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Abstract

Starting with intersecting M2-branes in M-theory, the IIA supertube can be found byS1 compactification followed by a
boost to the speed of light in the 11th dimension. A similar procedure applied to Donaldson–Uhlenbeck–Yau instantonC3,
viewed as intersecting membranes ofD = 7 supersymmetric Yang–Mills (SYM) theory, yields (for finite boost) a new se
1/4 BPS equations forD = 6 SYM-Higgs theory, and (for infinite boost) a generalization of the dyonic instanton equatio
D = 5 SYM-Higgs theory, solutions of which are interpreted as Yang–Mills supertubes and realized as configuration
string theory.To cite this article: P.K. Townsend, C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Théorie des champs des supertubes. Considérant des M2-branes s’intersectant en théorie M, le supertube pour la t
de type IIA est déduite par une compactification surS1 et un boost à la vitesse de la lumière selon la 11ème dimension
procédure similaire est appliquée aux instantons de Donaldson–Uhlenbeck–Yau surC

3, qui sont vus comme des intersections
membranes de la théorie supersymétrique de Yang–Mills (SYM) enD = 7, donnant (pour un boost fini) un ensemble nouv
d’équations 1/4 BPS pour la théorie de SYM-Higgs enD = 6, et (pour un boost infini) une généralisation des équat
d’instantons dyoniques de la théorie SYM-Higgs enD = 5, solutions qui sont interprétées commes des supertubes de Y
Mills et réalisées comme des configurations de la théorie des cordes de type IIB.Pour citer cet article : P.K. Townsend, C. R.
Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Starting with the 1/4 supersymmetric intersection of two M2-branes in M-theory, one can obtain other 1/4 supersymmetric
configurations. For example, compactify on the 11th dimension to get the 1/4 supersymmetric configuration in which a II
string ends on a D2-brane. Now boost in the 11th dimension; in ten dimensions this corresponds to adding D0-charge
IIA string now ends on a bound state of a D2-brane with dissolved D0-branes. What happens if we boost to the speed
the 11th dimension? Consider this question at the level of the effective Dirac–Born–Infeld (DBI) theory for the D2-brane
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1631-0705/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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is just a dual version of the 11-dimensional supermembrane. At finite boost, we have a ‘dyonic BIon’, which is a D2-bra
carrying constant electric flux and a constant magnetic charge density [1]. As we boost to the speed of light, the spike
more tubular and we end up with a supertube [2].

In effect, we have constructed the D2-brane supertube from the 11-dimensional supermembrane (the ‘M-ribbon’ is
native starting point [3]), but the worldvolume action for the supermembrane exists in spacetime dimensionD = 4,5,7,11 [4],
and the above (worldvolume) construction works as well forD = 5,7 as it does forD = 11, yielding supertubes inD = 4 and
D = 6 in addition to the supertube inD = 10. The 10-dimensional supertube is an effective description of a configurati
IIA string theory that has an alternative low-energy description as a supertube solution of IIA supergravity [5]. Is there a
‘microscopic’ interpretation of theD = 4,6 supertubes?

As the starting point was a membrane inD = 5,7 we should first ask whether there are supersymmetric theories in
dimensions that admit membrane solutions. ForD = 7 the obvious candidate is a supersymmetric Yang–Mills (SYM) the
because an instanton solution of the YM equations onR4 can be interpreted as a 1/2 supersymmetric membrane. ForD = 5
there are various candidates, one being a supersymmetric sigma-model because, for an appropriate choice of (necess
Kähler) target space, there is a 1/2 supersymmetric lump soliton that has a 5D interpretation as a membrane.

We should next ask whether these field theories admit 1/4 supersymmetric solutions that can be interpreted as intersec
of the 1/2 supersymmetric membranes. If so, the procedure outlined above should yield solutions of the dimensionally
theories (6D SYM or 4D sigma models) that we could callfield theory supertubes. These would have an effective descripti
in terms of the supertube solution of the DBI action for a 6D or 4D membrane, just as the IIA supergravity supertube
effective description in terms of the DBI action for the D2-brane (the Born–Infeld vector potential arising, in each cas
dualization of a worldvolume scalar).

In the sigma-model case, the answer to this question is known. One can find an explicit 1/4 supersymmetric non-singula
solution of a 5D sigma model that represents the intersection of two membranes (or 3-branes of the 6D sigma m
A Scherk–Schwarz-type reduction to 4D then yields a ‘massive’ supersymmetric sigma model, and the intersecting m
solution of the massless 5D model becomes in 4D, the 1/4 supersymmetric ‘kink-lump’, which can be interpreted as a lum
string ending on a kink-membrane [1]. A boost in the 5th dimension generalizes this to the ‘Q-kink-lump’ of the mas
sigma-model [1], and a boost to the speed of light yields a tubular configuration with a cross-section that is a 1/4 supersym-
metric Q-lump solution of the dimensionally-reduced 3D massive sigma-model [7,8]. Thus, the Q-lump solution of 3D m
supersymmetric hyper-Kähler sigma models is, when viewed as a tubular solution of the 4D sigma model, afield theory super-
tube. In fact, it was this observation that led to the discovery of the string theory supertube, and the above discussion
reversal of the logic presented in [2].

In this contribution I explore the same issues for SYM theories. Along the way, we will obtain a new one-paramete
first-order equations for 1/4 supersymmetric solutions of 6D SYM-Higgs theory. A limit of these equations, correspondin
boost to the speed of light in the 7th dimension, yields equations that generalize the dyonic instanton equations [9] of
theory. Certain solutions of these equations are interpreted as Yang–Mills supertubes, and a realization of them as
theory configurations is suggested. I conclude with a discussion of some issues raised by these results.

2. Yang–Mills supertubes

Let F = dA + i[A,A] be the YM field-strength 2-form for YM 1-form potentialA, which is a traceless hermitian 2× 2
matrix for gauge groupSU(2). In the gaugeA0 = 0, any static bosonic solution of 7D SYM theory is solution of the Euclid
YM equations onR6. The generic solution of this type preserving 1/4 supersymmetry must satisfy a set of first-order differen
equations, and one can choose coordinatesx1, x2, . . . , x6 such that these first-order equations are [10]

F13 + F42 = 0, F14 + F23 = 0,

F15 + F62 = 0, F16 + F25 = 0,

F35 + F64 = 0, F36 + F45 = 0, (1)

F12 + F34 + F56 = 0.

These equations are equivalent to the Donaldson–Uhlenbeck–Yau equations for Euclidean YM fields onC
3, and have been

studied previously in the context of SYM theory (e.g., [11]), although not in the context of solitons of 7D SYM theory.
Of course, there will be special solutions of these equations that preserve more than 1/4 supersymmetry. Apart from th

vacuum, these are the solutions for whichF is non-zero only on a 4-dimensional subspace ofR6; e.g., the ‘1234’ subspace, i
which case the equations reduce to

F + F = 0, F + F = 0, F + F = 0, (2)
13 42 14 23 12 34
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which are equivalent to the self-duality equations

Fij + 1

2
εijklFkl = 0 (i, j, k, l = 1,2,3,4). (3)

The solutions are instantons which, as mentioned above, can be interpreted as 1/2 supersymmetric membrane solitons of t
7D SYM theory. If a 1/4 supersymmetric solution of Eqs. (1) is such thatF has support, asymptotically, on some 4-plane t
we would interpret this 4-plane as the space transverse to a membrane. Thus, it is reasonable to expect that,for appropriate
boundary conditions, solutions of Eqs. (1) representintersectingmembranes.

Let us now compactify one space dimension on a circle; take it to be thex6 direction, so thatA6 = Φ, an adjoint Higgs field.
Take the YM fields to be independent ofx6; this means thatF56 = D5Φ, whereD5 is the 5th component of the gauge-covaria
derivative. LetDi (i = 1,2,3,4) be the other four components. Eqs. (1) may now be written as

Fij + 1

2
εijklFkl = −ΩijD5Φ, Fi5 = ΩijDjΦ, (4)

whereΩij are the entries of the 4× 4 antisymmetric matrix with non-zero entries

Ω12 = −Ω21 = Ω34 = −Ω43 = 1. (5)

We are still considering static solutions so it is understood thatA0 = 0, and that all fields are time-independent; in gau
invariant terms,

D0Φ = 0, F05 = 0, F0i = 0 (i = 1,2,3,4). (6)

This means that the Gauss-law constraint

D5F05 + DiF0i = 0 (7)

is trivially satisfied.
Let us supposeA3 = A4 = 0, and that all fields become independent ofx3 andx4, asymptotically as(x3)2 + (x4)2 → ∞.

In this case, Eqs. (4) reduce to

F12 + D5Φ = F51 + D2Φ = F25 + D1Φ = 0, (8)

which are the equations for a magnetic-monopole membrane in thex3, x4 plane (assuming thatΦ is non-zero in the vacuum
If, on the other hand,A5 = 0 asymptotically, as(x3)2 + (x4)2 → 0, such thatΦ becomes independent ofx5, and the fieldsAi

(i = 1,2,3,4) have anx5 dependence such that∂5Ai = −ΩijDjΦ, then we are left with the self-duality Eqs. (3), and hen

an instanton string in thex5 direction. The instanton core of this string would collapse to a singularity if the string wer
attached to the monopole membrane (which induces thex5-dependence of the YM fields). Thus, one expects there to ex
non-singular solution of Eqs. (4) with an interpretation as an instanton-string ending on a monopole domain wall.1

We dimensionally reduced the 7D SYM theory in thex6 direction, allowing for a non-zero vacuum value for the Higgs fi
A6 ≡ Φ. Now, returning temporarily to the 7D perspective, we boost to velocityv alongx6. This takes Eqs. (4) into the ne
set of equations

Fij + 1

2
εijklFkl +

√
1− v2 ΩijD5Φ = 0, Fi5 −

√
1− v2 ΩijDjΦ = 0,

F0i + vDiΦ = 0, F05 + vD5Φ = 0, D0Φ = 0. (9)

To determine the fraction of the 16 supersymmetries of the 6D SYM-Higgs vacuum that are preserved by solutions
equations, it is convenient to note that the 7D SYM theory from which we started is the dimensional reduction onT 3 of 10D
SYM theory, so any solution of Eqs. (9) is also a solution of 10D SYM theory withA6 = Φ but A7 = A8 = A9 = 0, and a
field strengthFµν (µ,ν = 0,1,2, . . . ,9) that is independent ofx6, x7, x8, x9. The number of supersymmetries preserved
any such solution is the number of linearly independent real, chiral, constant, 10D spinorsε such thatFµνΓ µνε = 0, where
Γ µ are the 10D Dirac matrices. Use of Eqs. (9) leads to the conclusion that the independent constraints satisfied byε are

Γ 1234ε = −ε,
(
Γ 1256+ vΓ 1250)ε = −(√

1− v2
)
ε. (10)

These constraints imply preservation of 1/4 supersymmetry. Note, that this does not, by itself, imply that the YM field equa
are satisfied; for that we must also impose the Gauss-law condition (7).

1 This interpretation was developed in unpublished work with Jerome Gauntlett and David Tong, following the work in [6] in which
shown that a similar interpretation is indeed realized by the kink-lump solution of the analogous sigma-model equations.
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Given a solution of the unboosted 1/4 BPS Eqs. (4) representing an instanton-string ending on a monopole domain
there should exist a corresponding solution of the boosted 1/4 BPS equations and Gauss law constraint that represen
instanton-string ending on adyondomain wall. This is because the limit that led previously to the equations for a 1/2 BPS
monopole now leads to the equations for a 1/2 BPS dyon. Suppose that we have such a solution for anyv and that we take
v = 1; i.e., we boost to the speed of light. In this case, we will have a solution of the equations

Fij + 1

2
εijklFkl = 0, F0i + DiΦ = 0, D0Φ = 0, (11)

and

Fi5 = 0, F05 + D5Φ = 0, (12)

which are obtained from (9) by settingv = 1. Eqs. (11) are 1/4 BPS equations for adyonic instanton[9]. Given an instanton
solution of the self-dual YM equations, the other dyonic instanton equations are solved by settingA0 = Φ for time-independen
Higgs fieldΦ, in which case (12) is equivalent to

∂5Ai = DiA5, Ȧ5 = 0, (13)

and the Gauss law constraint becomes( 4∑
i=1

D2
i + D2

5

)
Φ = 0. (14)

That is,Φ must solve the covariant 5D Laplace equation in a YM background provided by a 4D instanton, withx5-dependence
given in terms ofA5 by (13).

If we suppose thatA5 = 0 then∂5Ai = 0. Assuming thatΦ is also independent ofx5, we get a string-like solution o
6D SYM-Higgs theory, with a dyonic instanton core that carries ‘electric’ chargeQ in addition to instanton numberN (it
would be interesting to investigate whether more general solutions are possible, but that will not be done here). For th
model supertube, the core is a Q-lump, and a Q-lump has an interpretation as a charged closed loop of kink-strin
analogous interpretation of the dyonic instanton would be as a charged closed loop of monopole-string, and this inte
is also suggested by various other arguments [12,13]. However, the number of monopoles in a given solution of the/2 BPS
equations of 4D SYM-Higgs theory is determined by the number of zeros of the Higgs field, and the positions of the
are the positions of the monopole. A single monopole, or dyon, has a single zero of the Higgs field, which will l
line of zeros in 5D; a monopole, or dyon, loop will thus be associated with a closed loop of zeros of the Higgs fi
contrast, dyonic instantons corresponding to instantons found by the ’t Hooft ansatz have onlyisolatedzeros of the Higgs
field [14].

It therefore appeared, until recently, that the interpretation of dyonic instantons as charged loops of monopole-str
not be correct. However, recent work of Kim and Lee [15] has shown that the locus of zeros of the Higgs field for ageneric
dyonic instanton with instanton numberN � 2 is a closed curve, exactly as one would expect for a loop of monopole-s
Already for N = 2, for which the general instanton solution can be found from the Jackiw–Nohl–Rebbi ansatz, ther
additional parameter as compared to the ’t Hooft ansatz, and this yields a one-parameter family of closed curves that d
to two points in the ’t Hooft ansatz limit. Lifting toD = 6 we have a configuration of 6D SYM-Higgs theory in which the Hig
zero lie on a tube. This is afield theory supertube; as I have argued here, it is related to an intersecting membrane solut
7D SYM theory in the same way that the D2-brane supertube of IIA string theory is related to a configuration of inte
M2-branes of M-theory.

3. String theory realizations

We have found a 6D Yang–Mills supertube by a procedure that is analogous to one that can be used to find the 1
theory supertube. However, there is also adirect connection between the two that arises from the interpretation of SYM-H
theory, for gauge groupSU(2), as the effective field theory on a pair of parallel D-branes in type II string theory.

Let us first consider the 5DSU(2) SYM-Higgs theory on a pair of parallel D4-branes. A line of zeros of the Higgs fi
corresponding to a monopole-string, would have a natural interpretation as the endpoint of a planar D2-brane since T-
a direction parallel to the line yields a D1-string stretched between two D3-branes, which is the standard D-brane real
a BPS magnetic monopole. A closed loop of zeros of the Higgs field therefore represents the (common) boundary of
D2-brane on the two D4-branes. The non-zero instanton numberN indicatesN dissolved D0-branes, but D0-brane cha
is magnetic charge on a D2-brane. Moreover, the fraction of supersymmetry preserved by the total D-brane config



P.K. Townsend / C. R. Physique 6 (2005) 271–277 275

ndary on

1 strings

nd ‘F1’
and D1

g theory,

icates
lated

of the
acetime
ory in
-theory

g

ity/SYM

of this con-
e latter
e suspended

(1
uspended
strings

to some
theory
ld theory

tween two
expected to be 1/8, which translates to 1/4 of the supersymmetry of the SYM-Higgs theory vacuum. Thus, the genericSU(2)

dyonic instanton has a string theory interpretation [15] as a supertube stretched between two D4-branes.2 By T-duality we can
convert this to a 1/8 supersymmetric IIB string configuration in which a D3-brane withS1 × R boundary havingN dissolved
D1 strings, is stretched (along with some number of dissolved IIB strings) between two D5-branes. The common bou
the D5-branes is the tubular locus of zeros of the Higgs field of 6D SYM-Higgs theory; in other words,we have a IIB string
theory description of the1/4 supersymmetric field-theory supertube of 6D SYM-Higgs theory.

If the supertubular D3-brane suspended between the D5-branes collapses, ‘precipitating’ out the dissolved IIB and D
then we end up with a configuration represented by the array

D5: 1 2 3 4 5 − − − −
D1: 1 − − − − − − − −
F1: − − − − − 6 − − −

(15)

where the first row represents the two D5-branes, in which the ‘precipitated’ D1-branes are actually still dissolved, a
indicates the ‘fundamental’ IIB strings. By adding angular momentum, one can reverse the collapse and blow up the IIB
strings to the configuration described previously. Let us now increase the IIB coupling and pass to the S-dual IIB strin
and then T-dualize in thex6 direction; this yields a IIA configuration represented by the array

KK: − − − − − o x x x

F1: 1 − − − − − − − −
D0: − − − − − − − − −

(16)

where ‘KK’ (for Kaluza–Klein monopole) indicates a 4-dimensional ALE space, and the circle in the 6th position ind
that∂6 is theU(1) Killing vector field; since we started with two D5-branes, this Killing vector field should have two iso
singularities. However, we could view this ALE space as a local description of a compact K3-manifold. Expansion
IIA string and D0-branes by the addition of angular momentum then yields a supertube in what is effectively a 6D sp
obtained by K3 compactification of the IIA theory. This should be related to the M2-brane of K3-compactified M-the
the same way that the original supertube is related to the M2-brane in the 11-dimensional Minkowski vacuum. As M
on K3 is dual to the heterotic string theory onT 3, this membrane is dual to the membrane ofT 3-compactified heterotic strin
theory, which is just the heterotic five-brane wrapped on theT 3. We may conclude from this there must exist a supertube ofT 4-
compactified heterotic string theory dual to the D2-brane supertube of IIA string theory. The corresponding supergrav
solution is presumably the heterotic dyonic instanton [14].

4. Fuzzy conjectures

We have seen that a D2-brane supertube can be suspended between two D4-branes, and that there is a T-dual
figuration for which the interpretation within an effective 6D SYM-Higgs theory is as a field theory supertube. Can th
be suspended, preserving supersymmetry, between other branes? Yes, because the two D5-branes can themselves b
between two NS5-branes. Consider the ‘precipated’ configuration represented by the 1/16 BPS array

D5: 1 2 3 4 5 − − − −
NS5: − 2 3 4 5 6 − − −
D1: 1 − − − − − − − −
F1: − − − − − 6 − − −

(17)

where the second row represents the additional pair of NS5-branes, and the low energy effective field theory is the+ 4)-
dimensional theory on the D5/NS5 intersection. The IIB strings are parallel to the NS5-branes and the D1-strings are s
between them (like the D5-branes in which they are dissolved). Adding angular momentum to blow up the IIB and D1
to a supertubular D3-brane would yield a configuration of the type sought, which would presumably correspond
‘Q-lump-type’ supertube of the 5D effective field theory. However, the relationship of this construction to the explicit M-
description of the sigma-model Q-lump given in [1] is not obvious. This may be because there are other possible fie
realizations of the 5D supertube.

2 In the one instanton case, the loop of Higgs zeros degenerates to a point, and the interpretation is as a IIA string stretched be
D4-branes carrying D0-brane charge [16].
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As reviewed above, the work of Kim and Lee [15] has shown that the generic dyonic instanton for instanton nuN

can be interpreted as a D2-brane supertube suspended between two D4-branes. The instanton numberN corresponds to the
number of dissolved D0-branes; this would be infinite for an infinite supertube but can be finite for one suspended
D4-branes. ForN = 2 there is a dyonic instanton solution for which the Higgs field zeros lie on a circle. This corres
to a supertube with circular cross-section. The limiting procedure explained here for finding a D2-brane supertube
11-dimensional supermembrane yields a supertube of this type (because until the limit is taken 1/4 supersymmetry implie
a circular cross-section). However, 1/4 supersymmetry allows supertubes with other cross-sectional shapes [17]; in fa
curve, even a non-planar one, is permitted [18]. In contrast, the locus of Higgs field zeros for the generic dyonic instan
instanton numberN involves only a finite number of parameters, so it cannot correspond to the generic classical su
cut-off by D4-branes. On the other hand, it seems likely that any cross-sectional curve will be possible in the limit asN → ∞,
so that this should be viewed as a semi-classical limit. In effect, the Yang–Mills supertube for finiteN is a fuzzy supertube
analogous to the M(atrix) model supertube of [19] but constructed from a finite number of D0-branes. This expectation
a purely mathematical conjecture about the locus of zeros of an adjoint Higgs field satisfying a covariant Laplace equ
R

4 in a YM instanton background with instanton numberN . Specifically, although imprecisely, it suggests thatthis locus can
be chosen to approximate any closed curve inR

4 with an error that goes to zero asN → ∞.
Finally, it should be noted that there are Donaldson–Uhlenbeck–Yau equations for Euclidean YM theory onE

8 which are
equivalent to static soliton equations forD = 9 SYM theory that preserve 1/8 of the supersymmetry of the SYM vacuum, a
there are other first-order equations (comprehensively analysed in [10]) that imply preservation of 1/16 supersymmetry. It is
possible that there exist non-singular solutions of these equations that could be interpreted as triple or quadruple inters
orthogonal 4-branes with instanton cores, in analogy with the sigma-model case [6]. These intersecting-instanton solu
be unstable against collapse to a singularity in the Higgs phase, but in that case we have 1/2 supersymmetric monopole 5-brane
on which an (otherwise singular) instanton 4-brane could have a boundary (this being the lift to 9D of the 5D instanto
ending on the 5D monopole membrane). This configuration ofD = 9 SYM-Higgs theory would preserve 1/4 supersymmetry
but one can envisage many more complicated intersecting soliton configurations that preserve only 1/8 or 1/16 supersymmetry
There is still a lot to learn about supersymmetric intersections of field theory solitons. Field theory supertubes const
one element in a much larger, and still emerging, picture.
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