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Abstract

An approach to systematically implement open-closed string duality for free Maggaige theories is summarised. We show
how the relevant closed string moduli space emerges from a reorganisation of the Feynman diagrams contributing to free field
correlators. We also indicate why the resulting integrand on miagake has the right featureshie that of a string theory on
AdS To citethisarticle: R. Gopakumar, C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une théorie des champs libres vue comme une théorie des cordelBus résummons une approache systématique pour
implémenter la dualité entre cordes ouvertes et fermées dans la limite de @gfamels théories de jauge. Nous montrons
comment I'espace des modules de la théorie des cordes fermées associée émerge de la réorganisation des diagrammes de
Feynman contribuants aux corrélateurs de la théorie des champs libres. Nous indiquons aussi pourquoi I'intégrand sur cet
espace des modules has les bonne propriétés pour étre celui des coldS Sour citer cet article: R. Gopakumar, C. R.

Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction: two questions

The picture of 'tHooft's double line diagrams (or open stringgdams) getting glued up intoaded string worldsheets in
the largeN limit seems to be borne out in the few examples of theggastring duality that we concretely understand. Making
this picture precise is essential if we are to obtain, say, a string dual to realistic gauge theories. To this end we will consider a
couple of questions:

— How exactly does a largeV field theory reorganise itself into a dual closed string theory?
— Can wesystematically construct the closed string theory starting from the field theory?
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We will address these questions in the simplest of contexts: tHedefield theories in the larg& limit. However, we will be
always keeping an eye on the ewsibility of our results to thease of non-zero 'tHooft coupling, at least in a perturbative
expansion.

The general expectation from gauge-string duality is that

<Ol(kl) - Op (kn)>g = / (Vl(kL &1) -+ Vn(kn, g”)>WS' (1)
Mgn

On the left-hand side, th@; are gauge invariant operators and the subsgriptfers to the contribution to the correlator from
Feynman diagrams of gengs Recall that thel% expansion helps us isolate contributions of a given genus. On the right-hand
side are the corresponding vertex operaigref the dual string theory. The subscripts refers to the averaging with respect to

a worldsheet sigma model action. There is then a further integration over the moduli/spag®f genusg Riemann surfaces
with n marked punctures (labelled by thg.

Can we somehow recast the left-hand side into the form we expect on the right-hand side? This is, in essence, what our pair
of questions amount to. Addressing the first question, we will see that there is a simple way to organise the different Feynman
diagram contributions to the free fieldpoint correlation function so that the nett sum can be written as an integral over the
moduli space of an-punctured Riemann surface.

For simplicity of illustration, we will consider (the gengscontribution to) correlators of free scalar composite@Ti(k).

n
Gé”'}(kl,kz,...,kn):<]_[Trq>Jf(ki)> . @)
i=1 g

We will write the individual Feynman diagram contributions to this correlator in Schwinger parametrised form. By reducing
the original graphs to a set of ‘skeleton’ graphs, we will argue that the sum over the inequivalent skeleton graphs together with
the integral over the Schwingeam@ameters gives precisely alogtcomposition oftie moduli spaceM , x R’} . This gives a
very explicit prescription on how to reorganise field theory amplitudes into string theory amplitudes.

Moreover, this prescription also gives us a handle on our second question. We will see that the Schwinger parametrised form
will enable us to write the field theory amplitude equation (2) as

Gy ky k... k) = / [do o0 (o) & Zhj=1kikigij @), )
Mg,nXRi

The o collectively denote the moduli oM, , x R'}. The functionsp /1) (o) and gij (o) can be explicitly written down. In
this form the integrand on moduli space is very reminiscent of string theory. In fact, as in the expressions for flat space, the
exponential factor is a universal one for all correlators (not just those of these scalars). All the dependenck aretimethe
multiplicative prefactop /) (&) which in turn is independent of the momenta, for this particular class of correlators. For more
general correlators, the prefactor will contain a polynomial dependence on the momenta, again as in flat space.

Our procedure thus gives a candidate for the world sheet correlator of vertex operators of the dual strinyogory.
can we check this hypothesis given that we do not yet know how to quantise string theory in the kind of highlyAd8ved
backgrounds that would presumably be dual to the free field limit? We can, as of now, perform a few modest checks. Looking
at the two and three point functions shows that Eq. (2) gives the corresponding correla&d&sipace in a very natural and
encouraging wa?.One would like to make consistency checks for the four (and higher) point functions as well. One very strong
check would be to verify that the integrand, in these cases, satisfies the various properties that are reqigicatouireelator
of vertex operators in a two dimensional quantum field theory. In particular, such a correlator must satisfy the constraints of the
worldsheet Operator Product Expansion (OPE). This, in turn, is nestéd in the factorisability of amplitudes in spacetime. In
the field theory, this property is reflected in tymcetime OPE. We will briefly indicate some work in progress which aims to
follow this logic through, and support our identification of the integrand.

There is also a more fundamental (but less precise) reason suggesting that we take the identification, of the integrand with
a worldsheet correlator, seriously. As we will see, the logic that takes us from the field theory diagrams to the stringy moduli
space, in fact, implements the geometry uhdeg open-closed sing duality. In a sense, it exhibits concretely how the double
line diagrams get glued up into a closed worldsheet with the holes closing up. Therefore we expect that this procedure should

1 strictly speaking we would have to caroyt the integral over the addition&} moduli to obtain an integrand o, ,. However, as we
will see later, the string theory expressisralso naturally extended to an integral ovet, , x R’} , via a parametrisation of theexternal legs
of the vertex operators.

2 Though in this case the moduli space is trivial and what we are seeing Rjtliactor. See previous footnote.
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also be telling us the integrand on the closed string worldsheet. One would like to believe then that we have, in all the various
worldsheet correlators, all the information necessary to reconstruct the closed string theory. Future work will determine how far
we can push ahead with this answer to our second question.

This being a summary we have tried not to get too much into details. Rather, we have expanded here on certain broader
points. The details, together with a more complete set of references to related work and other approaches, may be found in the
original papers [1,2].

2. Schwinger parametrisation of field theory amplitudes

The Schwinger parametric representation of field theory is a well studied subject. Essentially, one re-expresses the denomi-
nator of all propagators in a Feynman diagram via the identity (appropriate for Euclidean space correlators)

l o
— :/df expl—1 p?}. 4)
p
0
We can apply this to the individual Feynman graphs (of gefubkat contribute to Eq. (2). We obtain
o
G kg k) = > [ 1dp] /[df]e*f’(k%f). (5)
graph 0

Here {p} collectively denote all the independent internal momenta in the loops of the Feynman graph, and sirnjléhnly,
Schwinger parameters, one for each internal edge. Since we have repeatedly used Eq. (4) in arriving at this result, it is clear that
the exponenf (k, p, 7) is quadratic in all the momenta (external as well as internal).

Having converted all the momentum integrals into Gaussian integrals, we can carry them out explicitly. It is a little intricate
to keep track of the details of the momentum flow. But the final expressions for an arbitrary Feynman diagram can be compactly
written in graph theoretic terms. For the case of scalar figh#sexpressions can be looked up in field theory textbooks such as
Itzykson and Zuber. The result (ihdimensions) is

o
(Ji} _ [d7] .
Gy (kl,kz,...,kn)_ggh rf)d/zexp[ P(E, 0] (6)

The expressions faP (7, k) and A(7) are
I

A(f):Z(Hf). @)

Ty

I+1

P(f,k):A(f)_lZ<Hf)(Zk>2. ®)

The sum is over various 1-trees and 2-trees obtained from the original loop diagram. A 1-tree is obtained bylmetraf a
diagram with/ loops so as to make a connected treeilév/a 2-tree is obtained by cuttirig+ 1 lines of the loop so as to form
two disjoint trees. Eq. (7) indicates a sum over theTgedf all 1-trees, with the product over thi&Schwinger parameters of all
the cut lines. The sum ov@b in Eq. (8) similarly indicates a sum over the set of all two trees, where the product is ovés the
of the/ + 1 cut lines. And(}_ k) is understood to be the sum over all those external monigntdnich flow into (either) one

of the two trees. (Note that because of overall momentumezwaton, it does not matter which set of external momenta one
chooses.)

At this stage we do not seem to have accomplished very much of a simplification, since we are left with a large number
of integrals over the Schwinger parameters. In fact, since the total number of Wick contractions that contribute to Eq. (2) is
% >-; Ji, there are as many propagators and therefore Schwinger parameters. If the operators we are considering.have large
then the corresponding number of integrals is also large. If we are to convert this into something universat-foviatl
functions, we have to look for a simplification in this representation.

There is indeed such a simplification: though the integral depends naively on a large number of Schwinger parameters, the
actual non-trivial dependence is only on a certain combination of them. To see this, it is best to view the Feynman diagrams
as double line diagrams or ‘fatgraphs’. Between any two of #ieraal vertices there can Ilmeultiple propagtors which are
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Fig. 1. Gluing up into a skeleton graph.

homotopically deformable into each other (i.e. without crossing other lines). Note that viewing the Feynman diagrams in the
double line representation provides an ordering of edges at each vertex and we can unambiguously speak of edges which are
deformable into each other. This is one of the places where the underlying non-Abelian structure plays a crucial role. We will
denote bym,, the number of such legs between a fixed pair of vertices (and fixed homotopy class) labelléfégan then
define an “effective” Schwinger parameterfor this set of edges by
my
1 _ Z 1 . ©)

T Tru,
L —

The simplification is that it is this effective parameter that really enters the Schwinger parametrised expressions. It can be shown
[1] that

P(f’ k) = Pskel(fs k)’ (10)
A(F) = MAskexr). (11)

The right-hand side of these equations says that one can rewrite the original expressions, essentially, as a functian of the
Moreover, the functions that appear on the RHS are defined in exactly the same graph theoretic way as in Eqgs. (8) and (7)
except that we replace the original graph byskdeton graph. The skeleton graph is obtained from the original one by gluing
all them, homotopic edges into a single edge labelled-byhe process is illustrated for a sphere level diagram in Fig. 1. This
skeleton graph is the simpler and more universal graph underlying the original Feynman graph.

We should mention that the gluing up of the Feynman diagram into a skeleton graph can be intuitively understood from
a correspondence between Feynman graphs and electrical networks. (This correspondence was first pointed out in Bjorken’s
thesis; see [5].) The essence is that the momenta play the role of currents and the Schwinger parameters the role of resistances.
As is evident from Fig. 1, the gluing up of homotopic edges and replacement by an effective paranreteq. (9) is nothing
but parallel resistors being replaced by a single effective resistance. From the point of view of open-closed string duality, this
gives us an intuitive picture of the gluing up of (some of) the holes in the original Feynman graph (or open string diagram).
Note that the skeleton graph has the same ggrassthe original graph.

Using Egs. (10) and (11), for a given diagram of fixed multiplidity,-} and connectivity, we can rewrite the Schwinger
integral over thef'’s as one over the’s:

o ~ o0 _
[Ty, dTruy e PE L _ C{mr}/l_[< der ) g~ Pskel(T:k) . 12
" A()d/2 s =D ) Agye(v)/2

We have also carried out the change of variables in the measure fromwhich gives rise to a purely numerical factof”r} .
It depends only on the multiplicities and can be explicitly computed [1] but will not be important for us at the moment. Note
that the details of the specific correlator, such asfhare contained only in the first term (through the dependence on,the
Pskel and Agiel depend only on the topology (connectivity) of the skeleton graph and are independentof the

This universality suggests that we organise the sum over all graphs in Eq. (6) into a sum over graphs having the same
underlying skeleton graph (but different multiplicitigs, }) and then a sum over various inequivalent skeleton graphs. The first
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sum can be carried out explicitly, since the only dependence,oappears in simple prefactors. We can write the result in the
schematic form (the complete answer can be found in [1])

o
: de. £Vt
Mk k= Y [ D) o e, (13)
skelgraph Askel(0)?/

Essentially, thef i} (r) come from carrying out the sum over the multiplicities that are compatible with the same skeleton
graph and the nett number of fieldg;}. The sum in Eqg. (13) is then over the various inequivalent (i.e. with inequivalent
connectivity) skeleton graphs of gengis

We have now accomplished the kind of simplification in the Schwinger representation that we were aiming for. The number
of Schwinger parameters are only as many as the number of edges of the skeleton graph, a number determinecgndly by
g (and not theJ;), as we will soon see. By partially gluing up all the homotopic edges we have reorganised the Feynman
contributions in a way which is more universal than the original diagrams»s&aint function has been expressed as a sum
of contributions from thenoduli space of skeleton graphs. By which we mean that we are integrating over the lengtb$the
edges of the skeleton graphs as well as summing over inequivalent skeleton graphs.

3. From skeleton graphs to string moduli

How can we characterise this space of skeiegraphs? Like the original graph it hasvertices and genug. But having
glued together homotopic edges, the faces of the graphs are at least triangular. In faagréater than a minimum value (set
by n), the generic face is triangular. This is because we can always add extra edges to quadrilateral or higher faces and make
all faces triangular without altering the gengisTherefore, when we have all possible wick contractions, compatible with a
given genus, in a correlator such as Eq. (2), we will have all possible edgksafé enough not to provide a constraint on the
number of edges at a given vert@X)—Jence the generic skeleton graph is a triangulation of a gerausface withn labelled
vertices (of arbitrary valency). But we should remember that there will always be contributions from exceptional graphs where
one or more faces are not triangular. The maximum number of Schwinger paramaterassociated with the triangulations.
The number of edges in this case (by an application ef E + F = 2 — 2g), is given by 3n — 2+ 2g). As mentioned earlier,
this is independent of thé and other details of the correlator.

This also gives the first indication of the emergence of string moduli. The nungbei66t 3n is exactly the number of real
moduli for a genug Riemann surface with holes. Separating out the moduli associated with the sizes of the holes gives the
number of moduli of the surface withpunctures.

In fact, we can argue that the moduli space of skeleton graphs (of genwith » vertices) is identical to the moduli space
Mg n x Rl Consider the generic skeleton graph with triangular faces and look at its dual (in the graph theoretic sense). The
dual graph has vertices associated to each face of the skeleton graph and faces associated to each original vertex. And there are
dual edges, transverse to the original ones, which connect the dual vertices. From the properties of the generic skeleton graph
we can conclude that its dual graph will hav@labelled) faces, § — 6 + 3n edges and cubic vertices. The trivalent vertices of
the dual follow from the triangular faces of the (generic) skeleton graph. Moreover, we will associate arleﬂéftkf (0, 00)
(‘conductance’ in the electrical analogy) to each dual edge. Note that the dual graph has the sargeagehasoriginal one
(since the number of vertices and faces have simply been interchanged).

The various inequivalent triangulations are mapped to inequivalent trivalent graphs. Therefore, associated to each skeleton
graph of genug with n vertices, with its set ofz}s, is a trivalent graph of genyswith n faces and a set of lengtlis} for
the dual edges. As one sums over inequivalent skeleton graphs, one goes over inequivalent trivalent graphs. In fact, we can now
better appreciate the role of the non-generic skeleton graphs, with four-sided (or more) faces. They map onto dual graphs with
quartic (or higher) vertices. Such graphs can be thought of as arising when two (or more) cubic vertices coalesce, i.e. when the
lengtho of the edge joining two cubic vertices goes to zero. In fact, one can continuously move from one trivalent graph to
another inequivalent one by shrinking some individual edge (‘s-channel’) to zero size and then expanding the resultant quartic
vertex in the other direction (‘t-channel’). By this process, (known to mathematicians as Whitehead collapse) one can connect
the different inequivalent cubic graphs.

It is a very non-trivial mathematical theorem that the space of trivalent fatgraphs of genitl » labelled faces and a
length associated to each edge is a cell decomposition of the dgage x R’;. In other words, as we vary over the lengths
of the edges as well as over the inequivalent graphs we obtain a single covég gfx R’} . Each inequivalent trivalent graph

3 We have implicitly assumed that the correlators we are considering are normal ordered so that there are no self contractions. See also next
footnote.
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fills out a top-dimensional cell in this simplicial decomposition as we varyteeThe graphs with higher point vertices live
on codimension one, and higher, boundaries of these cells (when one osmer@). At these boundaries the different cells
match smoothly onto each other.

This theorem is based on the work of Mumford, Strebel, Penner and others and may be found in Kontsevich [6]. For a
physicist, this statement may be made plble by recalling that in cubic open stringliil theory, the string diagrams are made
of strips of varying length meeting at cubic vertices [7]. In fact, it was argued by Giddings, Martinec and Witten [8], and later
Zwiebach [9], that these diagrams give a single cover (in our case) of the moduli ﬁ@g;ewith n holes. The mathematical
theorem quoted above indicates that actually this factors in#®/afor the diameters of the holes together with the space of
punctures Mg 5.

Thus we have argued that as we vary over the moduli space of skeleton graphs, we are covering the appropriate moduli space
of string worldsheets. We should remark here that the process of going to the dual graph is in a sense a reflection of open-closed
string duality. In going to the dual graph we are closing off the holes of the original graph (in replacing them by dual vertices)
while opening up holes/punctures at the ord vertices. We thus seem to be implertieg open-closed string duality at least
at the level of the geometry of worldsheéts.

So we now have a way to understand how free field theory diagrams reassemble themselves into closed string worldsheets.
It allows us to view the expression equation (13) we obtained from field theory, as an integral over the string moduli space
Mg n x R’ We also note that this reorganisation of Feynman diagrams can be performedrfeafre function of arbitrary
gauge-invariant operators. The Schwinger parametrisation and the gluing up into skeleton diagrams is something which can
be always carried out. The general expressions will be more cumbersome (expressions for general Schwinger parametrised
amplitudes are available in the litere¢f3]) but for specific correlators we catways work them out explicitly. We should
add that this reorganisation of field theory diagrams can be done for free field theory in any number of dimensions and with
arbitrary matter content (thus not necessarily supersymmetric). However, we expect that the interacting theories will probably
have dual string descriptions only éh< 4.

For an interacting theory much of ourgaiment still goes through. After all the Sgimger parametrisation of amplitudes
can still be carried out in the pertuative expansion in 'tHooft coupling, as also the simplification into skeleton graphs. The
only difference is that we have additional ‘internal’ vertices corresponding to the interactions. It suggests the appearance of the
moduli space with additional punctures capending to the interactionstésumably, the additional vex operators associated
to the interactions then exponentiate (when we sum over the perturbative expansion) and modify the background. So there is
promise of extending this approach to the interacting case as well.

4. The integrand on moduli space

Having reorganised the diagrams into a sum over worldsheets, we can take a closer look at the integrama-= $iﬁmme
more natural variable to describe the cells in moduli space we can rewrite Eq. (13) (droppihg théoscripts) as

7 AU _P
Wk k= 3 [ L (U)AeXpi/ZP(g’ iy (14)
skelgraph r Ao)
where
A(a)zZ(HU):(HUr)A(tzl/U) (15)
T, r

and

Plok)= — Z(HU)(Zk)ZzP(r:ZL/U,k) (16)

Ao) &

are defined in terms of the 1-trees and 2-trees of the whelgraph as before but the product in both these definitions is
over the lines that argot cut. Thus we have an explicit expression, in each cell of the moduli space, of the integrand. The
universal functionsA(o) and P (o, k) smoothly go from one cell torether at the common cell boundary. The multiplicative

4 We should point out here that though we have been consideringtakejeaphs with triangular faces and their duals, we also need to
consider skeleton graphs with self-contractions (which are not rapiuatly trivial) at vertices. Because the dual graphs of the latter also
appear amongst the cells of moduli space. This suggests that the presafptimrmal ordering which drops such self-contractions is perhaps
not the natural one from the dual string point of view.
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factor f/il(o) which contains, as before, all the information about the specific operators is, however, more sensitive to the
constraints imposed by thg’s in the original Feynman graph.
The net result is that we can write the field theory correlator in the form mentioned in the introduction, namely, as

Gy kg, kg, k) = f [do o) (o) & hi=thikieis @), €y
Mg xR

We can write downpi) (¢) andg;; (o) explicitly in each cell of the moduli spadeWe note again the form of the integrand
which is very reminiscent of string theory expressions in ftatce. Given that we seem to be implementing open-closed string
duality, it is very natural to take the integrand seriously aardidate for corretars in the unknown dual string theory #ulS.

We will present, in the next section, some checks in this direction.

5. AdScorrelators
5.1. Three point functions

For the planar three point function

Gl k1, kp, ka) = (Trd 2 (ky) Tr & 2(kg) Tr &3 k) (18)

g=0
we can carry out the procedure outlined in the preceding sections. Namely, we first glue together the multiple lines joining
each pair of vertices to get a skeleton graph which is (for geng)ia simple triangle. For this skeleton graph we can write an
integral over the three effective Schwinger paesens, as in Eq. (12). In terms of the variabbes: % the final expression in

the case of the three point function is

e 3
(i} _ (my=1)(d/2—1)+d/2—2 5
61k, ka.ko) = [ [ dorof G0 -Pen), (19
0 r=1
where in terms of the parametersfor the three edges, we have
AA((T) = 0102 + 0203+ 0301 (20)
and
~ 1
P(0,k) = = [01k3 + 02k3 + o3k3]. (21)
A(o)

The multiplicitesm; in Eq. (19) are determined by the to be:m; = %Zle Ji — J;i. In this case, sincéMg 3 is trivial,
the integral in Eq. (19) is only over thei factor. We can make a change of variables on these three variables to make the
connection toAdSclear.

1 oj 10203
— == O ="———.
pi Ao) Qi PP

This change of variables is motivated by the star-delta transformation of electrical networks. Namelyeithe conductances
of a delta or triangle network, such as the one we have, ghane the conductances of the equivalent three pronged tree or star
network. In other words, the; are the variables naturally parametrising the legs of the tree one obtains when one glues up the
skeleton triangle graph.

Working out the details of the Jacobian for this change of variables and simplifying the integrand one finds the simple form

(22)

00 3
1) _  A—dj2-1 1 —[°3 1 k2]
Gg:O(kl’ k2’ k3) - ! gdpl Ioi (Zk pk)zk(Ak/z)_d/z X e . (23)

5 The contributions from the non-geie graphs are finite and have support on the boundaries of the cells. This is reminiscent of similar
contributions in open supersigs. We thank Ashoke Sen for remarking on this similarity.
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We can write this equivalently as

(o8] oo 3
Jid dr Ai=d[2=1 A; )2 —tp; K2/ pi
G{ 0(k17k27k3) /m/ndpi p; 127442 gton gk o (24)
0 0 i=1

by exponentiating the denominator in E&3J. In position space, taking into accountmmentum conservinglelta functions,
this becomes

. dt 1 2
G\ hra.xzx) = [ iy [z [ [ s ez - (25)

i=1

/td/2+l/ddzHKA (7,231, (26)

where
A2

[t + (x —2)2]4

is the usual position sige bulk to boundary propaga for a scalar field ilAdS, corresponding to an operator of dimensidn
The only slight difference is that we have parametrised\ii@radial coordinate byg =t. We see from Eq. (26) that thg are

indeed parameters for the external legs ofAdStree diagram. So thRS”r integral in the field theory has a natural counterpart
on theAdSside. We can see a similar thing for the two point function as well.

It is encouraging, in trying to answer the second of our questions, thattdgeands in these natural parametric represen-
tations match so well. Conformal invariance fixes the ovetaitfional dependence on the positions. But this agreement at the
level of integrandsin conjunction with our general arguments farpoint functions, indicates that we maybe on the right track.

The fact that the scalar three point function in our procedure could be written purely in terms of supergravity bulk-to-
boundary propagators is probably special to this correlation function, especially since we expect the dual theory to be highly
curved. We can give a heuristic argument as to why the full string correlator might simplify in this case.

Following [4,10] the vertex operator computation, inAds background, for an-point function of these scalars would take
the form

Ka(x,z;3t) = (27)

G (xy. o) = f <1‘[KA,.(xi,X<s,~>:r(si>)> : (28)
ws

Mg, ‘=1
In other words, the vertex operatdrgé) are essentially the external wave functions of the particlégi®promoted to world-
sheet operators. Thus(&), ¢ (¢§) denote worldsheet fields for thaStarget space. The averaging, as the subscript indicates, is

over the worldsheet action for these and other fields (including ghosts which would generally also enter into the vertex operator).
Using Eq. (27) we can rewrite Eg. (28) introducing parameters for the external legs as in the case of the three point function

. . 2
G;J’}(xl...xn): / /l_ldﬂz i ,(5 )Ai/2 gt i) pi=pi(xi— X(é,))) s (29)
Mg.n 0 i=1

In momentum space, this reads as

G;J}(k kn)— / /ndpl A —d/2-1 7k /IOI<[(S )A /2 —1 (&) pi elk, X (&) ) g (30)
Mg n

In the special case of the = 0 three point function, we can argue that becaofthe worldsheet conformal invariance
the positions of the three vertex operators are irrelevant. The ghost contribution cancels out the contribution from the non-zero
modes ofX (§), ¢ (&), so to say. Effectively, only the zero modes contribute and so we can replace the worldsheet averaging by
an integral over the zero modes ¥f¢. This is easy to do. The zero mode f®rjust gives the overall momentum conserving
delta function. That for is then identical to the expression in Eq. (24). In fact, doingrtirgegral goes back exactly to the
expression in Eq. (23) which we had obtained from the field theory Schwinger parametrisation after an appropriate change of
variables on the moduli. In other words, carrying out the worldsheet averaging in Eq. (3@)£f8) gives Eq. (23).
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5.2. Higher point correlators

The form of then-point function Eqg. (30) suggests a comparison with Eq. (17) obtained from our Schwinger parameter
procedure. Encouraged by the explicit example of the three point function, we could try and identify the integral pyén the
Eq. (30) with theR’} integral in Eq. (17). In fact, the interpretation of tRé factor as the diameter of the holes also suggests
an identification with the external leg parametgysif this identification is correct, we would be directly obtaining the answers
for the integrand of Eq. (30) from our field theory procedure.

In any case, a strong check of our conjecture is that our procedure should give for the integrand on moduli space an expression
which is consistent with all the properties of a correlator of local operators in some two dimensional quantum field theory. This
is a strong constraint since we know that local operators in a field theory obey an OPE. Various miraculous channel dualities (in
spacetime) of string theory follow from this OPE. But on the other hand we know that the correlators in field theory reflect these
channel dualities due to tispacetime OPE. Since the spacetime OPE is reflected in the Schwinger parametrised representation,
we would like to see it translate into a worldsheet OPE. There is some indication that this is the case because the region of
Schwinger parameter space which seems to contribute to terms in the spacetime OPE also seems to the region of string moduli
space (via our mapping of the two) where vertex operators come together and one expects to see a worldsheet OPE. We hope to
report on this in the near future.

6. Conclusions

So, is free field theory, in general, a string theory? The universal reorganisation of Feynman diagrams certainly gives a
strong indication to that effect. But we will need to study better the properties of the integrand on moduli space, which we have
obtained, before we can give an affirmative answer. As mentioned above, the key point is to establish a worldsheet OPE.

We would also like to be able to extract useful information from this procedure, perhaps even reconstruct the worldsheet
action. This would be particularly important if we are to extend the procedure to the perturbative expansion in the 'tHooft
coupling. We would like to see the spacetime perturbation theory reassemble itself into a worldsheet perturbation expansion
which has the effect of changing the background.

The fact that it is the cubic open string field theory decompasitibmoduli space that appears in our procedure, is perhaps
a useful hint in understanding the genegalige-string correspondence. In othermegkes where open-closed string duality is
explicitly realised, open string field theory has often made an appearance [11,12]. Perhaps what we are seeing here is a reflection
of that.

These are some of the many questions thrown up by this approach, on which future work will hopefully shed light.
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