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Abstract

Starting with intersecting M2-branes in M-theory, the IIA supertube can be founsf lpompactification followed by a
boost to the speed of light in the 11th dimension. A similar procedure applied to Donaldson—Uhlenbeck—Yau instafifons on
viewed as intersecting membranesidt= 7 supersymmetric Yang—Mills (SYM) theory, yields (for finite boost) a new set of
1/4 BPS equations fob = 6 SYM-Higgs theory, and (for infinite boost) a generalization of the dyonic instanton equations of
D =5 SYM-Higgs theory, solutions of which are interpreted as Yang—Mills supertubes and realized as configurations of 11B
string theoryTo cite thisarticle: PK. Townsend, C. R. Physique 6 (2005).
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Résumé

Théorie des champs des supertubes. Considérant des M2-branes s'intersectant en théorie M, le supertube pour la théorie
de type IIA est déduite par une compactification Sliret un boost a la vitesse de la lumiére selon la 11éme dimension. Une
procédure similaire est appliquée aux instantons de Donaldson—UhIenbeck—@uqu'rsont vus comme des intersections de
membranes de la théorie supersymétrique de Yang-Mills (SYM) en7, donnant (pour un boost fini) un ensemble nouveau
d’équations ¥4 BPS pour la théorie de SYM-Higgs @n = 6, et (pour un boost infini) une généralisation des équations
d’instantons dyoniques de la théorie SYM-Higgs®er= 5, solutions qui sont interprétées commes des supertubes de Yang-
Mills et réalisées comme des configurations de la théorie des cordes de typeutRiter cet article: P.K. Townsend, C. R.
Physique 6 (2005).
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1. Introduction

Starting with the 14 supersymmetric intersection of two M2-branes in M-theory, one can obtain ghaupersymmetric
configurations. For example, compactify on the 11th dimension to get/heupersymmetric configuration in which a 1A
string ends on a D2-brane. Now boost in the 11th dimension; in ten dimensions this corresponds to adding DO-charge so that the
IIA string now ends on a bound state of a D2-brane with dissolved DO-branes. What happens if we boost to the speed of light in
the 11th dimension? Consider this question at the level of the effective Dirac—Born—Infeld (DBI) theory for the D2-brane, which
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is just a dual version of the 11-dimensional supermembrane. At finite boost, we have a ‘dyonic Blon’, which is a D2-brane spike
carrying constant electric flux and a constant magnetic charge density [1]. As we boost to the speed of light, the spike becomes
more tubular and we end up with a supertube [2].

In effect, we have constructed the D2-brane supertube from the 11-dimensional supermembrane (the ‘M-ribbon’ is an alter-
native starting point [3]), but the worldvolume action for the supermembrane exists in spacetime dinieasiib, 7, 11 [4],
and the above (worldvolume) construction works as wellfboe 5, 7 as it does foiD = 11, yielding supertubes ib = 4 and
D = 6 in addition to the supertube ib = 10. The 10-dimensional supertube is an effective description of a configuration of
IIA string theory that has an alternative low-energy description as a supertube solution of II1A supergravity [5]. Is there a similar
‘microscopic’ interpretation of thé® = 4, 6 supertubes?

As the starting point was a membranelin= 5, 7 we should first ask whether there are supersymmetric theories in these
dimensions that admit membrane solutions. Pot 7 the obvious candidate is a supersymmetric Yang—Mills (SYM) theory
because an instanton solution of the YM equations'?ércan be interpreted as a2 supersymmetric membrane. For=5
there are various candidates, one being a supersymmetric sigma-model because, for an appropriate choice of (necessarily hype
Kahler) target space, there is g2lsupersymmetric lump soliton that has a 5D interpretation as a membrane.

We should next ask whether these field theories adpditslipersymmetric solutions that can be interpreted as intersections
of the 1/2 supersymmetric membranes. If so, the procedure outlined above should yield solutions of the dimensionally-reduced
theories (6D SYM or 4D sigma models) that we could €iglld theory supertubeIhese would have an effective description
in terms of the supertube solution of the DBI action for a 6D or 4D membrane, just as the IIA supergravity supertube has an
effective description in terms of the DBI action for the D2-brane (the Born—Infeld vector potential arising, in each case, from
dualization of a worldvolume scalar).

In the sigma-model case, the answer to this question is known. One can find an exglisitpfersymmetric non-singular
solution of a 5D sigma model that represents the intersection of two membranes (or 3-branes of the 6D sigma model) [6].
A Scherk—Schwarz-type reduction to 4D then yields a ‘massive’ supersymmetric sigma model, and the intersecting membrane
solution of the massless 5D model becomes in 4D, ileslipersymmetric ‘kink-lump’, which can be interpreted as a lump-
string ending on a kink-membrane [1]. A boost in the 5th dimension generalizes this to the ‘Q-kink-lump’ of the massive 4D
sigma-model [1], and a boost to the speed of light yields a tubular configuration with a cross-section that gipetsym-
metric Q-lump solution of the dimensionally-reduced 3D massive sigma-model [7,8]. Thus, the Q-lump solution of 3D massive
supersymmetric hyper-Kéhler sigma models is, when viewed as a tubular solution of the 4D sigma rfieldeh@ory super-
tube In fact, it was this observation that led to the discovery of the string theory supertube, and the above discussion is just a
reversal of the logic presented in [2].

In this contribution | explore the same issues for SYM theories. Along the way, we will obtain a new one-parameter set of
first-order equations for/# supersymmetric solutions of 6D SYM-Higgs theory. A limit of these equations, corresponding to a
boost to the speed of light in the 7th dimension, yields equations that generalize the dyonic instanton equations [9] of 5D SYM
theory. Certain solutions of these equations are interpreted as Yang—Mills supertubes, and a realization of them as IIB string
theory configurations is suggested. | conclude with a discussion of some issues raised by these results.

2. Yang-Mills supertubes

Let F =dA +i[A, A] be the YM field-strength 2-form for YM 1-form potential, which is a traceless hermitianx22
matrix for gauge grouU(2). In the gaugerg = 0, any static bosonic solution of 7D SYM theory is solution of the Euclidean
YM equations orR®. The generic solution of this type preservingtsupersymmetry must satisfy a set of first-order differential
equations, and one can choose coordinates?, ..., x® such that these first-order equations are [10]

Fi3+ F42=0, Fia+ F23=0,

Fi5+ Fgo =0, F16+ Fo5=0,

F35+ Fg4=0, F3+ F45=0, (1)
F10+ F34+ F56=0.

These equations are equivalent to the Donaldson—Uhlenbeck—Yau equations for Euclidean YM fighisaod have been
studied previously in the context of SYM theory (e.g., [11]), although not in the context of solitons of 7D SYM theory.

Of course, there will be special solutions of these equations that preserve more/4hsmpg&rsymmetry. Apart from the
vacuum, these are the solutions for whiEhs non-zero only on a 4-dimensional subspacﬁi@;fe.g., the ‘1234’ subspace, in
which case the equations reduce to

F13+4+ F42=0, F14+ Fp3=0, F10+4 F34=0, (2)
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which are equivalent to the self-duality equations

17[‘/-1-%8,'/1(11‘*1(1:0 @i, j,k,1=1,234). ?3)
The solutions are instantons which, as mentioned above, can be interpret&isagpérsymmetric membrane solitons of the
7D SYM theory. If a ¥4 supersymmetric solution of Egs. (1) is such tRatas support, asymptotically, on some 4-plane then
we would interpret this 4-plane as the space transverse to a membrane. Thus, it is reasonable to exXpectppetpriate
boundary conditionssolutions of Egs. (1) represeintersectingmembranes.

Let us now compactify one space dimension on a circle; take it to befttigection, so thatig = @, an adjoint Higgs field.
Take the YM fields to be independentxﬁ‘; this means thaksg = Ds®, whereDsg is the 5th component of the gauge-covariant
derivative. LetD; (i =1, 2, 3, 4) be the other four components. Egs. (1) may now be written as

1
Fij + 5¢ijkiFia = —$2ijDs®.  Fis =52 D;®. 4)
whereg2;; are the entries of the 4 4 antisymmetric matrix with non-zero entries
R210=—8291=8234=—243=1 (%)

We are still considering static solutions so it is understood e 0, and that all fields are time-independent; in gauge-
invariant terms,

Do® =0, Fos5=0, Foi=0 (i=1,234). (6)
This means that the Gauss-law constraint
DsFos + D; Fp; =0 (7

is trivially satisfied.
Let us supposd3 = A4 =0, and that all fields become independent%fandxA', asymptotically agx3)2 + (x4H2 - oo.
In this case, Egs. (4) reduce to

F12+ D5® = F51+ Do® = Fo5+ D1® =0, (8)

which are the equations for a magnetic-monopole membrane itftheé plane (assuming tha is non-zero in the vacuum).
If, on the other hand4ds = 0 asymptotically, asx3)2 + (x*)2 — 0, such that> becomes independent o?, and the fieldst;
(i=1234) have anc® dependence such thagA; = —$2;; D; @, then we are left with the self-duality Egs. (3), and hence
an instanton string in the® direction. The instanton core of this string would collapse to a singularity if the string were not
attached to the monopole membrane (which induces theependence of the YM fields). Thus, one expects there to exist a
non-singular solution of Egs. (4) with an interpretation as an instanton-string ending on a monopole donain wall.

We dimensionally reduced the 7D SYM theory in tHfedirection, allowing for a non-zero vacuum value for the Higgs field
Ag = @. Now, returning temporarily to the 7D perspective, we boost to velaciyongx®. This takes Egs. (4) into the new
set of equations

1
Fij + 5¢ijki i +V1-v282;;Ds® =0, Fis—V1—v22;;D;j® =0,

Foi +vD; @ =0, Fos+vDs® =0, Do® =0. 9)

To determine the fraction of the 16 supersymmetries of the 6D SYM-Higgs vacuum that are preserved by solutions of these
equations, it is convenient to note that the 7D SYM theory from which we started is the dimensional redud®ofat0D

SYM theory, so any solution of Egs. (9) is also a solution of 10D SYM theory wWigh= @ but A7 = Ag= Ag =0, and a

field strengthF,, (1, v =0,1,2,...,9) that is independent of%, x”, x8, x°. The number of supersymmetries preserved by

any such solution is the number of linearly independent real, chiral, constant, 10D spiwh thatF,,, I'*"s = 0, where

I'* are the 10D Dirac matrices. Use of Egs. (9) leads to the conclusion that the independent constraints satisfied by

284, — (F1256+ vF1250)8 =—(V1-v?)e. (10)

These constraints imply preservation gfilsupersymmetry. Note, that this does not, by itself, imply that the YM field equations
are satisfied; for that we must also impose the Gauss-law condition (7).

1 This interpretation was developed in unpublished work with Jerome Gauntlett and David Tong, following the work in [6] in which it was
shown that a similar interpretation is indeed realized by the kink-lump solution of the analogous sigma-model equations.
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Given a solution of the unboosted4.BPS Egs. (4) representing an instanton-string ending on a monopole domain wall,
there should exist a corresponding solution of the boosf@dBPS equations and Gauss law constraint that represents an
instanton-string ending on dyondomain wall. This is because the limit that led previously to the equations fg2 8PS
monopole now leads to the equations for/2 BPS dyon. Suppose that we have such a solution forvaauyd that we take
v=1;i.e., we boost to the speed of light. In this case, we will have a solution of the equations

1
Fij + 5éijki Fa =0, Foi + D;j® =0, Do® =0, (11)
and
Fi5=0, Fos+ D5® =0, (12)

which are obtained from (9) by setting= 1. Egs. (11) are 4 BPS equations for dyonic instantorj9]. Given an instanton
solution of the self-dual YM equations, the other dyonic instanton equations are solved by 4gtting for time-independent
Higgs field®, in which case (12) is equivalent to

d5A; = D; As, As =0, (13)

and the Gauss law constraint becomes

4
(ZD?JrDé)q) =0. (14)

i=1

That is,® must solve the covariant 5D Laplace equation in a YM background provided by a 4D instantox®wiépendence
given in terms ofds by (13).

If we suppose thatis = 0 thendsA; = 0. Assuming thatp is also independent of°, we get a string-like solution of
6D SYM-Higgs theory, with a dyonic instanton core that carries ‘electric’ cha@ge addition to instanton numbe¥ (it
would be interesting to investigate whether more general solutions are possible, but that will not be done here). For the sigma-
model supertube, the core is a Q-lump, and a Q-lump has an interpretation as a charged closed loop of kink-string [8]; the
analogous interpretation of the dyonic instanton would be as a charged closed loop of monopole-string, and this interpretation
is also suggested by various other arguments [12,13]. However, the number of monopoles in a given solutiof2oBE® 1
equations of 4D SYM-Higgs theory is determined by the number of zeros of the Higgs field, and the positions of these zeros
are the positions of the monopole. A single monopole, or dyon, has a single zero of the Higgs field, which will lift to a
line of zeros in 5D; a monopole, or dyon, loop will thus be associated with a closed loop of zeros of the Higgs field. In
contrast, dyonic instantons corresponding to instantons found by the 't Hooft ansatz havsotatlyd zeros of the Higgs
field [14].

It therefore appeared, until recently, that the interpretation of dyonic instantons as charged loops of monopole-string could
not be correct. However, recent work of Kim and Lee [15] has shown that the locus of zeros of the Higgs fielgheria
dyonic instanton with instanton numbar > 2 is a closed curve, exactly as one would expect for a loop of monopole-string.
Already for N = 2, for which the general instanton solution can be found from the Jackiw—Nohl-Rebbi ansatz, there is an
additional parameter as compared to the 't Hooft ansatz, and this yields a one-parameter family of closed curves that degenerate
to two points in the 't Hooft ansatz limit. Lifting t& = 6 we have a configuration of 6D SYM-Higgs theory in which the Higgs
zero lie on a tube. This isféeld theory supertubes | have argued here, it is related to an intersecting membrane solution of
7D SYM theory in the same way that the D2-brane supertube of IIA string theory is related to a configuration of intersecting
M2-branes of M-theory.

3. String theory realizations

We have found a 6D Yang—Mills supertube by a procedure that is analogous to one that can be used to find the 10D string
theory supertube. However, there is alstirect connection between the two that arises from the interpretation of SYM-Higgs
theory, for gauge grouU(2), as the effective field theory on a pair of parallel D-branes in type Il string theory.

Let us first consider the 5B3U(2) SYM-Higgs theory on a pair of parallel D4-branes. A line of zeros of the Higgs field,
corresponding to a monopole-string, would have a natural interpretation as the endpoint of a planar D2-brane since T-duality in
a direction parallel to the line yields a D1-string stretched between two D3-branes, which is the standard D-brane realization of
a BPS magnetic monopole. A closed loop of zeros of the Higgs field therefore represents the (common) boundary of a tubular
D2-brane on the two D4-branes. The non-zero instanton numbiedicatesN dissolved DO-branes, but DO-brane charge
is magnetic charge on a D2-brane. Moreover, the fraction of supersymmetry preserved by the total D-brane configuration is
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expected to be /B, which translates to/% of the supersymmetry of the SYM-Higgs theory vacuum. Thus, the geBeXi2)
dyonic instanton has a string theory interpretation [15] as a supertube stretched between two D4-Byafiesiality we can
convert this to a 18 supersymmetric 11B string configuration in which a D3-brane withx R boundary havingv dissolved
D1 strings, is stretched (along with some number of dissolved IIB strings) between two D5-branes. The common boundary on
the D5-branes is the tubular locus of zeros of the Higgs field of 6D SYM-Higgs theory; in other wardegve a 1B string
theory description of th&/4 supersymmetric field-theory supertube of 6D SYM-Higgs theory
If the supertubular D3-brane suspended between the D5-branes collapses, ‘precipitating’ out the dissolved IIB and D1 strings
then we end up with a configuration represented by the array

D5: 123 45— — — —
DLi 1l — — — — — — — — (15)

where the first row represents the two D5-branes, in which the ‘precipitated’ D1-branes are actually still dissolved, and ‘F1’

indicates the ‘fundamental’ IIB strings. By adding angular momentum, one can reverse the collapse and blow up the 1IB and D1
strings to the configuration described previously. Let us now increase the 11B coupling and pass to the S-dual 11B string theory,
and then T-dualize in the® direction; this yields a II1A configuration represented by the array

FIb 1— — — — — — — — (16)

where ‘KK’ (for Kaluza—Klein monopole) indicates a 4-dimensional ALE space, and the circle in the 6th position indicates
thatdg is the U (1) Killing vector field; since we started with two D5-branes, this Killing vector field should have two isolated
singularities. However, we could view this ALE space as a local description of a compact K3-manifold. Expansion of the
IIA string and DO-branes by the addition of angular momentum then yields a supertube in what is effectively a 6D spacetime
obtained by K3 compactification of the IIA theory. This should be related to the M2-brane of K3-compactified M-theory in
the same way that the original supertube is related to the M2-brane in the 11-dimensional Minkowski vacuum. As M-theory
on K3 is dual to the heterotic string theory @1, this membrane is dual to the membranéréicompactified heterotic string
theory, which is just the heterotic five-brane wrapped orfthewe may conclude from this there must exist a supertutie’of
compactified heterotic string theory dual to the D2-brane supertube of IIA string theory. The corresponding supergravity/SYM
solution is presumably the heterotic dyonic instanton [14].

4. Fuzzy conjectures

We have seen that a D2-brane supertube can be suspended between two D4-branes, and that there is a T-dual of this cor
figuration for which the interpretation within an effective 6D SYM-Higgs theory is as a field theory supertube. Can the latter
be suspended, preserving supersymmetry, between other branes? Yes, because the two D5-branes can themselves be suspen
between two NS5-branes. Consider the ‘precipated’ configuration represented B3 8HBFRS array

D5: 12345— — — —
NS5:— 2 345 6— — —
DL 1 — — — — — — — —
F1: — — — — — 6 — — —

7

where the second row represents the additional pair of NS5-branes, and the low energy effective field theory-isdthe (1
dimensional theory on the D5/NS5 intersection. The 1IB strings are parallel to the NS5-branes and the D1-strings are suspended
between them (like the D5-branes in which they are dissolved). Adding angular momentum to blow up the 1IB and D1 strings
to a supertubular D3-brane would yield a configuration of the type sought, which would presumably correspond to some
‘Q-lump-type’ supertube of the 5D effective field theory. However, the relationship of this construction to the explicit M-theory
description of the sigma-model Q-lump given in [1] is not obvious. This may be because there are other possible field theory
realizations of the 5D supertube.

2 In the one instanton case, the loop of Higgs zeros degenerates to a point, and the interpretation is as a A string stretched between two
D4-branes carrying DO-brane charge [16].
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As reviewed above, the work of Kim and Lee [15] has shown that the generic dyonic instanton for instanton Number
can be interpreted as a D2-brane supertube suspended between two D4-branes. The instantoN romesponds to the
number of dissolved DO-branes; this would be infinite for an infinite supertube but can be finite for one suspended between
D4-branes. Foiv = 2 there is a dyonic instanton solution for which the Higgs field zeros lie on a circle. This corresponds
to a supertube with circular cross-section. The limiting procedure explained here for finding a D2-brane supertube from the
11-dimensional supermembrane yields a supertube of this type (because until the limit is fdlsrpdrsymmetry implies
a circular cross-section). However4lsupersymmetry allows supertubes with other cross-sectional shapes [17]; in fact, any
curve, even a non-planar one, is permitted [18]. In contrast, the locus of Higgs field zeros for the generic dyonic instanton with
instanton numbeN involves only a finite number of parameters, so it cannot correspond to the generic classical supertube
cut-off by D4-branes. On the other hand, it seems likely that any cross-sectional curve will be possible in theNimit as,
so that this should be viewed as a semi-classical limit. In effect, the Yang—Mills supertube foirbta fuzzy supertube,
analogous to the M(atrix) model supertube of [19] but constructed from a finite number of DO-branes. This expectation suggests
a purely mathematical conjecture about the locus of zeros of an adjoint Higgs field satisfying a covariant Laplace equation on
R*in a YM instanton background with instanton numbeér Specifically, although imprecisely, it suggests tthés locus can
be chosen to approximate any closed curv&frwith an error that goes to zero a¥ — oo.

Finally, it should be noted that there are Donaldson—Uhlenbeck—Yau equations for Euclidean YM th&Srwhbith are
equivalent to static soliton equations fbr=9 SYM theory that preserve/8 of the supersymmetry of the SYM vacuum, and
there are other first-order equations (comprehensively analysed in [10]) that imply preservatid® supersymmetry. It is
possible that there exist non-singular solutions of these equations that could be interpreted as triple or quadruple intersections of
orthogonal 4-branes with instanton cores, in analogy with the sigma-model case [6]. These intersecting-instanton solutions will
be unstable against collapse to a singularity in the Higgs phase, but in that case wghsweetsymmetric monopole 5-branes,
on which an (otherwise singular) instanton 4-brane could have a boundary (this being the lift to 9D of the 5D instanton string
ending on the 5D monopole membrane). This configuratioP ef 9 SYM-Higgs theory would preserve/4 supersymmetry
but one can envisage many more complicated intersecting soliton configurations that presery8 onll/16 supersymmetry.

There is still a lot to learn about supersymmetric intersections of field theory solitons. Field theory supertubes constitute just
one element in a much larger, and still emerging, picture.
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