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Abstract

The problem of the radiation pattern from sources in the presence of perfectly conducting objects is of great intere
design of transmitting or receiving antennas on structures. The optimal antenna location is particularly hard to find
of the many costly tests which must be managed. A reliable and fast electromagnetic code, able to model antenna
couplings, can allow engineers to reduce this cost considerably. In this article, we present two different numerical ap
to solve this problem, according to the kind of antenna, and its location. In the first case, the antenna is in the vicini
structure and is only known by its radiation pattern in free-space. A new far to near field transformation is used to c
the incident field induced by the antenna on the structure. In the second case, the antenna is integrated into the
The technique consists in a physical and geometrical modeling of the antenna, using a Finite Element Method. In bo
a Boundary Element Method coupled with a Fast Multipole Method, is used because of its suitability to cope with prop
outside the obstacle. Some numerical examples are given to illustrate the accuracy and efficiency of these two ap
To cite this article: N. Zerbib et al., C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modèles numériques pour le calcul des intéractions electromagnétiques antenne–structure. La prévision du diagramm
de rayonnement de sources en présence d’objets parfaitement conducteurs est un problème de grand intérêt dans la
d’antenne pour les télecommunications. La détermination de la position optimale d’une antenne est un problème
résoudre à cause du nombre de tests coûteux qui doivent être réalisés. La simulation numérique par un code fiable e
pable de modéliser les intéractions électromagnétiques antenne/structure permet de réduire considérablement le nom
à mettre en œuvre pour résoudre ce type de problème. Dans cet article, nous présentons deux approches différentes p
ce problème en fonction du type et de la position de l’antenne. Dans le premier cas, l’antenne est placée à proximité d
ture et est connue uniquement par son diagramme de rayonnement en espace libre. Une nouvelle transformation cham
champ proche est alors utilisée pour calculer le champ incident induit par l’antenne sur la structure. Dans le second cas
fait partie de la structure. La technique consiste alors à modéliser physiquement et géométriquement l’antenne en ut
méthode d’Eléments Finis. Dans les deux cas, une méthode d’Equations Intégrales, couplée à une Méthode Multipôle
employée pour la propagation des ondes électromagnétiques en dehors de l’obstacle. Des exemples numériques so
afin d’illustrer la précision et la robustesse de ces méthodes.Pour citer cet article : N. Zerbib et al., C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Usually, antennas are characterized by their radiation pattern in free space. This characterization is performed by
ment of the radiated electric field, received or transmitted by the stand alone antenna. When the antenna is put on a
the radiation pattern is perturbed by the electromagnetic interaction with the surrounding structure. It can induce a per
loss of the communication system. To ensure a good link budget of the transmission, we need to analyze these per
The direct measurement of the perturbed radiation pattern on site, or on a mock-up, is complex and expensive. N
methods provide an efficient tool to foresee and analyze the antenna/structure interaction. Usable numerical metho
tenna/structure interaction analysis can be classified in two families:

– Asymptotic methods(geometrical or optic theories): The size of the structure must be large in comparison of the wavele
λ. These methods are well suited for ‘high frequency’ problems if the geometry does not have small details.

– Exact methods(e.g., Method of Moment, noted MoM): They provide a high accuracy but are limited by the size of
problem (fewλ).

In this article, we focus our attention only on the exact method. We are interested in computation of antennas
perfectly metallic structure (e.g., a satellite). The purpose is to compute the radiation pattern of the antenna, with the su
metallic structure. We have distinguished two configurations we solve with different numerical techniques:

– Case1: The antenna is in the vicinity of the structure. The antenna is close to the structure without contact. Moreo
antenna is known, with its far-field radiation pattern. A typical case is a quadrifilar antenna.

– Case2: The antenna is integrated into the structure. This is the case of patch antennas, for example.

In both approaches, the electromagnetic problem on the structure (called external problem) is described with a B
Element Method (BEM). Let us briefly recall the Stratton–Chu relations between the electromagnetic field(E,H) and the
equivalent currents(J,M):{

E(x) = Einc(x) + ikZT J (x) + KM(x), x ∈ Ωext

H(x) = H inc(x) − KJ(x) + ikZ−1T M(x), x ∈ Ωext
(1)

whereΩext is the surrounding medium assumed to be the free-space andk denotes the wave number,Z the free-space intrinsi
impedance. The respective potentials are given by

T J (x) =
∫
Γ

G(x, y)J (y)dΓ (y) + 1

k2

∫
Γ

grad
x

G(x, y)div
Γ

J (y)dΓ (y)

Kφ(x) =
∫
Γ

grad
y

G(x, y) × J (y)dΓ (y)

(2)

G(x,y) = exp(ik|x−y|)
4π |x−y| is the Green kernel and divΓ is the surfacic divergence. The equivalent currents are linked to

electromagnetic field by

J = n × H, M = −n × E (3)

wheren is the unit normal toΓ . This representation of the electromagnetic field allows us to reduce the scattering prob
the determination of the currentsJ . The boundary condition of the perfectly conducting property of the scatterer amou
an integral equation which can be solved by means of the Method of Moments (MoM). After meshing the structure, th
system obtained is solved by an iterative solver coupled with a Fast Multipole Method (FMM).

The difference between the two approaches (Cases 1 and 2) occurs in the treatment of the antenna (called th
problem). In Case 1, we use a new far to near field transformation to compute the incident field on the structure induc
antenna. The far field radiation pattern of the antenna is explicitly used. This technique uses a FMM based algorithm. I
the internal problem is solved with a Finite Element Method (FEM) coupled with a MoM method for the external dom
the following, we describe these two methods in more details and then numerical examples are given.
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2. Case 1: The far to near transformation and MoM

In Case 1, remember that the antenna description should be the far field radiation pattern, issued from measu
simulation. The method used to solve this case is based on a two step approach. In the first step, we use a new far to
transformation in order to compute the incident electric field over the structure. In a second step, we solve the integral
by using an iterative solver coupled with a FMM algorithm. In this way, the size of problem usually solved by the MoM
be extended and we are able to consider large structures.

2.1. The first step: The far to near field transformation

The antenna (the source) is described by its far field radiation pattern. It could be generated independently by mea
or computation. The problem consists in evaluating the electrical fieldEa(xs) radiated by the antenna on each point of
structure noted byxs . Usually we use an exponential approximation (based on physical optics) of the Green kernel:

Ea(xs) ≈ E∞
a (r)

ejkr

|r|
with E∞

a (r) the antenna far field along ther direction. This approximation is easy to compute and widely used within
electromagnetism community, but it is still only valid if the distance antenna-satellite is larger than a fewlambda. It is the
main restriction for our application. The new approach we used is more involved. It is based on a multipole expansio
Green kernel [1]. We consider only a perfectly metallic structure. Therefore, the antenna radiated fieldEa(xs) is related to the
antenna current by equations (EFIE, MFIE or CFIE) described in [2] as (1) where the magnetic current equals to 0. U
Gegenbauer’s theorem for the Green’s kernel and usual multipole techniques [3,4,1], we can write the near field exp
the form

Ea(xs) � k

4π

∫
S2

E∞
a (ŝ)T L(ŝ,D)e+ik(xs−cBxs

)·ŝ dσ(ŝ) (4)

with

T L(ŝ,D) = −i

L∑
�=0

i�(2� + 1)h
(1)
�

(
k|D|)P�(D̂ · ŝ)

whereS2 is the 3D unit sphere.P�(x) is the Legendre polynomial of order�, h(1)
�

(u) is the spherical Hankel function of order�.
D is the distance between two boxes in the same level and the parameterL determines the number of terms in the Gegenba
series. This equation means that the near field can be retrieved at each pointxs with the knowledge of the far field pattern
all directions. To calculate the far field in any direction, we extrapolate the measured data with a spherical harmonic e
(see [1] for more details).

2.2. The second step: Integral equations coupled with a FMM

The currents induced by the antenna on the structure are computed by an Integral Equation defined on the sate
to the large dimension of this structure, we use an iterative solver coupled with a FMM algorithm. The main advantag
FMM is the capability of extending the application domain of exact methods up to one million of degrees of freedom. I
us to deal with realistic size of satellite. The FMM algorithm is described, for instance in [4,3].

2.3. Results for Case1

This method, described above, has been used to solve the problem of a quadrifilar antenna (DORIS) on a satellit
trated on Fig. 1. The stand alone antenna is described by its far field pattern(Eθ ,Eφ) (see Fig. 1). The frequency is fixed
401.25 MHz. The distance between the antenna and the satellite is about 0.5λ. The near to far field transformation algorith
has been applied in order to compute the incident electric field on the whole satellite. Then, the EFIE integral equation
solved in 16 GMRES iterations using a 8-level FMM. On Fig. 2, we have drawn the two components of the radiation
of the perturbed antenna. For comparison, we give the radiation pattern of the antenna+ satellite fully computed with MoM.
We can see a good agreement between the two results. Many numerical examples have been computed in order to e
performance of this approach. It gives very accurate results if some requirements are enforced. The minimum distanc
the antenna and the structure must be larger than a quarter of the wavelength, otherwise some overflows in the FM
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Fig. 1. Description of the Doris antenna. (a) Configuration. (b) Radiation pattern.

may occur. Moreover, an other distance criteria imposes a minimum distance, depending on the number of spherical
coefficients used to interpolate the far field pattern. In practice, we obtain a minimal distance of about third of the wav
This distance is much smaller than the distance usually used in the classical approach.

3. Case 2: The FE method coupled with the MoM

In this section, we present another method to compute the electromagnetic antenna–structure interactions when t
is integrated into the structure. Unlike the previous procedure, it consists in a physical and geometrical modeling of the
To do it, a Finite Element Method (FEM) is used for its flexibility to deal with varying dielectric properties of materials. F
external problem, a Boundary Element Method is used for its suitability to cope with the propagation outside the obsta
algorithm used to solve this case is also based on a two step procedure.

3.1. The first step: Formulation of the antenna fields by the FEM

Consider an arbitrarily-shaped antenna filled by an heterogeneous dielectric where(εr ,µr ) are respectively the relativ
electric permittivity and the relative magnetic permeability. We denote the antenna domain byΩA and the dielectric interfac
separating the interior from the exterior of the antenna byΣ . For a electric sourceJA inside the antenna, the variation
formulation of the Maxwell’s equations verified by the electromagnetic field inΩA is given by

1

ikZ0

∫
ΩA

(
1

µr
∇ × E.∇ × E′ − k2εrE.E′

)
dΩA − ik

∫
Σ

T M(y).M′(x)dΣ(x)

+
∫
Σ

KJ(y).M′(x)dΣ(x) + 1

2

∫
Σ

n × J(y).M′(x)dΣ(x) = −
∫

ΩA

JA.E′ dΩA (5)
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Fig. 2.(Eθ ,Eφ) components of the radiation pattern of the perturbed antenna. (a) Our method. (b) MoM analysis.

3.2. The second step: Formulation of the exterior fields by the BEM

In order to avoid spurious modes which may render meaningless the numerical solving, specially for the coupled
approach, a Combined Field Integral Equation (CFIE) must be used for the BE part [2]. This CFIE is obtained by a
combination of the electric field tested by Rao–Wilton–Glisson (RWG) functions and the magnetic field tested byn × RWG
functions (RWGfunctions turned byπ/2 around the normaln of the surface). However, when the magnetic currents are
involved in the integral representation of the electromagnetic field, the CFIE requires the composition of then × operator with
the metallic EFIE integral operatorT , which is not easy to compute.

To evaluate this composition, it is not obvious that we can move the gradient into the test function becausen × RWG is
not a continuous function on the surface of the obstacle. However, if we consider separately two triangles of the m
can use a part integration formula and apply the Gauss divergence theorem [5]. Due to the fact that the surface d
of n × RWGfunction vanishes, the original outer integral over the triangle is reduced to a line integral over the edge
triangle. The charge densities relative to the divergence ofn × RWGfunctions are no longer the usual integrable functions
rather Dirac distributions concentrated along the edges of the mesh. Then, the stability of the numerical scheme becom
questionable.
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In this article, we present an accurate and robust method to overcome the above difficulties. It has been inspir
essentially. It consists in using of a mixed BE method whose algorithm is performed in two steps. For magnetic curM,
we first join an auxiliary unknownX to the formulation to evaluate the image of the currentsM by the integral operatorT ,
X = T M.

This new equation is translated variationally by
∫
Σ X.X′ dS = ∫

Σ T M.X′ dS where both unknownX and test functionsX′
are expressed on a unusual finite element spaceRWGaug.

This spaceRWGaugis built in order to solve the difficult problem of mass lumping for edge finite elements. In a second
the contribution of then × operator, given by

∫
Σ n × X.J′ dS, is added. A judicious treatment enables us to add the contribu

of n × X at the level of the assembly process and so to remove the auxiliary unknown from the final linear system to s

3.3. Resolution of the global system

The global system to be solved resulting from the FE–BE coupling is given by A11 A12 0

A21 A22 + B1 B2

0 B3 D


 E

M

J

 =
 F1

F2

F3

 (6)

where(Ai,j )
j=1,2
i=1,2 represents the FE sparse blocks, whereas(Bi)i=1,2,3 andD represents the BE dense blocks. Hence,

global form of this matrix prevents the use of the available libraries on parallel platforms which can deal with only one
matrix, either sparse or dense, simultaneously.

As the obstacle involves a (relatively) small dielectric part compared to the large-sized metallic object, we propose a
to solve this system in two steps. First, a sparse matrix parallel multifrontal library [7] is used to remove the FE de
freedomE that do not correspond to an equivalent magnetic currentM from the equations. At this step, we are led to solve
following dense system(

C B2

B3 D

)(
M

J

)
=

(
F̃2

F3

)
(7)

whereC = B1 + (A22 − A21A
−1
11 A12) andF̃2 = F2 − A21A

−1
11 F1. The well-known parallel library SCALAPACK is used t

perform theLU decomposition ofC relative to the coupling of the magnetic currents with themselves. Secondly, we are
solve the system(

D − B3C−1B2
)
J = F̃3 (8)

whereF̃3 = F3 −B3C−1F̃2 andJ are the degrees of freedom of the equivalent electric currents. For large-sized metallic
tures, the resolution of the BE part (8) can be done by means of the FMM only which in return requires a good precon
for the global system to be solved by a Krylov method. The blockD corresponds to the impedance matrix obtained for the C
formulation when the dielectric part is also assumed a perfectly conducting metal. The system (8) is then solved by the
algorithm [8] using as preconditioner a Sparse Approximate Inverse ofD only. Since the extent of the magnetic currentsM
is assumed to be (relatively) small, the contribution ofB3C−1B2 is considered like a low rank perturbation of the main blo
D. Each iteration is performed using an evaluation of the matrix-vector productsDJ by the FMM andB3C−1B2J from two
matrix-vector products and a forward and a backward substitutions.

3.4. Results for Case2

A numerical example is presented to demonstrate the efficiency of our approach. The scatterer is depicted in Fig. 3.
in a dielectric sphere(εr = 1, µr = 1) of radiusR1 = 0.25 cm integrated into a half metallic sphere of radiusR2 = 2 cm close
to a 1.5 cm high metallic cylinder of radius 0.4 cm and a 1.5 cm high metallic cone of radius 0.5 cm. The source is an electr
dipole located at the center of the dielectric sphere with az-polarization and the wavenumber isk = 12 m−1. The mesh density
is about12 points per wavelength.

We study the convergence behavior based on the number of preconditioned iterations. We compare the behav
complete system

(D − B3C−1B2)J = F̃3 (9)

with the simpler system obtained when the dielectric is supposed not to exist

DJ = F3 (10)



N. Zerbib et al. / C. R. Physique 6 (2005) 647–653 653

ur. (c) The

tely the
ations
in Fig. 3.

for CPU

tennas

s for 3D

ntennas

s

1996).
Appl.

omputers,
(a) (b) (c)

Fig. 3. Comparisons between the two FMM solvers. (a) Antenna integrated in large metallic structure. (b) The convergence behavio
bistatic RCS.

In Fig. 3, we observe that the number of iterations required for the GMRES algorithm for (9) remains approxima
same as for (10) whose coefficients matrix isD only. The convergence for (9) is reached after 32 iterations whereas 35 iter
are needed for (10). The comparison of the bistatic RCS with a mesh density about 8 points per wavelength is given
The agreement between both solvers is remarkably good.
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