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Abstract

This article deals with the interaction of co-rotating vortices, in configurations similar to those found in the extended near-
wake of typical transport aircraft. The fundamental process of vortex merging is analyzed and modeled in detail in a two-
dimensional context, giving insight into the conditions for merging and its physical origin, and yielding predictions for the
resulting flow. Three-dimensional effects, in the form an elliptic short-wave instability arising in the initial co-rotating vortex
flow, are described and analyzed theoretically. They are found to cause significant changes in the merging process, such as
earlier merging and larger final vortex cores. lllustrations from recent experimental, numerical and theoretical studies are given,
and the relevance of the results for applications to real aircraft wakes is disclissite.this article: P. Meunier et al., C. R.

Physique 6 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Aspects physiques de la fusion de tourbillons. Cet article traite de l'interaction entre tourbillons co-rotatifs, dans des
configurations semblables a celles présentes dans le sillage proche et moyen des avions de transport. Le processus fondamen
de fusion des tourbillons est analysé et modélisé en détail dans une description bidimensionnelle, donnant accés a des condition
pour la fusion et son origine physique, ainsi qu'aux propriétés de I'écoulement résultant. Les effets tridimensionnels, sous forme
d’'une instabilité elliptique a courte longueur d’'onde des vortex co-rotatifs initiaux, sont décrits et analysés théoriqguement. lls
sont a l'origine de modifications importantes de la fusion, comme un démarrage plus rapide du processus et un vortex final plus
gros. Des illustrations d’études expérimentales, numériques et théoriques récentes sont données, et la pertinence des résults
pour des applications aux sillages réalistes des avions est disBatgeciter cet article: P. Meunier et al., C. R. Physique 6
(2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The merging phenomenon occurs when two vortices of the same sign with (almost) parallel axes, and within a certain
critical distance of each other, mix a substantial portion of their core vorticity to become a single vortex. Vortex merging, which
is principally a two-dimensional process, is one of the fundamental ingredients of fluid motion and plays a major role in a
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Fig. 1. Schematic of a typical vortex wake of a transport aircraft in high-lift configuration (flaps deflected). The scale in the downstream direction
is compressed by a factor between 5 and 10.

variety of situations, such as decaying two-dimensional turbulence, three-dimensional turbulence, and mixing layers, to name a
few. Its potential significance covers various fields such as astrophysics, meteorology, and geophysics [1].

Vortex merging also plays an important role in the context of aircraft trailing wakes. A lifting aircraft wing generates a sheet
of longitudinal vorticity, whose structure depends on the lift distribution along the span, dictated by the geometry of the wing
and its different elements (flaps, spoilers, engines and nacelles, etc.). In the near field, the vortex sheet quickly rolls up into a set
of discrete vortices, which subsequently interact and merge to form a single vortex behind each wing in the aircraft’s far wake.

The wake vortex issue is particularly important for the traffic near airports, since aircraft follow each other closely there.
Fig. 1 shows schematically a typical trailing vortex system generated by an aircraft in take-off or landing configuration. Two
strong vortices of comparable strength are generated from the tips of the wing and the lowered flap. These co-rotating vortices
spin around each other by mutual induction, and merge into a single one over a distance of 5-10 wing spans. Issues related to the
merging of trailing vortices include the following questions: when and under which conditions do two given vortices merge, in
other words: what is the time (distance) to merging? What is the role of three-dimensional effects? What are the characteristics
of the merged final vortex? These questions are all relevant for the dynamics and final decay of the counter-rotating vortex
pair in the far wake of an aircraft, involving turbulent dissipation and different three-dimensional instabilities, as discussed by
Jacquin et al. [2].

The present paper deals with aspects of the dynamics and merging of (nearly) parallel co-rotating vortices, such as those
observed in the extended near wake of a landing aircraft. In Section 2, the two-dimensional dynamics are reviewed in detail.
Experimental and numerical results will be used to analyze the different stages of merging, establish a merging criterion,
including a discussion of the physical origin of merging, and assess the properties of the final vortex. Section 3 is dedicated to
three-dimensional effects, in particular a short-wavelength elliptic instability, which can arise in the co-rotating vortices before
merging, and which can significantly modify the merging process and the properties of the final vortex. In Section 4, these
results are discussed in the context of realistic aircraft wakes, and a conclusion is given in Section 5.

2. Two-dimensional dynamics

In this part, we focus on the two-dimensional dynamics of two identical co-rotating vortices having a smooth vorticity
distribution. Although such a configuration is a very simplified representation of the near wake of a realistic aircraft, it contains
all the ingredients necessary to explore and understand the physics involved in vortex merging. It is also much closer to reality
than the constant-vorticity patches, which were frequently used in previous numerical and theoretical studies (see, e.g., Waugh
[3], and references therein). Details on the experimental procedures and numerical methods used to obtain the results presente
here can be found, e.g., in Meunier et al. [4] and Le Dizes and Verga [5], respectively. Three-dimensional effects associated
with instabilities will be discussed in detail in Section 3.

2.1. Interaction of two well-separated vortices

When two vortices are distant from each other, i.e., when their separation distanesge compared to their characteristic
core radiusz, the large-scale non-viscous dynamics of the system are well-characterized by a point vortex approach: the two
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Fig. 2. Temporal evolution of (a) the orientation and (b) the non-dimensionalized core size of a co-rotating vortex pair. Symbols represent
experimental results &e= 742 (0), Re= 1506 (J) andRe= 2258 (»). Thick lines represent results from direct numerical simulations (DNS)
at Re= 500 (dash-dotted) arfde= 8000 (dashed). Thin solid lines correspond to the theoretical predictions of Egs. (1) and (4) respectively.

vortices with equal circulatiod” remain separated by a constant distaligand rotate around each other at a constant angular
speed
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just as if all the vorticity of each vortex was concentrated in the respective vorticity ‘center of mass’, or vorticity centroid.
This large-scale evolution is observed in many experiments, as demonstrated in Fig. 2(a), where the angular orientation
of the vortex pair is compared with the theoretical prediction (1) for different values of the Reynolds nRebker /v
(v: kinematic viscosity). The period of rotation of the vortex pair is thus a natural characteristic time scale of the system
which can be used to define a non-dimensional convective time variable:
. 2 tr
tf=t—=—+—
2t 272b%

@)

While rotating around each other, the vortices spread by viscous diffusion. If the core size of each vortex is defined using the
angular momenturd [4]:

— )2 —v.)2
02:%:/3[(36 xe) +(yF yo)Jo(x, y) dS @)

where S is a surface containing the vorticity of the vortex, afd, y.) the location of the vorticity centroid, it increases
according to the lawt? = 4vt, which can be rewritten in non-dimensional units:

a?  8r?
27 Re
bO Re

t (4)

The temporal evolution of the core sizeis plotted in Fig. 2(b) for experimental and numerical results obtained at different
Reynolds numbers. Itis in excellent agreement with the theoretical prediction (4). This linear evolution allows an unambiguous
definition of the origin of time, which is chosen at the time where the backward extrapolated core size vanishes, independently
from the actual starting time of the experiments or the simulation.

Le Dizés and Verga [5] have analyzed in detail the viscous evolution of such a vortex pair. They showed that the vorticity
profile of each vortex tends to have the same viscous evolution as a single diffusing vortex. Each vortex converges toward a

solution close to the Lamb—Oseen vortex whose vorticity and angular velocity profiles are given respectively by:
r 2,2 r 2,2

w(r) = —e /e, vo(r)=—(1—e"/@ 5

N=—7 b () =5—( ) 5)
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Fig. 3. Ratio of the inner straif at the center of the vortex to the outer straifnduced by the opposite vortex as a function of the dimensionless
core sizeu/bg. The solid line corresponds to DNSRé= 8000. Symbols correspond to the theoretical prediction of (6) whes calculated
for two vortices separated by (o) and two vortices separated by the real distaneg between the vortices measured in the simulatighs (

The deformation of each vortex, which can be seen, e.g., in Fig. 4(a), is due to the presence of the other vortex. Each vortex
is indeed subjected to the straining field generated by the other vortex and which deforms its streamlines into ellipses. Such
deformations were analyzed by Le Dizés [6], who considered an axisymmetric vortex in an external rotating strain field of strain
rates.. He observed that, due to the strain-vorticity interaction, the strainrétethe vortex center was a complex function of
the vorticity profile, the angular rotation rate and the Reynolds number, which could even diverge under certain conditions. For
a Gaussian vortex and large Reynolds numbers, a good estimate of the fatieersus the angular frequency was found to be
given by the relation:

‘;—" — 15+ 0.0380.16 — £2/w)¥/® 6)

e

where £2/wq is the ratio of the angular frequency of the strain field and the vorticity in the vortex center. This expression
has been compared to data obtained from numerical simulations of vortex pairs [5], by takipdHermpoint-vortex estimate
se = I'/2rb?, and fors2 /wo, the estimate obtained from (1) and (8)/wo = a?/b3. The results are reproduced in Fig. 3; they
show very good agreement. The importance of the inner strain;ratél be demonstrated in Section 3. We will show that it
measures the strength of the three-dimensional instability.

2.2. Convective merging

The slow viscous evolution of the two distant vortices is suddenly modified when the vortex core esizeeds a crit-
ical fraction of the separation distanbe For the two-vortex system, this critical ratia/b). is always reached, due to the
progressive increase of the vortex core size by viscosity. However, in other configurations, it could be reached by the action
of a background flow that could reduce the separation distangéis situation will again be discussed in Section 4. When
the critical ratio(a/b). is exceeded, the two vortices rapidly deform, eject arms of vorticity and merge into a single vortex.
Fig. 4 presents experimental dye visualisations and numerical vorticity fields of a pair of merging vortices, which rotate anti-
clockwise. The two vortices get closer to each other by advection and then coalesce into a single distribution of vorticity by
a diffusion process. At the beginning of the merging, two strong filaments of vorticity are ejected and roll-up around the final
vortex due to the differential rotation, leading to an axisymmetric vortex at late stages. This merging phenomenon has been
extensively studied by different numerical methods [7,8] and was also observed experimentally for geostrophic vortices [9], for
starting vortices [4], for aircraft wake vortices [10,11], and in mixing layers [12].

The qualitative phenomenon of merging can be quantitatively studied by measuring the separation iliséaween the
two maxima of vorticity. It is plotted in Fig. 5 as a function of convective time for different Reynolds numbers. This evolution
allows to define four different stages in the merging process. The first stage corresponds to the quasi-stationary state describec
in the previous section, for which the separation distanoemains constant, and for which the core size increases by viscous
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Fig. 4. (a)-(c) Cross-cut experimental dye visualizations of two laminar co-rotating vortices, and (d)—(f) vorticity fields obtained by
two-dimensional DNS. The snapshots are taken (a), (d) before, (b), (e) during and (c), (f) after merging.

diffusion of vorticity. The duration of this diffusive stage is proportional to the Reynolds number; it can be calculated using (4)
as:

R
At =(a /b)cge2 (7)

Once the critical core size is exceeded, the vortex pair becomes unstable and merges, leading to a rapid decrease of the separatic
distance. This stage appears to be driven by advection of vorticity, and its dutagjoa 0.7 is thus fairly independent of the
Reynolds number. The numerical results in Fig. 5 show that, at the end of this stage, the merging of the vortices is never
complete: the separation distariceoes not vanish but remains at a value close to 0.25. This defines the beginning of a third
stage, in which the two vortices are next to each other but still have two separate maxima of vorticity, as can be seen, e.g.,
in Fig. 4(e). The diffusion of vorticity, coupled to the rotation of the vortex center (close to a solid body rotation), leads to

an axisymmetrization of the vortex center in a time scalingRel?, as has been explained by Bajer et al. [13] for vorticity
perturbations at the center of a vortex. Numerically, the duration of this stage has been found to be:

At} = 0.0089Re"/? (8)

In the fourth and last stage, the vortex diffuses again due to viscosity and its core size increases with time. This stage will be
described in more detail in the next section.

The merging phenomenon highly depends on the critical (atib). of core size and separation distance at which it begins.
The determination of the critical condition has been the subject of numerous works: through numerical simulations on vortex
patches, it was found that /b). = 0.3 (see Overman and Zabusky [8], Rossow [11], and Dritschel [14,15]), which was con-
firmed experimentally by Griffiths and Hopfinger [9]. Theoretically, Melander et al. [16] used the elliptic moment model (EMM)
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Fig. 5. Separation distance between two merging vortices as a function of the convective fimtour different Reynolds numbers, obtained

experimentally by Particle Image Velocimetry (symbols) and numerically by DNS (lifRes}. 742 (dotted linep); Re= 1506 (dash-dotted
line, 0); Re= 2258 (dashed line)); Re= 8000 (solid line).

to show that the vortex pair is only stable far/b). < 0.326 and Saffman and Szeto [17] observed the numerical destabilization
of two Euler equilibrium solutions fota/b). = 0.315. Recently, Meunier et al. [4] showed experimentally and theoretically
using Euler equilibrium solutions that for Gaussian vortices, the criterion is clogeftd. = 0.22—024, which was confirmed
experimentally by Cerretelli and Williamson [18] and by direct numerical simulations by Le Dizes and Verga [5]. However, the
discrepancy comes from the difference in the vorticity profiles and all the results can be collapsgd to= 0.22 if the core

size is defined using (3).

Although the empirical criterion of merging is now known fairly accurately, it is still unclear why exactly the two vortices
merge. In order to analyze this issue, it is useful to look at the streamlines in the frame of reference rotating with the vortex pair,
because, in the limit of infinite Reynolds numbers, the vorticity contours should be equal to these streamlines (except in the
vicinity of hyperbolic points). The characteristic streamlines (separatices) are shown schematically in Fig. 6. They divide the
plane into four different areas. Inside the dotted streamline, the fluid rotates around only one vortex center. Between the dotted
and the blue streamline, the fluid rotates around the two vortices. Between the blue and the green streamline, there are two
‘ghost’ vortices rotating in the opposite direction. And outside the green streamline, the fluid is almost in solid body rotation.
(For interpretation of the references in color, the reader is referred to the web version of this article.)

The theoretical results of Saffman and Szeto [17] and Dritschel [14] tend to prove that each vortex destabilizes before
the vorticity touches the center of the pair (named O in Fig. 6), as it is the case in Fig. 6(a). However, Melander et al. [16]
showed numerically that it was possible to put some vorticity inside the exchange band without vortex merging. Apparently,
the two vortices start moving toward each other when the vorticity reaches the hyperbolicipiatsl Ho, as it is the case
in Fig. 6(b). In this configuration, the vorticity is advected along the green streamlines on Fig. 6(b) and creates the filaments of
vorticity which are observed numerically and experimentally. This argument was used by Meunier [19] to explain the merging
process: during the creation of these filaments, they are asymmetric as in Fig. 4(d) and thus create a velocity field that pushes the
two vortices against each other. This hypothesis was verified quantitatively by Cerretelli and Williamson [18]. This argument
can be understood in a different way by saying that the ejection of the filaments create a large angular momentum, and thus
enforce the vortices to get closer to each other to conserve the angular momentum of the system (which is true for vanishing
viscosity).

Using these ideas, a simple model can be constructed, by calculating the angular momentum of two vortices ofacore size
and separated by a distangeit can be estimated numerically by averaging the vorticity of two circular Gaussian vortices of
core sizez on the streamlines of two point vortices separated.bihis picture is representative of real flows at high Reynolds
numbers, since the vorticity is averaged on the whole streamline on a time scatelf 2¢see Rhines and Young [20], Bernoff

and Lingevitch [21]), i.e., much faster than the growth of the core siadich scales aRe"/2. This is indeed the case in the

numerical simulations far from the hyperbolic points. The angular momentum of the system can thus be calculated numerically
as a function of: andb:

J =TIb%i(a/b) 9
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Fig. 6. Principal streamlines of two co-rotating point vortices in the rotating frame of reference. The vorticity contours (orange colormap) are
shown schematically for two vortices whose vorticity (a) remains inside the core of each vortex or (b) diffuses in the exchange band and along
the filaments. (For interpretation of the references in color, the reader is referred to the web version of this article.)
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Fig. 7. (a) Rescaled angular momentunof two vortices of core size separated by, which are axisymmetric (thin line) and whose vorticity
has been averaged numerically along the streamlines of two point vortices (thick line); (b) theoretical prediction of the separation distance as a
function of the viscous time (solid line), compared to the numerical results (dasheR&ge3000 and dash-dotted linBe= 1506).

whereJ is a universal function shown in Fig. 7(a). The angular momentum grows with thearétjeven faster than for two

vortices whose vorticity distribution is not averaged on the streamlines (shown as a thin solid line in Fig. 7(a)). This comes
from the fact that the streamline averaging creates the vorticity filaments, which increases the angular momentum. To reach a
theoretical prediction of the separation distahgthe expressions of the core sizgiven by Eq. (4) and the expression of the
angular momenturd as a function of time (given by Dritschel [14] for a two-dimensional flow):

J=Tb%/2+8vIt (10)

can be introduced into Eq. (9), leading to the predictiod@j. The result is plotted in Fig. 7 and compared to the numerical
results. This simple model predicts relatively well the time at which the separation distance starts to drop. However, it does not
predict a total merging of the vortices, but only explains why they come closer to each other up to 80% of the initial distance.
In order to fully explain the merging process, some other phenomenon, probably associated with a convective instability of the
vortex system, has to be invoked. However, a theoretical prediction and description of such an instability are still missing so far.
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2.3. Characteristics of the final vortex

After the convective phase of merging, the resulting vortex becomes axisymmetric on a tim&s¥alewhich is small
compared to the viscous time scale. The merging and axisymmetrization processes can therefore be considered as instantaneol
on such a viscous time scale. Our objective is here to characterize the final axisymmetric vortex which results from these
processes.

Since the final vorticity profile will turn out to be non-Gaussian, it is convenient to define the vortex core size as the radius
amax at which the azimuthal velocity is maximum, divided by 1.12 (equivalent to the core $area Gaussian vortex). Using
this definition, the core size can be measured before and after merging; this is plotted in Fig. 8 for three different Reynolds
numbers as symbols and dashed lines. The square of the core size increases before and after merging linearly in time with the
same slope ¥ (obtained for Gaussian vortices) and jumps abruptly during the merging stage. Although this stage lasts longer at
low Reynolds numbers, a universal behavior is observed: the square of the coréisizeases by a factor 1.5 when measured
at the end of the merging stage. This behavior is more universal than the increase of a factor 2 given in the paper by Meunier
and Leweke [22], where it was measured at the beginning of the merging stage.

A prediction of a similar core size ratio had been made by Carnevale et al. [23], assuming that the maximumaggicity
and the energy (scaling az%]axadf) are conserved: the energy of the final vortex is twice the energy of each initial vortex, and
the square of the core sizé thus increases of a factef2 during the merging, which is close to the experimental and numerical
value of 1.5.

However, this theory is in contradiction with the conservation of the circulation and the angular momentum. Indeed, if the
core size is defined as in Eq. (3) using the angular momeuntand total circulatio ot (shown as a thick solid line in Fig. 8),
the core size increases by a much larger factor than when it is definedusggidr his ratio can be predicted theoretically using
the expression of the angular momentum given in (10) (plotted as a thin solid line in Fig. 8). The difference between these two
measurements comes from the fact that the velocity profile is not Gaussian after merging: the final vortex contains a core with
an intense vorticity, surrounded by a background of low vorticity far from the center coming from the ejected filaments. The
theory of Carnevale et al. [23] predicts accurat@hax (since the core contains most of the energy), and the theory using the
conservation of the angular momentum is linked to the filaments (since they contain most of the angular momentum).

As a consequence, none of the previous theories predicts in a satisfactory way the final velocity profile, which is plotted in
Fig. 9. The theory by Carnevale et al. (shown as a dotted line on Fig. 9) predicts accurately the velocity and the circulation only
inside the core of the final vortex (since most of the energy is located in the vortex core). On the contrary, the theory using the
conservation of the angular momentum (shown as a dashed line on Fig. 9) predicts accurately the velocity and circulation in the
filaments, i.e. far from the center, but fails in the vortex core.

An alternative theory is thus needed to describe accurately the entire velocity profile of the final vortex. Since the core and
the filaments are created by two different mechanisms (fusion of two cores and ejection of vorticity), we assume that they can
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Fig. 8. Dimensionless core siz¢bq of the initial and final vortices for various experimental (symbols) and numerical (lines) results. The core

size is defined asmax/1.12 for the dashed lines and for the symbols, and it is defined B&" for the thick solid lines. The thin solid lines
are predictions for Gaussian vortices.
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05r

ra,

Fig. 9. (a) Velocity and (b) circulation profiles of the final vortex, rescaled using the total circulgtipof the flow and the core size of the

initial vortex before merging; = +/4vz. The symbols show results from numerical simulationRe& 8000 ¢) andRe= 1506 (J) and from
experiments aRe= 1506 (A). The dotted line corresponds to a Gaussian vortex with a core size predicted by the theory of Carnevale et al. [23]
and the dashed line to a Gaussian vortex with a core size predicted using the conservation of the angular momentum. The thick solid line
corresponds to the theory using two concentric vortices with different core sizes given by (11). The thin solid lines is a fit to a two-scale model
defined by Fabre and Jaquin [24], given by (16).

be modeled separately as Gaussian vortices with different core sizes and circulations. We thus seek the vorticity profile of the
final vortex as:

I 2,2 'y _,2,,2
= _Cze—r /ag 4 —fZ e’ /ay (11)
wag may

where the four variables arefy{, a.) the circulation and size of the core, andj(, asj|) the circulation and size of the wrapped
filaments. We now look for a solution which has the same energy, maximum vorticity, angular momentum and circulation as the
initial pair of Gaussian vortices of circulatidn, initial core sizes; , and separated iy, The conservation of the total circulation

can be expressed:

Not=Tc+Tp=2I (12)
The conservation of maximum vorticity means:
I, Iy r

+ =1 13
2wl wd )
The conservation of the angular momentum leads to:
IeaZ + I'pa% =2Ia? + I'b?/2 (14)

After a straightforward calculation (see Appendix A), the conservation of the excess energy leads to:

FCZ[_C - In(Z—‘)] n r}[—c - In(i—fﬂ +2or. Iy [Kconc(;l—;> - |n(z—°)] — _or2c_ 2p21<sep(§> (15)
1 1 1 1

Here, C is a constantKconc is the mutual energy of two concentric vortices akigkp is the mutual energy of two vortices
separated by, given in the appendix. For the critical ratio of core size and separation distafige = 0.22, the four preceding
equations have a solution; = 1.14q;, I' = 1.22I", ay = 3.71a; andI'y = 0.78I". For these parameters, the square of the

core size (defined aamax/1.12)2) increases of a factor 1.46, in excellent agreement with the measured value of 1.5 (see Fig. 8).
This corresponding velocity profile is plotted in Fig. 9 and is very close to the experimental and numerical velocity profiles both

in the core of the vortex and in the far field. The velocity is only 10% smaller than the measured value at the maximum. This
is due to a slight loss of energy during the merging stage, and a better agreement can be obtained (within the noise in the
measurements) by assuming an energy loss of 10% during the merging stage. The agreement is even better for the circulatior
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profiles. Using this vortex model, the evolution of the final vortex is straightforward since the velocity profile corresponding to
Eq. (11) is a solution of the Navier—Stokes equations, if the squares of the core sizes increase linearly in time.

The final velocity profile can be also fitted by a two-scale model described by Fabre and Jacquin [24], which contains three
fitting parameters (the circulatiaftot being equal to Z'). The best fit, shown in Fig. 9 as a thin solid line, is given by:

(az/a1)* ot/ (2wajay)
[1+ (r/a)1THD/A[L + (r/ap)¥A-)/4

with « = 2/3, a1 = 1.12a; andas = 4.54;. This vortex model is useful since it was shown to be characteristic of airplane
vortices, and was analyzed in detail with respect to three-dimensional instabilities [24].

To conclude, in this section, we have described the flow of two co-rotating vortices before merging, we have determined
the empirical criterion for merging and we have also characterized the final vortex. However, these analyses have been made
for a two-dimensional flow, which is valid representation of real flows only at low Reynolds nunfRers 2000). When
the Reynolds number increases, the flow can become three-dimensional through instabilities and turbulence, which can highly
modify the merging phenomenon. The merging at high Reynolds numbers will be presented in the following section.

vg(r) = (16)

3. Three-dimensional dynamics

For large Reynolds numbers, the two-dimensional flow obtained by the interaction of two co-rotating vortices before their
merging forms a quasi-steady solution in the frame rotating with the vortex pair. In view of the complex streamline pattern
(Fig. 6(a)), it is natural to address the stability characteristics of such a 2D solution, with respect to three-dimensional perturba-
tions.

For two counter-rotating vortices, three-dimensional stability studies were started in the 1970s. Crow [25] showed that a pair
of counter-rotating vortices is unstable with respect to a long-wavelength instability. This instability which is now known to
play an important role in the dynamics of the far wake, leads to the reorganization of the vortices into vortex rings. Leweke and
Williamson [26] demonstrated that this instability can be mixed with a short-wavelength instability associated with the elliptic
character of the streamlines in the vortices.

When the vortices are co-rotating, Jimenez [27] proved that the long-wavelength instability obtained by Crow could not
be active. By contrast, the short-wavelength elliptic instability is present, as first evidenced by Meunier and Leweke [28]. The
following section will be concerned with the description of its characteristics in a system of two co-rotating Gaussian vortices.

The streamline pattern also exhibits hyperbolic points. Near these stationary points, vorticity can be locally increased by
stretching. In mixing layers and wakes, during their three-dimensional transition, this hyperbolic stretching mechanism is known
to participate in the formation of ribs aligned along the stretching direction between successive vortices. For two distinct
vortices, as those considered in the previous section, there exists no evidence of such ribs. Yet, it cannot be discarded in more
realistic configurations, notably when a vortex sheet is still present between the vortices, that the local growth near hyperbolic
points could contribute to the global growth of a three-dimensional instability modes, in particular those associated with the
elliptic instability.

3.1. Elliptic instability

In this section, a short description of the elliptic instability which develops in a co-rotating vortex pair is given. A more
detailed account can be found in Le Dizés and Laporte [29] for the theoretical aspects and in Meunier and Leweke [22] for the
experimental results.

Experiments and direct numerical simulations show that, when the Reynolds humber exceeds approxReati2800, a
three-dimensional perturbation grows spontaneously in the vortices before their merging. This instability, which is illustrated in
Figs. 10(a) and 11(a), is characterised by a sinuous deformation of each vortex in two parallel planes. Moreover, the perturbation
is found not to propagate and to have a well-defined wavelength which scales with the core size. Its transverse structure is such
that it breaks the mirror symmetry of the two-dimensional system (Figs. 10(b) and 11(c)). Figs. 12(a), (b) show the axial vorticity
of the perturbation alone obtained in experiments and in numerical simulations, respectively. It has a dipolar shape oriented at
approximatively 48 with respect to the line connecting both vortices.

These instability characteristics are typical of what is now called an elliptic instability (see the review of Kerswell [30]).

It has also been observed in counter-rotating vortices [26], in vortex rings [31], in elliptically deformed cylinders [32], but is
also expected to take part in the three-dimensional destabilization of parallel shear flows [33] and wakes [34]. The common
characteristic of all these flows is the presence of elliptically deformed vortices. The instability mechanism was understood by
Pierrehumbert [35] and Bayly [36], who demonstrated that any elliptic uniform flow was generically unstable with respect to
short-wavelength perturbations in a non-viscous flow. In the present case, the base flow in the frame co-rotating with the vortex



P. Meunier et al. / C. R. Physique 6 (2005) 431-450 441

(a)

Fig. 10. Elliptic instability of a co-rotating vortex pair. Dye visualizations from experiments in (a) a side-view and (b) a cross-cut section.

IS

2b A b o wm

(a)

Fig. 11. Elliptic instability characteristics. Perspective view of the vorticity isosurfaces obtained by: (a) Direct Numerical Simulations of
co-rotating vortices; and (b) the theory in a single vortex as combination of the underlying vortex with two Kelvinmvaved andm = 1.
(c) Cross-cut axial vorticity obtained from experiments wit= 3450.

pair is elliptic near the center of each vortex. The base flow streamfunction can be written in polar coordinates centered on one
vortex, near its center, as

r2 r2
W%—(M—.Q)E —siEcos(ZQ +¢) 17)

whereu = 2wg ands; are the angular velocity and the inner strain rate in the vortex centeasdjiven by (1). The phase
angle is such thap ~ /4 if 6 = 0 corresponds to the direction of the line connecting both vortex centers.

The streamlines defined by (17) are ellipses of eccentricitys; /(i — £2). If one considers local perturbations near the
vortex center, where the base flow is defined by (17), a general stability analysis can be performed, as shown by Bayly [36]
and Lifschitz and Hameiri [38]. For small elliptic deformatiof €« 1), an asymptotic estimate for the growth rate of the
three-dimensional local plane waves

U= quik(z).x—iwt (18)
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Fig. 12. Axial vorticity of the elliptic instability mode: (a) experimental resultsRa= 3450; (b) nhumerical results using Large-Eddy Simula-
tions (LES) forRe= 10° [37]; (c) theoretical prediction in a single vortex in which the perturbation is a combination of Kelvin waves
andm = —1.

can be obtained [39] as

4 2
(local) _ M) 2_(u—0—2 2 k& 19
7 \/< o) ST 1) Recode (9)

where¢ is the constant angle between the wavevektand the vortex axis. This local growth rate estimate is maximum when
cost =k /K| = (u — 2)/(w).

Le Dizés and Laporte [29] used the above formula for the growth rate of the elliptic instability for two co-rotating Gaussian
vortices. They were able to evaluate the local wavevector anglethe perturbation by performing a global analysis of the
elliptical instability. Such an analysis was first performed by Moore and Saffman [40] and Tsai and Widnall [41]. The idea is to
take into account the complete structure of the vortex. Each vortex possesses, when not deformed by the presence of the othe
vortex, an infinite number of normal modes called Kelvin waves of the form

u=ug (r)eikzz+imt97iwl (20)

whose axial wavenumbét,, azimuthal wavenumber, and frequency» satisfy a dispersion relatioP (k;, m, w) = 0. This
dispersion relation depends on the vorticity profile of the vortex. A description of those waves can been found in [42] for the
Rankine vortex and in Fabre et al. [43] for the Lamb—Oseen vortex. For these two types of vortices, none of these waves are
unstable by itself. However, they can be resonantly coupled with each other when one considers the elliptic deformation field
induced by the other vortex. Indeed, such a field can be written, in a fixed frame centered on one vortex, as a velocity correction
of the form

U= Vl(r)ezKei“Qt) (21)
It can therefore couple two neutral Kelvin waugs, , m1, w1) and(k;,, m2, wp), if they satisfy the conditions of resonance
kz, =kzy; mq=mp+ 2; w1 =wy + 282 (22)

In this description, the elliptic instability is thus interpreted as a resonance phenomenon of Kelvin waves with the straining field.
In most cases, there exist several pairs of Kelvin waves satisfying (22), but these configurations are not excited with the same
growth rate. It turns out that, for vortices such as the Lamb—Oseen vortex, the most unstable configurations satisfy a peculiar
property near the vortex center: they locally correspond to a combination of local plane wave of the form (18) if their frequency
satisfies the additional conditions

w1=(m1—Du—+ 2; wr=(mo+u— N2 (23)

These two conditions are satisfied by the two symmetric and resonant Kelvin waved, w1 = 2 andmy = —1,wp = -2

for a discrete number of wavenumbeég)(fz). The combination of these two waves forms a sinusoidal deformation in a plane
rotating at the angular velocity of the vortex pair. Fig. 12(c) shows the axial vorticity associated with the combination of the
first two resonating waves. It is in qualitative agreement with the experimental and numerical results shown in Figs. 12(a) and
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Fig. 13. Growth rate of the elliptic instability as a function of the axial wavelength @pat 2700 andz/b = 0.220, and (b) aRe= 10° and
a/b = 0.205. Growth rate is non-dimensionalized by the rotation period of the pair. Lines correspond to theory, black symbols to DNS/LES
and gray symbols to experiments. From [37].

12(b), respectively. Fig. 11(b) shows a surface of constant axial vorticity of the total flow composed of the underlying vortex
and the two resonant Kelvin waves. The same undulation as observed in Fig. 11(a) is obtained.

If one assumes that the growth of the two resonant waves is dominated by the local growth near the vortex center, for-
mula (19) can be used as soon as a connection betweénatasthe dispersion relation of the Kelvin modes has been made.
This is possible by expressing the resonant Kelvin waves near the origin as local plane waves, which gives, for the-rhpde
the relation

w(n) (kz)
i

whereo™ (k) is thenth eigenfrequency of the Kelvin wave = 1. The numben denotes the index of the Kelvin wave. It can
be associated with the number of radial oscillations of the velocity components of the Kelvin wave. The larger the index, the
more oscillatory the Kelvin waves structure is. As the maximum growth rate is obtained for small vad/&5/62.) (close to
£2/(2u) as prescribed by (23)), a good estimate can be obtained by a linear fit of the different branches for small frequencies.
For the Lamb—Oseen vortex, we obtain the following relations
1 226+1.6% —kza
2 148+ 9n ’

If we non-dimensionalize the instability growth rate (19) by the convective time sgal@ 2we finally obtain an expression
of the form

3 1/a\%7%/s\? P\*T1  [a)\? 2 272k, p)2
* _ S_ = o _ Z - _(Z _ () | = 2%
o[22 T () () o (0) o] - 2o @0

which, for Lamb—Oseen vortices, has to be used in combination with relations (6) and (25)sfaand cog . This formula
is compared with experimental and numerical results in Fig. 13. The quantitative agreement is surprisingly good. It provides a
strong validation of the theory on the elliptic instability mechanisms described above.

cost ™ = % (24)

cost ™ = n=0,1,2,... (25)

3.2. Three-dimensional merging

For moderate Reynolds nhumbefRe(> 2000), experiments show that as soon as the elliptic instability develops, the dy-
namics of the two vortices becomes strongly three-dimensional and departs from the two-dimensional dynamics described in
Section 2. When the amplitude of the instability mode has reached sufficiently large values, a complex three-dimensional merg-
ing process of the vortices begins. It leads to the formation of a single vortex with specific characteristics. The three-dimensional
merging process is much more complex than in two dimensions, as illustrated in Figs. 14(a)—(d). A strong disorder with small
scales appears in the merging region, and three-dimensional secondary filament structures are ejected far from the vortices.

The three-dimensional merging process starts earlier than in two dimensions. This is in agreement with the mechanism
discussed in Section 2: the instability deforms the vortices and can then move vorticity across the separatrix connected to the
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(c) (d)

Fig. 14. Late stages of the elliptic instability after merging. Dye visualisations (a) in a sideview and (b) in a transverse section. (c), (gd) Vorticit
isosurfaces from DNS, in perspective view and in a section. From [37].

outer hyperbolic points (see Fig. 6). When this occurs, the vorticity is carried away outwards along the outer streamline; the two
vortices then must get closer in order to conserve their angular momentum, and the merging process starts. In the experiments
three-dimensional merging has been found to occur for valugs /@9 as small as 0.19 which has to be compared with the
critical two-dimensional value of 0.22.

After the merging, the final vortex reorganises into an axisymmetric structure. As for two-dimensional flow, the vorticity
profile of this structure is not Gaussian, but a core size can still be defined from the radius at which the azimuthal velocity
reaches its maximum. Fig. 15 shows the evolution of the square of the core size as a function of the viscous time for both cases,
with and without instability. With instability, we see that not only the merging process starts earlier, but it also leads to a larger
vortex. The core area is multiplied by a factor of 3.5 during the three-dimensional merging, while only a factor of 1.5 was
observed in the two-dimensional case.

The maximum velocity of the vortex is also smaller in the presence of the instability, it is less/Baf the value without
instability. The velocity profiles are shown in Fig. 16. This is mainly due to a large decrease of the maximum vorticity by a factor
of about 2.5, whereas it was conserved in the two-dimensional case. However, if we assume that the other conservation laws
are still valid in three dimensions (circulation, energy and angular momentum), the profile of the final vortex can be predicted
for the case shown in Fig. 16, using the vortex model composed of two concentric Gaussian vortices, as defined in (11), with
the following parametersz, = 2.1985, I; = 1.9315,a = 13.34 andI"y = 0.0685. This prediction is in good qualitative
agreement with the experimental results, although a better agreement can be found using the two-core vortex defined by (16)
with « =2/3,a1 = 1.9 anday = 6.
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Fig. 15. Temporal evolution of the square of the non-dimensional core size. In the presence of the instability (open symbols), merging appears
earlier and leads to a larger core than in the absence of the instability (filled symbols). ExperReeat06 (); Re= 3350 (); Re= 5000
(O,0). Two-dimensional numerical resultRe= 8000.
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Fig. 16. Final azimuthal velocity (a) and local circulation (b) after the merging of the two vortices without instak)ilayRe= 1506, and
with instability () at Re= 3350, obtained from experiments. Thin solid and dotted lines correspond to a fit using the two core model (16). The

dashed line corresponds to a Gaussian vortex with conservation of circulation and angular momentum. The thick solid line corresponds to two
concentric Gaussian vortices (11) with conservation of circulation, angular momentum and energy and a 60% loss of maximum vorticity.

The three-dimensional merging initiated by the development of the elliptic instability has been obtained in numerical simu-
lations up toRe= 5 x 10*. For larger Reynolds numbers and smaller initiab, a different evolution has also been observed
(F. Laporte, private communication). Under certain conditions, the elliptic instability has been seen to saturate and, after a tran-
sient disordered regime, leave the flow with two vortices, which are still distinct, but have much larger vortex cores. The elliptic
instability was then observed to develop again, up to the beginning of the three-dimensional merging process as seen for smaller
Reynolds numbers. No systematic study of this two-step three-dimensional merging has been performed, so it is difficult to infer
the parameter range for which it is expected to occur. In particular, it is not excluded that, for even larger Reynolds numbers
and smaller initiakz /b, more than two steps of elliptic instability growth and saturation could be needed to reach the onset of
merging.

The weakly nonlinear theory of the elliptic instability [44,45] provides some insight into the dynamics at large Reynolds
numbers. For infinite Reynolds numbers, the theory predicts that the sinuous deformation associated with the two resonant
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Kelvin modesm = 1 andm = —1 grows in the plane oriented along with the direction of stretching, then nonlinear effects
make this plane rotate toward the direction of compression such that the deformation stops increasing, then decreases and goe
back to zero [45]. As soon as viscous effects are considered, the weakly nonlinear dynamics is different. The most unstable
deformation is expected to spiral to a fixed point of finite amplitude of oydey i o< a/b. Although such a spiraling evolution

has been seen for the elliptic instability developing inside a cylinder [32], no clear evidence is available for the vortex pair.
However, the saturation process has been observed, followed by a complex rearrangement in each vortex (probably due to
secondary instabilities) by which new straight vortices are formed. If one assumes that, by this process, the core size of each
vortex grows by a fraction of the amplitude deformation, i.e., a fractiary6f it is easy to imagine that, if /b is initially very

small, several instability cycles would be needed to reach the critical ratio required for merging.

In conclusion, we have seen in this section that three-dimensional effects due to elliptic instability of the vortex cores strongly
modify the merging process of co-rotating vortices. Three-dimensional merging sets in earlier (for smaller rescaled core sizes)
than in two dimensions, it produces a more turbulent and larger final vortex, with greatly reduced maximum swirl velocity. The
main characteristics of the final vortex can be predicted using a simple model involving the basic physical conservation laws.

4, Discussion

In this paper, we have considered the temporal dynamics of two identical co-rotating Gaussian vortices without axial flow.
This constitutes a very simple idealization of the near-wake dynamics of the vortices generated by a wing. In this section, we
want to identify, as far as possible, the differences between the vortices in the near wake of an aircraft and our model, in order
to determine the impact and relevance of the results presented in the previous sections for applications. This will allow us to
discuss a few possible extensions of the theory to more realistic configurations, and to address some open issues.

The first difference to be pointed out is the fact that a flapped aircraft wing does not generate two ‘nice’ identical Gaussian
vortices. Even if two dominant vortices exist behind each wing, they are probably not identical, and they exhibit a large vortical
region outside their viscous core, due to the roll-up of the vortex sheet. In addition, these two vortices may also be surrounded
by other vortices, which are generated by various elements on the wing. These other vortices are expected to affect the two-
dimensional dynamics of the vortex pair. Indeed, as soon as a third vortex is present, the two dominant vortices can get closer
to each other due to the velocity field generated by this third vortex. The two vortices could therefore merge quickly even if
their initial core size(a/b) was very small. This scenario has not been considered above, where merging was always due to
thickening of the vortex cores by either viscous diffusion or instability. It may be important in real configurations.

It is also worth mentioning that merging is not the only possibility of strong vortex interactions. When a small vortex gets
close to a strong vortex, it is stretched and transformed into a vortex sheet which is wrapped around the larger vortex. This
so-called straining phenomenon has been studied by Dritschel and Waugh [46,47] among others. It contributes in particular to
the reorganization processes of the very near wake, during which the smallest vortices are wrapped around the largest ones.

The two-dimensional conditions for straining and merging are expected to be influenced by three-dimensional instabilities.
In Section 3.1, we have provided a theoretical model for the elliptic instability in two identical Gaussian vortices. When the
two vortices possess different circulations or different core sizes, a similar model can be developed. Le Dizés and Laporte
[29] showed that a formula for the instability growth rate can be obtained in each Gaussian vortex. When the vortices are not
Gaussian, the elliptic instability is still expected to be active. Fabre and Jacquin [24] analyzed this possibility for the two-scale
model defined in (16), by considering such a vortex in a weak stationary strain field. They demonstrated that both the growth
rate and the selected wavelength depend on the profile paramgtessande. They showed the following interesting features:
both the ratics; /s, of the strain rate in the vortex center, i.e., the maximum growth rate of the instability, and the width of the
unstable wavenumber bands increase with the ratia1. They also identified two different regimes according to the value of
a. When 05 < « < 1, the unstable wavelengths were found to scale on the inner core;sieéth values ofk;a1; comparable
to those for the Gaussian vortex. By contrast,dox 0.4, the unstable wavelengths are much larger and scale on the outer
core radiusazo. It was argued that, for these parameters, the elliptic instability is not governed by the local destabilization of
the vortex center, but instead by the destabilization of the large intermediate region. Although only a stationary strain field
was considered, it is reasonable to believe that similar conclusions would be reached in the case of a rotating strain field. In
particular, fore > 0.5, we expect that a model similar to that developed for the Gaussian vortex could be used for the prediction
of the instability growth rate: expression (19) would still apply, but with modified relations; foy and cog. One can also
conjecture that the presence of a large intermediate region could favor merging, since more vorticity can be advected outwards
along the outer separatrix. Stronger vorticity arms would then be ejected far from the vortices, which could lead to a premature
vortex merging, as explained in Section 2.2. So far, however, there is no experimental or numerical evidence to confirm this
expectation.

Wing-generated vortices are also characterized by an axial velocity component, due to a velocity deficit in the core region,
with respect to the free-stream velocity transporting the vortices downstream. We now discuss some of the effects of this
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axial flow. First, it is important to note that axial flow does not modify the two-dimensional dynamics. Axial flow is passively
advected by the two-dimensional velocity and diffused by viscosity. Therefore, the large scale two-dimensional dynamics, the
vortex deformation, the viscous diffusion of the vortex cores and two-dimensional merging should not be influenced by axial
flow. By contrast, axial flow is expected to strongly affect the three-dimensional dynamics. For strong axial flow, vortices can
become unstable with respect to an helical instability [48]. For a Batchelor vortex (Gaussian profiles of axial velocity and
vorticity), this happens when the axial flow paramé#éy, defined as the ratio of the maximum axial velocity difference and

the maximum azimuthal velocity, exceeds approximatively 1. It is not excluded that such large valgsaild be reached

very close to the wing.

For small values oWy, each vortex alone is expected to remain stable, so we can naturally address the question whether
the elliptic instability is still active in those cases. This question is currently the subject of active research. A few elements of
response can be put forward. The first point to note is that the local theory of the elliptic instability should still apply in the
vortex center, if we move with the axial velocity of the center. This means that expression (19) for the instability growth rate
should be valid for the most unstable local perturbations located in the vortex center and moving with the flow. The problem
is that we have now no guarantee that such a local perturbation can be compatible with the expression of a global instability
mode. This can be seen by considering the effect of axial flow on the characteristics of the Kelvin waves. When there is an
axial flow, the helical Kelvin waves: = 1 andm = —1 are no longer symmetric. They do not possess the same frequency nor
the same spatial structure. This implies that their combination no longer forms a stationary planar deformation. Moreover, the
symmetry breaking has the consequence that the characteristics of the resonant waves do not satisfy the local conditions (23)
which permitted the use of the local theory. The result is that the excitation of the Kelvin waxesandm = —1 may become
less efficient. This phenomenon has been analyzed in detail by Lacaze et al. [49] for a Rankine vortex with axial flow. They
demonstrated that other instability modes involving Kelvin waves with high azimuthal wavenumbers could become the most
unstable, a3V increases. For a vortex with a continuous profile, such as the Batchelor vortex, there is another effect: some
of the Kelvin waves which were involved in the resonance become damped and thus cannot be excited by the strain field. This
situation has been studied by Lacaze [50] for a Batchelor vortex in a stationary strain field (see also [51]). He demonstrated
that, because of the damping of the Kelvin wave= 1, the resonance between the two wawmes 1 andm = —1 disappears
as Wy reaches a critical value. However, other pairs of waves which were not excited in the absence of axial flow are now
excited by the strain field. In particular, Lacaze demonstrated that pairs of Kelvin waxedandm = —2, and thenn = —1
andm = —3 were successively excited, #& increases. The instability mode composedmof 0 andm = —2 waves was
apparently observed in numerical simulations of a counter-rotating Batchelor vortex pair by Laporte [52]. This observation
has been recently confirmed (K. Ryan, private communication), and a quantitative comparison with the theoretical results is
currently underway [53]. An analysis of these new instability modes in the case of co-rotating vortices is highly desirable,
notably to determine their impact on the vortex merging phenomenon.

To close this section, we wish to address the effect of another important difference between real wake vortices and the
vortices studied in this article. Wake vortices evolve spatially, whereas we have considered the temporal evolution of parallel
vortices. We thus have to address the question whether our results can be applied locally in the frame moving with the mean
streamU as if the temporal dynamics were just advected at a constant speed. A priori, this is possible if the vortex system can
be considered as locally parallel. This requires that the characteristic streamwise evolution length, which can be evaluated as
L=Ut~ 2n2b2U/F if we take forz. the turnover time of the two vortices, is large compared to the largest characteristic
transverse scale, given by the separation distanée practice, the ratid./b is larger than 30 for typical configurations, so it
is reasonable to consider the spatial interaction of the two vortices as locally parallel. The two-dimensional merging occurs on
a time scale comparable tg, so it should also be relevant for the spatial evolution.

Concerning the three-dimensional evolution, one also has to verify that the characteristic instability wavelength is small
compared td.. This is of course satisfied for the elliptic instability as it scales on the core:sizhich is smaller thab. As
spatial evolution is considered, one should also analyze the spatio-temporal stability properties of the elliptic instability. This
has been done for a model of counter-rotating vortices by Fabre et al. [54]. They showed that the elliptic instability remains
convective and that spatial growth rates can be deduced from temporal growth rates by a Gaster transformation, i.e., by assuminc
that the temporal mode is advected at the mean spedtle expect similar conclusions for co-rotating vortices.

Finally, note that temporal results may not be relevant everywhere. In the very near wake, the dynamics is dominated by
straining and vortex sheet roll-up which occur on a faster time scalerghémthis region, the locally parallel approximation
is not expected to apply. Consequently, the very near wake characteristics are poorly described by a two-dimensional temporal
approach.

Fig. 17 shows the development of a short-wave perturbation on a spatially evolving vortex system with characteristic close
to a real aircraft wakeRe= 106), a result obtained by Laporte [52] using Large—Eddy Simulation. It illustrates that elliptic
instability of co-rotating vortices and the associated three-dimensional merging are indeed relevant for realistic applications.

One may mention that one aspect involved in the dynamics of real aircraft wakes has been completely excluded here, namely
the influence of the atmosphere. The wake system of a flying aircraft, especially in the vicinity of airports, i.e., relatively close
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Fig. 17. lllustration of three-dimensional merging in a spatially evolving flow, representing a realistic aircraft wake. Vorticity contours from
LES atRe= 10° [52].

to the ground, is exposed to the influence of the surrounding atmosphere or atmospheric boundary layer. The effects of wind
shear, stratification and atmospheric turbulence are particularly important (see, e.g., Holzapfel et al. [55] and Mokry [56] for an
overview).

5. Conclusion

In this paper, we have treated fundamental aspects related to the interaction of co-rotating vortices and the phenomenon
of vortex merging. The basic two-dimensional analysis gave insight into the different phases of merging and their Reynolds
number dependence. Simple models were presented, involving the basic conservation laws for circulation and energy, allowing
us to understand the physics of merging and to predict the properties of the final vortex resulting from this process. We have
presented in detail a three-dimensional short-wave instability linked to the mutual elliptic deformation of the vortices, and
strongly interfering with the two-dimensional merging. Its effects include a premature merging, a faster increase in core radius
and a lower maximum swirl velocity for the final vortex, properties which are of potential interest in the context of wake vortex
hazard reduction. Although the configurations considered in this paper may seem a somewhat severe simplification of realistic
aircraft wakes during takeoff or landing, they nevertheless contain the most important features needed to understand the physics
involved. The relevance of these results for applications were discussed, and it is anticipated that many of the conclusions drawn
here will in some form carry over to the applied situation.

Acknowledgements

Many of the results presented in this paper come from research conducted within the European project “C-Wake” (Wake
Vortex Characterization and Control). The corresponding financial support of the European Union is gratefully acknowledged.
Appendix A

We wish to calculate the energy of the two-dimensional flow before and after merging. Before merging, the flow is made of
two Gaussian vortices with circulatian and core size;, which are separated by a distaicé\fter merging, the flow is made
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of two concentric vortices with circulations. and Iy and core sizea, andas. Since the total circulation is non zero, the
kinetic energy of the flow is infinite and we need to use the excess kinetic energy, defined as:

r2 R
K. = lim —dS— tOtIn— (A1)
R—o0 L
r<R

In this definition, L is a characteristic length scale of the flow, and should be identical before and after merging. We will
choosel = g; to simplify the calculations. Moreovefiot is the total circulation of the flow and must be equal before and after
merging. It is here equal tol2and tol, + IF -

Introducing the velocity profile of two concentric Gaussian vortices into (A.1), it is easy to derive the energy of the flow
after merging:

o co(2)] ()] sl ) o2

where,C is a constant defined as:
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and Kcondlac /asi)) is the mutual kinetic energy of two concentric vortices given by:
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dr (A.4)
To calculate the energy of the flow after merging, it is easier to use the definition of the kinetic excess energy using the vorticity
and the streamfunction:
1
Ke=3 / Ywds (A.5)

This definition is equivalent to Eqg. (A.1) only if the constant of the streamfunction is chosen such teagquivalent to
—(Iot/27) In(R/L) when R tends to infinity. For two vortices separated by a distahcthe cross terms can be estimated

by assuming that the streamfunction of one vortex is almost constant in the core of the opposite vortex, which leads to an
approximation of the excess kinetic energy before merging:

b
Kpefore= —2I'*C — 2F2Ksep<;> (A.6)
1

where the mutual kinetic energy of the two vortices is given by:

b b/al 2 oo 2
— e e
Ksepl — =/—dr—|—/ dr (A.7)
a Ar Ay
1 1

This approximation is valid to six decimals for the critical merging ratia:gh = 0.22 and is accurate within 0.5% up to
a/b=0.4. Equating (A.2) and (A.6) leads to the conservation of the energy given in (15).
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