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Abstract

This article describes a new exact 3D reconstruction algorithm dedicated to cylindrical positron emission tomographs that
does not require an estimation of missing projection data nor complex 3D interpolation procedures. This algorithm uses the 2D
Fast Fourier Transform of non-transaxial projections to place suitable voxel values in the 3D FFT of the radioactive distribution.
This leads to a direct fully 3D reconstruction algorithm with a limited amount of computation that requires only 1D interpolation
procedures and benefits from redundant projection data to improve the signal to noise ratio in the radioactive distobution.
citethisarticle: D. Mariano-Goulart, J.-F. Crouzet, C. R. Physique 6 (2005).
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Résumé

Unenouvelle méthode dereconstruction 3D dansle domaine de Fourier en tomographie par émission de positons. Cet
article décrit un nouvel algorithme exact de reconstruction 3D dédié aux tomographes par émission de positons cylindriques.
Il ne nécessite pas I'estimation des données de projection manquantes ni d'interpolations délicates dans I'espace 3D. Il utilise
la transformée de Fourier 2D de signaux construits a partir des projections obliques acquises pour calculer la transformée de
Fourier 3D de la distribution de radioactivité & déterminer. On obtient ainsi un algorithme de reconstruction tridimensionnel
rapide qui ne nécessite que des interpolations 1D et tire profit de la redondance des données de projection 3D pour autoriser
un meilleur rapport signal sur bruit dans 'objet reconstriadur citer cet article: D. Mariano-Goulart, J.-F. Crouzet, C. R.
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1. Introduction

The recent development of Positron Emission Tomography (PET) in functional imaging has made possible the use of 3D
projection data in the tomographic reconstruction process. As collimators are no longer necessary when recording coincident
events in a cylindrical PET scanner, this imaging technique provides measurements of line integrals of the radioactive tracer
distribution (LOR) that are not restricted to lie within a plane perpendicular to the axis of the detector surface. Compared with
the usual 2D reconstruction procedures used in Single Photon Computed Tomography, the LOR measured in a large solid angle
surrounding the radioactive distribution are redundant so that the reconstruction algorithms that benefit from the maximum
number of oblique projections are likely to produce a 3D reconstruction with a minimum amount of stochastic noise.

The generalization to 3D of usual 2D reconstruction algorithms based on the Fourier Slice Theorem (such as the filtered
backprojection algorithm) requires measurements of projection data in a complete hemisphere. This condition is not satisfied for
commercially available cylindrical PET scanners so that not all the projections that are necessary to reconstruct the radioactive
distribution are recorded. As a consequence, the generalization to 3D of the usual backprojection algorithm [1-3] requires a
first estimate of the unmeasured projection data [3—6]. This estimate is generally computed thanks to the forward projection
of a first volumetric distribution reconstructed using 2D filtered backprojection (2D FBP) [6]. To date, the computational
burden of this fully 3D reconstruction algorithm, as well as the complex 3D interpolation procedures required by the direct
implementation of the Fourier slice theorem make these methods hardly compatible with clinical applications [7]. Moreover,
the truncated projections are computed from a first noisy volumetric estimate of the radioactive distribution so that their statistic
characteristics are decreased compared to the projections that are actually recorded.

A different approach uses approximations that sort the 3D projections into a 2D dataset containing one sinogram for each
transaxial slice to be reconstructed. The resulting sinograms are processed using conventional 2D tomographic reconstruction
algorithms. However, these rebinning algorithms are based on approximations that limit the resolution of the reconstruction or
break down when the axial aperture of the scanner increases [7].

The purpose of this theoretical paper is to describe a new exact 3D reconstruction algorithm dedicated to cylindrical PET
scanners that does not require estimation of missing projection data or complex 3D interpolation procedures. This algorithm uses
the 2D Fast Fourier Transform (FFT) of non-transaxial projections to place suitable voxel values in the 3D FFT of the radioactive
distribution. This leads to a direct fully 3D reconstruction algorithm that requires only a limited amount of computation.

2. Posing the problem

Let us consider a cylindrical PET scanner of radRiand lengthH, with its horizontal axis along thes-axis (Fig. 1). Any
plane orthogonal to the axial directia will be called a transaxial plane. Any poiaton the detector surface can be defined
by a = (R cosf,, Rsin,, z4), with 0< 6, < 2r and 0< z, < H. A couple of photons emerging from an elementary volume
of activity corresponds to a certain LOR intersecting the detector at two opposite paint:’, and having an unit directional
vectore = (cosd sing, sind sing, cosy), with the Euler’s angles ranging<Q6 < 2r and 0< ¢ < 7.

For whole body measurements, the heighof the cylinder is much smaller than the heighof distribution of activity in
the patient. This is the reason why it is necessary to operate a sequence of translations of the PET scanner-akaxig.thet
us denoteL H (typically with A = 1/4) the length of the superposition of two consecutive translations of the PET detector,
andy’ the distances covered by the translations of the PET scanner before and after the radioactive distribution. The effective
field of view of the PET scanner will be the cylindrical volurile= {(x1, xp, x3) € R3, x2 +x2 <R2, 0<x3<y + L + v’}

(Fig. 2).

If one considers a couple of opposite poigsa’) and all the vectors of the unit sphere, one can make a first natural
restriction on the angle: 0 < ¢ < 5. Let us consider the directian of a given coincidence ray coming from any elementary
distribution of radioactivity located in the cylindrical voluni& The invariance by translations of the 3D projection data states
that for all pointa on the detector surface, the line integral correspondin@ to) is actually recorded. As shown in Fig. 2,

Fig. 1. Transverse and longitudinal projection views of a cylindrical PET scanner.
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Fig. 2. Three translations of a cylindrical PET scanner illustrating the definitiops, of andy’.
this condition leads to tap > (2R) /(A H). We will demonstrate in the next paragraph that invariance by translations of the 3D

projection data as well as a last condition stating @at % are necessary and sufficient to construct the algorithm proposed in
this article. This leads to the final conditions:

arctal 2R < il (2)
T ] = %cx <=,
“H (2% 2

with y > AH andy’ > AH.

Remark 1. In the case of focal acquisitions, no translation of the cylindrical PET is necessary and one gets the walue
ma><(arctar(27R), arctar(zy—’f)).

3. The Fourier-based 3D reconstruction method

Let f € L2(R3) with supportin{(x1, xp, x3) € R3, x2+x2 < R?, y < x3 < L +y} be the finite energy signal correspond-
ing to the distribution of radioactivity. The positions of the detectonghich record signals from the distribution of radioactivity
correspond ta, € [0, L + y] along thexg-axis. Consider the line integrdy (a, ) measured by the pair of detectdars a’)
in the directionw. For all6, € [0, 27[, zq € [0, L 4 1,6 € [0, 27[, ¢ € [gc, I

Prla,w) = / fla+tw)dt = / f(Rcosf, +t cosd sing, Rsinb, + 1 sSinb sing, z, + 1 COSp) dr. 2
R R
The change of variable = z, + r cosy, with cosp > 0, leads to
U—2zq . . U—zq . . du
Pr(a,w) = R cosp, cosd sing, R sing, sinfsing,u | —. 3
' (a, w) /f( a+COS(p ® “+c05¢ ¢u>co&p 3)
R
If one denotes
(X1, X2) = (Rcost, — z4 tang cosh, Rsing, — z, tang singh), (4)

Eq. (3) become® s (a, w) = ﬁ fyLJ”’ F(X1 4 utang cosd, Xo + utang sing, u) du. Let us definey(xq, xo) € R?, V6 €
[0, 27[, Vo € [pc. &I

L+y
1 .
Po,p (X1, x2) = @ / f(x1+ utang cosh, xp + utang sing, u) du. (5)
4
This leads to
Py(a, w) = pg o(X1, X2). (6)

We now look for a necessary and sufficient condition under which the set of projections recorded by the cylindrical PET
scanner makes possible the computatiopgf, over its whole support.

Let us define the line segmeny , = {(—zq tang cosd, —z4 tangsing), 0< z, < L + v}, for any given values fop
andg (Fig. 3). A LOR can be recorded only f — 6, €15, 3%[. Thus for6, €16 + %, 6 + 3%, and forz, € [0, L + y1,
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Fig. 3. The domaimDy .

(X1, X2) describes a reunion of semi-circles with radiRiscentered orLg . If one assumes that tan> (2R)/(AH), the
length(L + y) tang of Ly ,, is greater than the diameteRdf the semi-circles. Then the point;, X ) fill the whole domain
Dy p = {x=(x1,x2) € R2, d(x, Lg,p) < R}, where dx, Ly ) is the Euclidian distance from a pointto the set’g .

Consider any point = (x1, x2) ¢ Dy, , Verifying d(x, Lg ,) > R.

Thus,Yu € [0, L + y], (x1 + utang cosd)? + (xp + utanp sind)? > R2. As the support of the distribution of radioactivity
f is included in a cylinder of radiug, whose horizontal axis is the;-axis, the term in the integral of Eq. (5) is zero.

Then(xy, x2) ¢ Dg o = pg,e(x1, x2) = 0. Thus the values gfy ,, are known on a domaify , that contains the support
of Po,¢-

Re(pciprocally, let us assume that tar: (2R)/(LH), that isAH < 2R/(tang). For any pair of detectors anda’, say for
any ray(a, w), one easily shows thaf, — z, = —(2R cog6 — 6,))/tang < (2R)/(tang). As a consequence, there exists an
infinite set of couples of detectorsanda’ for which AH < z,/ — 7z, < 2R/tang whose LORPy(a, w) cannot be recorded
by the PET (Fig. 1). AsX1 and X5 in Eq. (4) are continuous with respect to the angular varidpland to the longitudinal
variablez,, there exists subsets 8k ,, of non-zero measure iR? that are not reached by any1, X»).

This completes the proof that > ¢, = arctar((2R)/(AH)) is necessary and sufficient to calculatg, over its whole
support from the projection data measured in a cylindrical PET scanner. Thus the condition (1) makes possible the computation
of its 2D Fourier transfornpg .

Let us denotef the Fourier transform of* along the two first variables. The inversion formula of the Fourier transform in
L? and the definition (5) leads to

L+y

(// ]?(517 £, u)eZin((X1+u tang cosh)&1+(X2+u tang sind)&z) ds; dSz) du. @)
14 R2

X1, X9) = ——
Po,p(X1, X2) cosp

Using a truncation of the integrals &¢, Fubini’s theorem and the definition of the Fourier transforni.f) one can show
that Eq. (7) leads to

L+y
P9 (X1, Xp) = o f / ( / FeL. £p. u) e (utanp(é1cosp-+£5in6) du)e2in<X1$1+Xzsz> e, e ®)
’ Cco
sl I\
+00
_ 1 //([ f@l’sz’u)ezin(Lttanw(slcose+szsin6))du>e2in<xlsl+xzs2)dgld§2 9)
CcO X
5(0 R2 —©
1 . _ .
= o5 [ [ 761 &2 —tanutacoss + epsing)) 271680 ey (10

R2
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Let us call pg , the 2D Fourier transform iL2 of the functionpg ,,. As we have shown thaty , (X1, X») provides a
complete knowledge gfy_,, the uniqueness of the inverse Fourier transform leads to

- 1 . .
V(€1 &) €R%,  poy(Er,62) = @f(%l, &2, —tang(§1 COsH + £28iN0)). (11)

Last, let us show that for all regk and (&1, £2) # (0, 0), there exists a coupl@®, ¢), with 0< 6 < 27 andg, < ¢ < %
verifying &3 = — tang (&1 c0sh + &2 Sin6).

Since&s describes the interval-tang, /&7 + £2, tang, /€2 + &3] and lim,,_, 7 tang = +o0o, thenss describesk. There-
fore (&1, &, £3) describeR3 except the two half-lines defined (€1, £, £3) € R3, |&3] > 0, &1 = & = 0}.

As a consequence, the Fourier transfofnis known almost everywhere so that its inverse Fourier transform can be com-
puted.

This completes the proof that can be determined from the projection dda(a, @) by means of Egs. (6) and (11).
The practical conditions for performing the various FFTs are not discussed in the present article. They will be described in a
forthcoming publication.

4. Conclusion

In this theoretical article, we proved that a volumetric distribution of radioactivity can be reconstructed using the 2D
Fast Fourier Transform of data derived from non-transaxial projections and 1D interpolation procedures. As for a given
(1,6 € R2?*, the function(s, @) —> —tanp(&1cosh + &2 sin6) is surjective but not injective oR, Eq. (11) allows redun-
dant evaluation off almost everywhere in the 3D space. As the projections acquired in an actual PET scanner are noisy, this
redundancy can be averaged to improve the signal to noise ratio in the evaluafiofitié will provide a full 3D reconstruc-
tion algorithm in which the use of oblique projections will allow a better control of stochastic noise compared with the results
achieved with usual 2D reconstruction algorithms.

Moreover, the use of only one 3D FFT in the reconstruction of the whole distribution ensures that this algorithm will be able
to provide reconstructions more rapidly than other usual 3D reconstruction algorithms.
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