnetic stiffness (∼a) is much smaller than the superconducting
stiffness (∼ξ0), since a � ξ0.

2.2. Domain magnetic structure due to SC

By lowering T the higher order term in the free-energy, ∼S4(r), makes the change of the modulus of S(r) unfa-
vorable. As a result, the sinus-structure is transformed, as it will be shown below, into the striped domain structure
(DS)—see Fig. 2. The exchange field grows hex = h0S(T ) by lowering T but if hex(T ) < ∆ the mutual interaction of
magnetism and SC can be treated by perturbation theory. In such a case the free-energy density is completed by the
energy density of domain walls, QEW/π , where EW is the wall-energy per unit surface. In the case of sufficiently
large magnetic anisotropy, Dz > θ , the rotation of magnetic moments in the wall is unfavorable and the linear do-
main wall with Sz(x) = Sth(x/lW ), Sx = Sy = 0 is favored. Here, lW = a/

√
τ is the domain-wall thickness [4]. The

domain wall energy per unit surface is given by

EW = (
4
√

2/3
)
nθS2aτ 1/2 ≡ nθS2ã (24)

where τ = (T − Tm0)/θ—see [4].
The free-energy density F̃DS in the DS phase is given by

F̃DS = nθ

[
1

2
τS2 + b

4
S4

]
+ Q

π
EW + nθex

7ζ(3)

2π

S2

Qξ0
(25)

It depends on S and Q only, since SC is practically unaffected by magnetism near Tm. Note, that if the anisotropy
energy is small, i.e., τ > 2Dz/θ , the rotating domain wall is realized with the wall thickness lW ≈ a(θ/Dz)

1/2 and
the wall energy EW ∼ nS2a(θDz)

1/2.
In the case of an extremely small anisotropy (Dz/θ) < (a/ξ0) ∼ 10−2–10−3 the spiral structure occurs. Minimizing

FDS in Eq. (25) with respect to Q one obtains the equilibrium wave vector of the striped DS phase

QDS � 2

(
θex

θ

1

ãξ0

)1/2

(26)

By comparing Eqs. (14) and (26) one concludes that the period of the DS structure (L = 2π/Q) is larger than in the
sinus phase. It is worth mentioning that: (i) the striped domain structure is due to SC and it is property of the bulk;
(ii) the structure of the DS phase in the SC state is mathematically similar to the problem of the domain structure in a
normal ferromagnetic plate with the magnetization perpendicular to the surface of the sample. In this case the role of
Fint is played by the magnetic energy dissipated out of the plate. Generally, the domain structure is realized when the
wall thickness a/

√
τ is much smaller then the domain thickness π/Q, thus implying that τ � (a/ξ0)

2/3 ∼ 10−2.
At lower temperatures when the exchange field is large, i.e., hex(T ) > ∆, the problem appears to be non-

perturbative. Since the period LD of the domain structure is much larger than a, i.e., LD � a, the problem is studied

Fig. 2. The striped domain magnetic structure S(x) = Sz(x)ez with the period LD = 2π/QDS; QDS is along the x-axis.
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by the quasiclassical ELO equations. In the presence of nonmagnetic impurities these equations are solved for the
striped domain structure given by

Sz(r) = 4S(T )

π

∞∑
k=0

sin(2k + 1)Qr
2k + 1

≡
∑

q

Sz,qeiqr (27)

By assuming that Q is along the x-axis the solution for the Green’s function are searched in the form

f (v, x) = f0(v) +
∑

k

fk(v)eikx (28)

and analogously for g(v, x), where k = (2m+ 1)Q and |fk| � |f0|, |gk| � |g0|. The calculations were done in [19,4]
and here we present only the final result for the free-energy in the dirty limit (l � ξ0). It turns out, in that case, that
the interaction of the magnetic domain structure with SC is similar to the case of magnetic impurities with the inverse
scattering time τ−1

m and with τm∆ > 1, i.e., F̃DS is given by

F̃DS = nθ

[
1

2
τS2 + b

4
S4

]
+ QEW − 1

2
N(0)∆2 ln

(
e∆2

0

∆2

)
+ N(0)

π∆

2τm

(
1 − 2

3πτm∆

)
(29)

where τ−1
m is given by

τ−1
m =

∑
q

{
πhz,qhz,−q

vF q
L1(ql) + 3Bq · B−q

16λ2
LnN(0)vF q3

L2(ql)

}
(30)

where hz,q = h0Sz,q. The functions L1 and L2 are given by

L1(y) = 2y arctany

π(y − arctany)
(31)

and

L2(y) = 2

π

[(
1 + 1

y2

)
arctany − 1

y

]
(32)

The magnetic induction Bq is related to Sq by

Bq = 4πnµ[q2Sq − q(qSq)]
q2 + Ks(q)(1 − 4/3πτm∆)

(33)

where the EM kernel Ks(q) in the dirty limit has the form

Ks(q) = 3π∆

16vF λ2
Lq

L2(ql) (34)

Based on the free-energy in Eq. (29) we can study the coexistence problem in the whole temperature regions and
for various Ql—see more in [19]. We summarize the main results:

(i) at T = Tm the sinusoidal magnetic order appears with the wave vector Qs ∼ (1/a2ξ0)
1/3 where Qs is perpendic-

ular to S, i.e., the structure is transverse;
(ii) by lowering the temperature the striped domain structure appears with QDS ∼ (1/aξ0)

1/2, which is also transverse
and persists down to the temperature of the first order phase transition Tc2 where the DS phase passes into the
normal ferromagnetic state. At Tc2 one has

FDS
{
SDS(Tc2),∆(Tc2),QDS,c2

} = FFN

{
SF (Tc2),0,0

}
(35)

where QDS,c2 ≈ 1.8(ã(Tc2)ξ0)
−1/2 ∼ (aξ0)

−1/2, ∆(Tc2) = 0.85∆0 and (S2
c2/Qc2) ≈ 0.07(∆0vF /h2

0);
(iii) if SDS(Tc2) > 1 this means that the DS is stable down to T = 0 K—this situation occurs in systems with small

EX interaction (which still dominates over the EM one), i.e., for θex < θc
ex ∼ (T 3 /h2);
c1 0
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(iv) in dirty SC with (hτ)2 � 1 there is a gap in the quasiparticle spectrum for E < ∆ in the whole range of the
existence of the domain phase. The calculations show, that in clean SC the spectrum is gapless for h(T ) � ∆

[5,4]. For instance, in the DS phase one has for E � ∆

N(E)

N(0)
= πh

vF Q

E

∆
ln

4∆

E
(36)

while in the case of spiral order

N(E)

N(0)
= πh

2vF Q

E

∆
(37)

(v) the spin-orbit interaction decreases the value of χn(0) − χs(0) (this holds also for small q) and this effect is
detrimental for the DS phase. However, the analysis in [23] shows that the spin-orbit scattering destroys the peak
in χs(q) in very dirty systems only, in which case one has l ∼ a.

We would like to point out that there have been many studies of ferromagnetic superconductors based on the phe-
nomenological Ginzburg–Landau (G–L) theory which takes into account the EM interaction only [24,25]. Although
very interesting, this phenomenology is inadequate in describing real materials, such as the above numbered RE
ternary compounds where the EX interaction prevails in the formation of the oscillatory structure (with Q � ξ−1

0 ,
λ−1

L ) in the SC state.

2.2.1. Experimental situation
The important microscopic parameters of RE ternary compounds, which determine the properties of the coexistence

phase of some ferromagnetic SC, are given in Table 1.
Based on the presented theory and by using the microscopic parameters from the Table 1, one concludes that

in ferromagnetic superconductors HoMo6S 8, ErRh4B4, HoMo6Se8 the superconductivity and oscillatory magnetic
order coexist in some (narrow) temperature interval. It is seen also that the period L of the oscillatory magnetic
structure (either sinus or domain-like) in all three compounds does not exceed the value L (= 2π/Q) < 200Å. This
important experimental result means that the energetics of the coexistence phase in the bulk sample is predominantly
due to the EX interaction, while, as we said above, the EM interaction makes the structure transverse (Q · S = 0).
The latter property is due to the fact that in this situation the density of magnetic charges is zero, div M = 0, and the
corresponding magnetic energy is also zero. The compound HoMo6Se8 is different from the other two, since in it SC
and the oscillatory magnetic order coexist down to T = 0.

2.3. Domain magnetic structure in thin superconducting films

In the above calculations we have assumed that the thickness L of the sample is very large, i.e., L � ξ0,Q
−1
DS, so

that the dissipated magnetic energy (stray field) can be neglected. In case of thin films with L ∼ ξ0 the stray magnetic
energy Est, which exists around the domain walls and near the surface of the sample, must be added to the free-energy
FDS in Eq. (29) (or its simple version in Eq. (25)). The total free-energy Ftot = FDS + Est is given by [20]

F̃tot/n = (F̃DS/n) + Est = (F̃DS/n) + 0.85θem
S2(T )

QL
(38)

The case where the ratio r(= F
(EM)
Int /F

(EX)
Int ) � 1 the minimization of Ftot w.r.t. Q gives

Q2
tot = Q2

DS + Q2
F (39)

where QDS is the wave vector of the DS phase without the stray magnetic energy and QF ≈ 1.6(θem/θãL)1/2 is
the wave vector of the striped domain structure in the normal ferromagnetic state. From Eq. (39) it is seen that in a
thin SC film the period of the DS (d = 2π/Qtot) is decreased due to the stray field. It comes from Eq. (38) that the
transition temperature Tc2 (for the first order phase transition DS → FN (with domains) can be pushed to zero when
L < Lc = 3ξ0(θemS4

c2(L = ∞))/θex(1 − S4
c2(L = ∞))2. Some experiments in thin films of HoMo6S8 show such a

thickness dependence of Tc2, where Tc2(L) < Tc2(∞) holds.
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Let us mention that even in the normal ferromagnetic state, which occurs for T < Tc2, there is a possibility that
SC exists in domain walls, as was shown in [26–28,4]. It seems that this situation happens in some pseudoternary
compounds in which h0 � ∆0.

2.4. Coexistence of nuclear magnetism and superconductivity

In 1997 Pobell’s group from Bayreuth made an important discovery [6] by observing that superconductivity and
nuclear magnetism coexist in AuIn2 with Tc1 = 0.207 K and Tm = 35 µK. At first glance this is not too surprising
having in mind the smallness of the hyperfine interaction between conduction electrons and nuclear spins. However,
Buzdin, Bulaevskii and the present author applied in 1997 [7] the above mentioned theory of magnetic supercon-
ductors [4] and obtained a surprising result, that the effective nuclear ‘exchange’ field (in fact the hyperfine contact
interaction) is rather large hhyp ≈ 1 K. At the same time the superconducting gap is ∆0 ≈ 0.6 K, i.e., hhyp > ∆0! We
point out that the hyperfine interaction has the same (mathematical) structure as the exchange interaction between the
4f LMs and conduction electrons

Ĥhyp =
∫

d3r
∑

i

Ahypδ(r − Ri )ψ̂
†(r)σ Îi ψ̂(r) (40)

Here, Ahyp is the hyperfine interaction and the ‘hyperfine exchange field’ is given by hhyp = nAhyp〈 Îi〉, where Îi

is the nuclear spin. It turns out that the nuclear magnetism in AuIn2, which shows a strong tendency toward ferro-
magnetism, competes rather strongly with SC. The estimation from experiment [6] gives: θem (= 2πnnµ

2
n) ≈ 1 µK

and θex (≈ N(0)h2
hyp) ≈ 35 µK, ξ0 ≈ 105 Å, λL ≈ 105 Å, l ≈ 3.6 × 104 Å (l < ξ0). This set of parameters implies

that the ‘EX’ (hyperfine contact) interaction is much stronger than the EM (dipole–dipole). The theory, which was
originally invented for RE ternary compounds, is also applicable to this problem. It predicts, that if the nuclear mag-
netic anisotropy (which is due to the dipole–dipole interaction) is small, i.e., (D/θex) < 10−3, the spiral magnetic
structure should be realized. In the opposite case (D/θex) > 10−3 the striped domain structure should be formed. The
experiments in magnetic field [6] give evidence that SC and oscillating magnetic order coexist up to T = 0 K, i.e.,
the case θex < θc

ex occurs in AuIn2, which is a type-I superconductor. Unfortunately, until now, there were no nuclear
scattering measurements on AuIn2 which could precisely resolve the nuclear magnetic structure below Tm = 35 µK.

The study of the coexistence of SC and nuclear magnetic order is of enormous importance also for fundamental
physics. These systems give an opportunity for studying the coexistence problem in cases when the electronic tem-
perature (Te) is different from the nuclear one (Tn), i.e., Te �= Tn. However, probably the most interesting problem is
the coexistence of SC and nuclear magnetism in the case of negative nuclear temperatures (Tn < 0 K). Unfortunately,
the famous Bayreuth laboratory was closed recently and further development of this fascinating field has stopped.

3. Antiferromagnetic superconductors (AFS)

3.1. Coexistence of antiferromagnetism and superconductivity

An evident experimental fact in RE ternary compounds is that superconductivity coexists with the antiferromag-
netic (AF) order much more easily than with the modified ferromagnetic order.

As in the case of spiral (or domain-like) magnetic order the antiferromagnetic order influences SC in two ways:
(a) there is a splitting of energy levels of conduction electrons due to the exchange field generated by localized mo-
ments. As a result, the gap opens at a small part of the Fermi surface only, thus lowering the total density of states
[13,14,16]; (b) the magnetic scattering of conduction electrons on spin fluctuations above the Néel temperature TN

and on spin waves below TN is pair-breaking for Cooper pairs [15].
In the case (a) one can say that the effect of the exchange field in real AF ternary compounds is rather small. The

reason is that the effective exchange field in AFS varies rapidly in space on the scale of the lattice constant. (The AF
wave vector is of the order QAF ∼ a−1.) As a result the exchange field averaged over the volume of the Cooper pair
ξ3

0 , as well as over a3, is zero. This means that the electronic spin susceptibilities at QAF in the normal and SC state
take practically the same value

χn(QAF) − χs(QAF) ≈ ∆ ∼ Tc � 1 (41)

χn(0) vF QAF EF
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This implies that AF and SC influence each other weakly, i.e., the interacting part of the free-energy F
(EX)
Int in AFS

is very small. The theory [4,16] shows, that the decrease of the SC order parameter due to the AF exchange field is
small, i.e., it δ∆/∆0 ≈ (h/vF QAF) ln(h/∆0) � 1 in clean systems and δ∆/∆0 ≈ TN/Tc � 1 in dirty systems, since
TN � Tc � h � vF QAF and ∆0 � h. These results are confirmed in a number of RE ternary compounds, in which
the Neel temperature TN(≈ N(0)h2) is in most cases (much) smaller than Tc [2]. Due to the same reason, the EM
interaction is small since δKs(QAF) ∼ a3/(λ2

Lξ0), i.e., F
(EM)
Int (� F

(EX)
Int ).

The magnetic scattering (b), although pair-breaking, is not very harmful for SC in real AF ternary compounds since
in these systems the inverse life time τ−1

m is small, i.e., τ−1
m ∼ TN � Tc. However, the effect of the magnetic scattering

on the upper critical field Hc2 depends on the strength of the scattering. In case when τ−1
m ∼ TN � Tc, which is for

instance realized in TmRh4B4, the Hc2 curve is weakly affected by magnetic (exchange) scattering. In cases where
τ−1
m ∼ Tc, for instance in SmRh4B4, this scattering changes Hc2 significantly—see more in [3,14,16].

Concerning the role of the nonmagnetic scattering, already the above analysis on the decrease of ∆ tells us that
nonmagnetic impurities (characterized by the life-time τ ) increase the depairing effect of the exchange field—the
breakdown of the Anderson theorem [29,14]. In the case when TN � Tc, the effect of nonmagnetic impurities is like
that of magnetic impurities with the inverse scattering time

τ−1
m = πh2

2vF QAF

√
1 + (hτ)2

(42)

For hτ � 1 one obtains τ−1
m ∼ TN ≈ N(0)h2

0 � Tc since (1/vF QAF) ≈ N(0). This means that in this case the
pair-breaking effect of impurities is rather small [29]. A very interesting situation occurs in systems with TN � Tc .
Even in such a case the exchange field does not suppress Tc significantly, since the theory [4,16] predicts that
(δTc/Tc0) ∼ (h/EF )(lnh/EF ) � 1. However, in the presence of nonmagnetic impurities Tc is renormalized ap-
preciably and SC disappears for the mean-free path l < lc ≈ 10ξ0(h/vF QAF) ∼ ξ0TN/h. In that respect there is one
very interesting AFS compound Tb2Mo3S4 with TN = 19 K and Tc = 0.8 K. In this case one expects (naively) that
SC should disappear due to the strong magnetic scattering. However, it turns out that in this compound the magnetic
anisotropy, in conjunction with the large momentum J = 9, strongly suppress this pair-breaking effect, thus giving
rise to superconductivity.

Finally, it is worth of mentioning that, generally speaking, the SC order parameter ∆ is coordinate dependent, i.e.,
∆(r) = ∆ + δ∆(r). The theory shows that δ∆(r/∆ ∼ (h/vF QAF) � 1. This means that pairing effects with non-zero
momentum in AFS based on real RE ternary compounds can be neglected. That is the reason that the results [30]
based on the uniform pairing (with ∆(r) = ∆)and those in [13,14], where the non-uniform pairing is also included,
are practically the same [4,16].

3.2. Weak ferromagnetism in antiferromagnetic superconductors

In the case of the competition of SC and the ferromagnetic order in the RE ternary compounds, the theory predicts
that in the presence of an appreciable EX interaction SC can coexist only with spiral and DS (or sinus) order—
depending on the strength of magnetic anisotropy. The realization of other phases are much less probable. It turns out
that in AF superconductors with weak ferromagnetism (WF)—of the Moriya–Dyalozhinski type, the phase diagram is
much richer than in the case of ferromagnetic superconductors. For instance, the Meissner phase (M �= 0, B = 0) and
the spontaneous vortex state [31] can be realized in these systems. We discuss this problem briefly by studying the
simplest AF order with two sublattice, where l = S1 − S2 is the AF order parameter. In systems which allow WF there
is an additional term in the free-energy FWF = D[S1 × S2] which is responsible for the spin canting. If for instance
l is along the xy-plane and D is so oriented that it allows the appearance of the weak ferromagnetism m = S1 + S2
(M = nµm) in the xy-plane, then FWF is given by

F̃WF = βnθex(mxly + mylx) (43)

Since in most systems m ∼ 10−3l this immediately implies that the parameter β � 1. In that case and when TN � Tc

the interaction part Fint of the total free-energy (F = Fm + Fs + Fint) is given by Eq. (7), while the magnetic system
is described by Fm

Fm =
∫

d3r nθex
[
al l2 + c (

l2
)2 + bm2 + a2(∇l)2] +

∫
d3r

[
βnθex(mxly + mylx) + (B − 4πM)2 ]

(44)

4 8π
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By minimizing F with respect to A, l,m and q we get possible phases in AFS with WF [31,4,16]. The resulting free-
energy is similar to the case of ferromagnetic superconductors with an effective magnetic stiffness aeff = (ab/β) � a.
It turns out that if β � a/ξ0 the EX interaction dominates in the formation of the magnetic structure, and the sinus
structure (l ∼ sin Qr and m ∼ sin Qr) is realized at TN , while for (a/λL) < β � a/ξ0 the EM interaction prevails in
the formation of the sinusoidal structure. If β < (a/λL)

√
2θem/θex than the nonuniform structure is unfavorable and

the so called Meissner state (first proposed by Vitalii Ginzburg in 1956) is realized. It is characterized by M = const
and by the magnetic induction (averaged over the sample) 〈B〉 = 0 (B = 4πM exp{−z/λL}) in the bulk sample,
which is due to the SC screening current on the surface of the sample. By lowering the temperature, the sublattice
magnetizations |S1,2| grow and it is necessary to take into account higher order terms in F . As a result one obtains
that for β � √

a/ξ0 the EX interaction dominates again and the striped DS phase is realized, while for
√

a/λL �
β � √

a/ξ0 the striped DS phase is realized due to the EM interaction. However, by lowering the temperature the
domain wall energy grows and it my happen that a spontaneous vortex state (with 4πM > Hc1—the lower critical
field) is realized for β � √

a/ξ0 and for the AF vector l > lc ∼ (Hc1/M(0))(βλ2
L/ã2)1/3, ã = a[(TN − T )/TN ]1/2.

From the known RE ternary compounds a good candidate for such a behavior is the body centered tetragonal (b.c.t.)
system ErRh4B4.

4. Magnetic superconductors in a magnetic field

There are a number of interesting effects of the magnetic field H , either in the coexistence phase or above the
magnetic transition temperature Tm where S(T > Tm) = 0. We discuss some of them briefly here, and for more details
see [4,23].

4.1. DS phase in magnetic field

In case of a bulk sample the applied magnetic field penetrates only on the length λL, thus affecting the surface of
the sample only. However, in thin films the paramagnetic effect of the field is more important than the orbital one [4].
This problem was studied in the case of a thin (along the y-axis) film with the thickness Ly < ξ0, when the magnetic
field is parallel to the striped domains, i.e., H = Hez—see Fig. 2. As a result, the magnetization Sz(x) contains,
besides the odd harmonics, also the zeroth-one as well as the even ones

Sz(x) = Sδ +
∞∑

k=1

2S

πk

{[
1 − (−1)k cos(πkδ)

]
sin(kQx) + (−1)k sin(πkδ) cos(kQx)

}
(45)

with δ = µH/2Sθex. This change of harmonics in Sz(x) can be observed in magnetic neutron diffraction experiments.
Eq. (45) tells us that domains with M parallel to H increase their thickness d → d(1 + δ), while the thickness of
antiparallel domains is decreased, i.e., d → d(1 − δ). In the case where the zeroth component of the exchange field
is sufficiently large, i.e., h̄(= h0Sδ) > h̄c = ∆[1 − (1/τm∆)2/3]2/3, the DS phase is destroyed by the Zeeman effect,
thus making ∆ = 0. For h̄ < h̄c the parameters of the DS phase are renormalized, for instance Q(H) < Q(0). In case
when H = Hey (i.e., the field is orthogonal to the z-axis), then all domains have the same thickness and there is no
redistribution of intensities of neutron peaks. However, there is only a decrease of intensities of (2k + 1)Q peaks by
the factor (1 − δ2⊥) where δ⊥ = µH/S(θex + Dz) and Dz is the magnetic anisotropy.

4.2. MS in magnetic field at T > Tm

The effect of the exchange field on SC in a magnetic field is negligible for T � Tc1 since for Tm � Tc1 the
magnetic susceptibility χm is very small. However, at T near Tm there is a significant increase of χm and accordingly
an increase of the paramagnetic effect. This means that at temperatures T ∼ Tm the applied field strongly affect the
superconductivity.

4.2.1. Thermodynamic critical field Hc(T )

We illustrate this effect by analyzing the change of the thermodynamical field Hc(T ) (for the transition N → MS)
in magnetic superconductors. In that case the Gibbs energy density of the paramagnetic normal phase is equal to that
of the SC phase, G̃N(Hc) = G̃SC(Hc) where
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G̃SC(Hc) = F̃n(0) − H 2
c0

8π
(46)

G̃N(Hc) = Fn(0) − µH 2
c

8π
(47)

This gives the critical field

Hc(T ) = Hc0(T )√
1 + 4πχm(T )

(48)

where (H 2
c0/8π) = N(0)∆2/2 is the SC condensation energy and the magnetic permeability is µ = 1 + 4πχm (here

we neglect the conduction electron susceptibility χe since in MS one has χe � χm). In ferromagnetic superconductors
for T > Tm one has χm(T ) ≈ (θemTm0/4πθ)/(T − Tm0) and

Hc(T ) ∼ √
T − Tm0 (49)

It is seen from Eq. (49) that Hc(T ) is drastically reduced near Tm0 � Tc, due to the divergence of χm(T ). Very near
to Tm the nonlinear effects of magnetic field start to dominate.

4.2.2. Upper critical field Hc2(T )

In the presence of the external field He and for T above Tm0 the superconductivity is suppressed by the orbital
effect of the field B = Hi (1 + 4πχm) and by the paramagnetic effect of the exchange field h (since the Zeeman effect
of B is much smaller). Here, Hi = He +HD where HD is the demagnetization field. The critical field can be calculated
by the same formula as for usual SC—see [32], where µB is replaced by µ̃B = µB + h0M/nµHi and the electron
charge e by ẽ = e(1 + 4πM/Hi). In the pure limit, and for T � Tc1, one obtains the modified Gruenberg–Günther
formula for Hc2(T ) [33]

Hc2(T ) =
√

2

1 + 4πχm(T )
H ∗

c2(0)
f (α)

α
(50)

where H ∗
c2(0) is the upper orbital critical field in absence of magnetic moments. The function f (α) is calculated

numerically in [33]. The parameter α describes the relative role of the orbital and paramagnetic effect

α = 2H ∗
c2(0)h0χm(T )

(1 + 4πχm(T ))nµ∆0
(51)

In the RE ternary magnetic superconductors one usually has h0 � ∆0 and 4πM = 4πnµ is one order of magnitude
smaller than H ∗

c2(0). This gives α � 1 in the region where T � Tc1. It is known that in pure superconductors for
α > 1.8 [33] the Larkin–Ovchinikov–Fulde–Ferrell (LOFF) phase (due to paramagnetic effects) occurs [34,35]. In the
LOFF state the SC order parameter oscillates spatially, being also zero at some points. For α � 1 one has f (α) ≈ 1
and

Hc2(T ) ≈ 1.5
∆0Tm0

h0µθ
(T − Tm0) (52)

Hc2(T ) depends linearly on T − Tm0 near Tm0 and falls off much faster than of Hc(T ), i.e., Hc2 < Hc. This leads to
an very interesting effect that by the first order phase transition at Hc(T ) the system goes into the Meissner or vortex
state depending on the relation between Hc and Hc1. Let us mention, that the lower critical field Hc1 is very weakly
affected by the exchange field. The theory [4] predicts the following dependence of Hc1 on the EX and EM interaction

Hc1 = Φ0

4πλ2
L

ln
λL

√
p

ξ
(53)

where p takes into account the screening effects due to the EX and EM interaction

p(T ) = 1 − θem

θem + θex + θ(T −Tm0)
Tm0

(54)

Note, that in the simplified theory, which is based on the EM interaction only (it assumes θex = 0), one obtains p(T →
Tm0) = 0. This gives that the effective penetration depth tends to zero, i.e., λeff = λL

√
p = 0 and the Ginzburg–Landau
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(G–L) parameter κ = (λeff/ξ) → 0. If this assumption would occur in RE compounds, then at temperatures near Tm0

we would have a change from type-II to type-I superconductivity. This result is apparently incorrect in the RE ternary
compounds, since θex ∼ θem, thus making p finite and the G–L parameter κ stays practically unchanged. So the
change of the type of transition near Tm0 is not due to the change of κ but it is due to the much faster temperature
fall-off of Hc2(T ) than of Hc(T ). We shall not discuss further this interesting subject but refer the reader to [4] where
various phases in the H–T phase diagram were analyzed. Depending on demagnetization effects several phases can
be realized in the same material, such as Meissner-, vortex-, LOFF- or even intermediate-phase.

5. Josephson effect on magnetic superconductors

After the remarkable theoretical discovery by Buzdin and coworkers [11,12] of the possibility of π -Josephson
junctions in the hybrid S–F –S structure, where F is a ferromagnet, the interest in Josephson junctions with magnetic
degrees of freedom has grown dramatically—see this issue. In that sense it was a natural challenge to investigate this
problem in magnetic superconductors.

5.1. π -contact due to triplet amplitude F↑↑ (F↓↓)

The tunnelling Josephson junction, based on magnetic superconductors, was studied in [8] by assuming that in
the left-L and right-R bulk magnetic superconductors the spiral magnetic ordering occurs—see Fig. 3. The spiral
magnetic order is characterized by the wave vector QL,R and the exchange fields hθL(R)

= hL(R)eiθL(R), respectively,
while the superconductivity in the banks is described by the order parameter ∆L,R = |∆L,R|eiϕL,R . For reasons of
simplicity it was assumed |∆L| = |∆R| = ∆, hL = hR = h, |QL| = |QR| = Q where QL,R = χL,RQẑ are orthogonal
to the tunnelling barrier with the spiral helicity χL(R) = ±1 for QL,R along (+) or opposite (−) to the z-axis. Note,
that such a junction is characterized by the standard superconducting phase ϕ = ϕL − ϕR �= 0 and additionally by
the magnetic phase θ = θL − θR �= 0. We shall demonstrate below that besides the singlet amplitude F↑↓ (F↓↑) the
new amplitude—triplet pairing amplitude F↑↑ (F↓↓), plays very important role in the Josephson effect [8]. (Note,
that F↑↑ (F↓↓) was first introduced in [5] in the study of the spiral magnetic order in SC and first applied to the
Josephson junction in [8]. Later on this effect was rediscovered by the Efetov’s group in Bochum by studying S–F –
F –S structures with rotating magnetization [36]. In that case F↑↑ (F↓↓) give rise for additional proximity effects—see
elsewhere in this issue.) As a result the Josephson current JJ (ϕ, θ) contains two parts

JJ (ϕ, θ) = (J s
c − J t−χ cos θ) sinϕ (55)

Fig. 3. The Josephson junction with the insulating contact. SL and SR are superconductors with spiral magnetic order. The exchange fields �hL,R

at the surface make angles θL,Rwith the y-axis. �QL,R are along the z-axis.
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where

J s
c ∼ T

∑
kL,kR,ωn

|TkL,kR
|2F †

↑↓(kL,ωn)F↑↓(kR,−ωn) (56)

The current (J s
c ∼ ∆2) is due to the singlet amplitude, while the current J t−χ

J t−χ ∼ −T
∑

kL,kR,ωn

|TkL,kR
|2{F †

↑↑(kL,ωn)
[
F

†
↑↑(kR,−ωn)

]∗ + F
†
↓↓(kL,ωn)

[
F

†
↓↓(kR,−ωn)

]∗}
(57)

is due to the triplet amplitude. The calculations for J t−χ give

J t−χ ∼ ∆2h2[f1 + (χLχR)f2(∆,h)
]

(58)

where the functions f1,2(∆,h) are calculated in [8], while χ = χLχR is the total helicity (in [36] renamed to chirality)
of the junction. It was shown in [8] that in some parameter region the effects of the triplet amplitude dominate, i.e.,
|J t−χ | > Js

c , thus giving rise to the π -Josephson junction. If such a junction is placed in a superconducting ring with
sufficiently large inductance L, i.e., with L > Lc, then a spontaneous current flows in the ring by producing the
half-flux quantum in the hole of the ring [37].

From Eq. (55) it is obvious that by changing the magnetic phase θ and chirality χ one can tune the system from
0- to a π -junction. This new degree of freedom in the junction—the magnetic phase θ , first proposed in [8], opens
a new possibility for switching elements and quantum computing. From the physical point of view the above model
is a paradigm for analogous effects in S–F –F –S structures with rotating magnetization. In this case θ is the angle
between magnetization in neighboring layers [9].

5.2. Combined superconducting and magnetic Josephson effect

In [9] the above model is developed further by including the tunnelling of electronic spins and their effect on
the energy of the contact. Namely, in ferromagnetic superconductors with rotating magnetization (such as spiral)
besides the standard Green’s function G↑↑ (G↓↓), F↑↓ (F↓↑) for singlet SC other Green’s functions G↑↓ (G↓↑) and
F↑↑ (F↓↓) are important [8,9], since they can produce a static spin current Jspin through the junction (in absence of
voltage),

Jspin = Jspin,G + Jspin,F (59)

where

Jspin,G ∼
∑

|T |2(G↑↓,LG↓↑,R − G↓↑,LG↑↓,R) ∼ h2 sin θ (60)

Jspin,F ∼
∑

|T |2{F †
↑↑(kL,ωn)

[
F

†
↑↑(kR,−ωn)

]∗ − F
†
↓↓(kL,ωn)

[
F

†
↓↓(kR,−ωn)

]∗} ∼ h2∆2 cosϕ sin θ (61)

The exact expression for Jspin,G and Jspin,F will be published elsewhere [9]. The energy of this combined magnetic
and superconducting Josephson junction E = EmJ (θ) + EJ (ϕ, θ) must be an even function on ϕ and θ

E(θ,ϕ) = −Ah2 cos θ − ∆2(B + Cχh2 cos θ) cosϕ (62)

The explicit form of A(∆,h),B(∆,h),C(∆,h) is given in [9]. Note, that both the spin Jspin(θ,ϕ) ∼ ∂E/∂θ and the
charge JJ (ϕ, θ) ∼ ∂E/∂ϕ Josephson current depend on ϕ and θ . Thus, by tuning θ and ϕ one can tune these currents.
For instance, one can obtain the superconducting π -junction—with spontaneous charge currents in the superconduct-
ing ring. Analogously, the magnetic π -contact can be realized, and accordingly, the spontaneous spin current in the
ring from magnetic superconductors.

Another interesting aspects of the two-phase junction might be realized in small Josephson contacts. In such a case
the smallness of the charge and ‘spin’ capacitance brings the system in the quantum regime, thus giving a possibility
for a novel Josephson qubit. In fact the latter consists from two qubits—the superconducting and magnetic one, which
might be also of a potential interest for applications. By assuming that both qubits are two-level systems the operation
of this system can be described by the pseudo-spin formalism [38] for the magnetic qubit τ̂m = (τ̂m,x, τm,y, τ̂m,z)
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and the superconducting charge qubit τ̂ s = (τ̂s,x, τs,y, τ̂ms,z), the Hamiltonian of this two-bit systems has the form
Ĥ = Ĥ0 + Ĥint with the Hamiltonian Ĥ0 of single-qubits

Ĥ0 = −1

2

[
Bm,z(t)τ̂m,z + Bm,x(t)τ̂m,x

] − 1

2

[
Bs,z(t)τ̂s,z + Bs,x(t)τ̂s,x

]
(63)

The interaction between these two qubits (the interqubit coupling) in a single Josephson junction is described by the
XX coupling

Ĥint = −Jms
xx (t)τ̂s,x τ̂m,x (64)

The physical conditions for the realization of this system, as well as possibilities of one- and two-qubit logic gates,
will be studied elsewhere [9].

6. Conclusion

The rare earth ternary compounds are rich physical systems which allow the coexistence of singlet superconduc-
tivity and various magnetic orders, such as ferromagnetic, antiferromagnetic, weak ferromagnetism. It turns out that
in these systems superconductivity and ferromagnetism practically never coexist. However, the modified ferromag-
netic order in the form of a spiral or domain structure (depending on magnetic anisotropy) coexists with singlet
superconductivity. This is realized in rare earths ternary compounds, as well as in AuIn2 where a modified nuclear
ferromagnetism—spiral or domain-like structure—coexists with singlet superconductivity.

Although the antiferromagnetic order and superconductivity coexist much more easily, these systems show a pecu-
liar behavior in the presence of nonmagnetic impurities, which surprisingly act as pair-breakers. In the case when the
antiferromagnetic order is accompanied by the weak ferromagnetism new coexistence phases appear—the Meissner
and spontaneous vortex state. Magnetic superconductors show peculiar behavior in magnetic field. Near the magnetic
critical temperature the upper critical field tends to zero faster than the thermodynamical field, thus giving rise to the
first order transition. Various phases are possible in the H–T diagram depending on the purity and demagnetization
effects of real samples. The lower critical field is weakly affected by the exchange field (which is due to localized
moments).

Josephson junctions based on bulk ferromagnetic superconductors with spiral order are characterized by the su-
perconducting and magnetic phase. This opens possibilities for a new kind of coupled qubits in a single Josephson
junction. The triplet pairing amplitude, arising in system with rotating magnetization, gives rise to the π -Josephson
junction which can be tuned by changing the magnetic phase and chirality.
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