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Abstract

B-type D-branes can be obtained from matrix factorizations of the Landau—Ginzburg superpotential. We here review this
promising approach to learning about the spacetime superpotential of Calabi—Yau compactifications. We discuss the grading of
the D-branes, and present applications in two examples: the two-dimensional torus, and theTguittgthisarticle: K. Hori,

J. Walcher, C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

D-branes a partir de factorisations matricielles. Les D-branes de type B peuvent étre décrites a partir de factorisations
matricielles du super-potentiel de Landau—Ginzburg. On revigieite approche prometteuse pour étudier le super-potentiel en
espace-temps de compactifications de Calabi—Yau. On discgtadaation des D-branes, et présente deux exemples : le tore

en deux dimensions, ainsi que la quintiqBeur citer cet article: K. Hori, J. Walcher, C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

D-branes wrapped on supersymmetric cycles in Calabi—Yau manifolds have many applications throughout string theory.
They have been studied intensively over the last few years from many different points of view, and these studies have led
to many remarkable results. One aspecthaf problem that is still less understood,ledst in practice, is the (effective 4d
spacetime) superpotentidly, on the worldvolume of such brane®/ being an important quantity for any application, it is
worthwhile to look for new ways of computing it. (There are other motivations for the kind of investigation we are undertaking
here, but this one should suffice for the moment.)

In this article, we want to describe a new approach to studying D-branes in a certain class of well-known backgrounds, the
so-called Landau—-Ginzburg models [1-4]. Briefly put, this approach amounts to studying the equation

0%=W -id, (1)
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whereW is a polynomial, the Landau—Ginzburg superpotential, which characterizes the closed string backgroghit amd
(odd) matrix with polynomial entries, describing the open string configuration. A solution of this equation is called a matrix
factorization ofW.

This approach, the details of which will be discussed momentarily, was proposed in unpublished form by Maxim Kontsevich,
and shown to correctly describe the relevant physics, in [5-7]. Originally, matrix factorizations go back to [8], and they have
since then been studied continuously in the context of singularity theory, which is in fact the mathematical theory underlying
Landau-Ginzburg models.

This article, which is based on [9], and some work in progress, will focus on certain applications of the formalism in the
context of V' = 1, d = 4 string compactifications. In particular, we want to show how matrix factorizatio® ofin lead to
(old and new) insights about the spacetime superpoténtjiadnd more generally, about the local and global structure of moduli
spaces of D-branes in Calabi—Yau compactifications. Other recent work on the subject includes [10-16].

2. Matrix factorizations
2.1. TheWarner problem
To go back to the origin of the problem, we want to consideNas: (2, 2) supersymmetric field theory in two dimensions,
of the type that is the starting point for most of perturbative string theory. Let us consider in particular the worldsheet super-

potential W. To preserve supersymmety, is a holomorphic function of the chiral field variablés which (assuming a flat
target space) are complex functions.dn= (2, 2) superspace with coordinates

xT=t+x, x " =t—x, 0T, 0, 6T, 6. (2)
@ satisfies
Di+® =0, (3)
where
D 0 _io%s D O 4io%o 4
= 1 s = ——T 1
+=20F + + Py +

is the usual covariant derivative. The four supersymmetries are genera@d b9, where

_ - 3
o) +i6F 0y, Or=————ifFoL. (5)

T 20+
We want to study this field theory on a space with boundary, say a half-space with boungdérgat~ = . Translational
invariance inx-direction being broken, supersymmetry has to be broken also. In geometric terms, this means that superspace

acquires a superboundary, which is one-dimensigfiat 2 superspace, with coordinates

1, 0,0, (6)
and identified as superboundary via the equations
xt=x" =1, 6T =6~ =9, 0T =6—=6. )

What is written down here is known as at¥e superboundary, and is invariamtder the B-type supersymmetries

o .z s = - 3
Q=04 +Q- = +ifk,  Q=04+0-=-—-—ifd. ®)

(The other possible superboundary consistent with supersymmetry and translational invariance, of A-type, leads to a different
problem with a different solution, and we shall not consider it here.)

Now an ordinary local field theory, which is invariant under some global bosonic spacetime symmetries, will also be invariant
in the presence of a boundary under all symmetries that leave the boundary invariant. This is no longer true for supersymmetries.
In the case at hand, the F-term

/dzx dotdo~ W +c.c. 9)
b))

exhibits a boundary term under the B-type supersymmetry, which is the supersymmetry preserved by the boundary
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/dzx dot do~E(Q + O )W = (usingD+ W = 0) = / d?xdot do~ (—2i6 oy — 2ie09_)W
X

= / dr do(—2ieW). (10)
X

The problem associated with these boundary terms under supersymmetry variations of superpotentials is known as the Warner
problem [17].

2.2. Solution of the Warner problem

There are various ways of dealing with the Warner probsee, e.g., [17-21,5,6]). Onegsibility is to introduce boundary
conditions that make the boundary term vanish. This has some potentially unwanted consequences such as spontaneously broken
worldsheet supersymmetry. Anotherggiility, which is the topic of present irest, is to work with fre boundary conditions,
and to introduce additional degrees afédom living on the boundary, whose supersymmetry variation will cancel the boundary
term of the bulk variation. The simgbt possibility is taadd a boundary F-term

/dt dor, o) f (@) (11)
0

where £ (®) is some function of bulk fields (which is chiral on the boundary), &he I'(z, 6, ) is a fermionic superfield on
the boundary which fails to be chiral

DI =g(@)ys, (12)
whereg(®) is some other holomorphic function of bulk fields. It is easy to see that the Warner term is cancelled if and only if
F(P)g(P) =2iW (D). (13)

This equation, which says thait can be factorized intg and g, is the condition that the boundary superpotential preserve
N = 2 B-type supersymmetry.
2.3. Conseguences

Under quantization, the Hilbert space of the boundary fermions is simply a two-dimensional vectofCépgeied by
Fermion number. In string theory, one will interpret this space as the CP spacefsgdiem, and the chiral fields(®),
g(®) as a tachyon configuration between the brane &edantibrane. More traditionally, one can viefvand g as some
relevant perturbation of a free boundary citieth, much as the bulk superpotential terii, Of course, for string theory, one
will have to insure that the induced boundary RG flow reaches a non-trivial IR fixed point, about which we shall have more to
say a little later.

To find out about the spectrum of open strings, we consider the system on the st ], with solutions of the factor-
ization condition( fp, gg) and(fx, g») as boundary interactions at the two ends of the strip. As you might vividly imagine, the
supercharge will receive a contribution from boundary terms, which acts by a graded commutator

afe a)=( ) a)-(5 ) (s o) as

on an open string state with CP structure described,byc, d. In particular, the spectrum of supersymmetric ground states is
found by studying the cohomology of the operator

3 +i0bdy (15)

acting on 2« 2 matrix-valued differential forms, which for flat target space amounts to studyir@yr@atrices with holomorphic
entries in the cohomology a@@pqy, acting as above.

2.4. Example

The simplest example of all this are the minimal models, with just one variabiex, and superpotential

W =x". (16)
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This superpotential can be factorized as [6,10]

=" X" forn=0,1,....h 17
leading to
0 x"
0 = (xh,n A ) . (18)

We will denote the corrggnding boundaryandition by M,,. The spectrum of chiral operators betwedp, andM,,, consists
of even

0 xj_n172n2 0
Pning jO=\ sz | (19)
X
and odd operators
nq+no .
0 xozoimt
1 _
¢nl,nz,j(x) - (_xh—%rﬁ—j—l 0 ) ’ (20)
where
= '”1;”2|, '”1;"2| +1,...,mini—nl+n2 —1h- ”—1;”2 —1}.

As can be seen, the branesandk — n are each others’ antibrane, and the branesO, 4 are trivial, as there are no open
strings between them and any other brane. This spectrum agrees with the results derived in the rational conformal field theory
description of B-type D-branes jk" = 2 minimal models.

2.5. Generalizations

The construction we have described above can be generalized to include more that one, | UBBayairs. As is well
known, boundary fermions are only available whéris a power of 2, but the general case can be described using the language
of superconnections, to which the worldsheet couples through the super-Wilson line. One can also relax the requirement that
the target space is topologically trivial, and include non-trivial gauge field and tachyon configurations [11]. In what follows, we
shall continue to assume that the target space i€flat

2.6. Summary so far

Let us now summarize this discussion [5-7,11]. B-type supersymmetry preserving boundary interactions in a Landau—
Ginzburg model with polynomial bulk superpotenti#l(x4, ..., x,) can be produced by giving a pair &f x N matrices
fx1, ..., x0), g(x1, ..., xr) With polynomial entries satisfying

f-g=g-f=W-idyxn- (21)

A solution of this equation is called a matrix factorizationWf The matricesf andg can be thought of as describing the
tachyon configuration between a stackMfspace-filling branes and space-filling antibranes, which annihilate everywhere
except at the critical points d¥ . In the supersymmetry charggé,andg are assembled into the odd matrix

_(0 71
o=(9 1) 22)
in terms of which the requirement 8f = 2 worldsheet supersymmetry can be succinctly written as the equation
0% =W -idanxon - (23)

Q acts on open strings by a supercommutator as we have seen above, and this action squares to zero by virtue of the super-Jacobi
identity. Open string ground states areifhd by studying the cohampgy classes ofD acting on matrices with polynomial
entries

{0, 0} =0, P=0+{0, '} (24)
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3. Matrix factorizations as D-brane category

Before discussing more interesting examples, we want to explain the relevance of such constructions in string theory. The
general idea is that the set of matrix factorizations provides a concrete and particularly simple example of a ‘D-brane category’,
where branes are objects, and open strings are morphisms.

The equationQ? = W s the condition that the boundary coupling presekje= 2 supersymmetry. In string theory, this
requirement is not sufficient for the usual applications, let us say, constructidh-efl supersymmetric compactifications
of type Il theory on a Calabi—Yau with branes and fluxes, which is a starting point for many recent discussions in string
phenomenology.

N = 2 worldsheet supersymmetry is sufficient, however, for one particularly important part of the story, namely (spacetime)
F-terms. In fact, this follows from the general, so-called decoupling statement [22,23], which states that of the two topological
string theories one can contemplate for D-branes wrapped on supersymmetric cycles, the one that can always be defined once
N =2 supersymmetry is preserved, controls the worldvolume superpotential. Here this model is the B-model. The fact that this
model controls the F-terms is known for a long time (BCOV). The other model, here the A-model, which only makes sense if a
certain familiar condition on th& (1) R-charge is satisfied, controls the D-flatness conditions on the D-brane worldvolume.

3.1. Thegrading

Let us briefly digress on this aspect of the story. Recall that for conformal invariance in the bulk, we require the Landau—
Ginzburg superpotential to be quasihomogeneous:

W (&M x;) = €W (xy),

which is equivalent to the existence of a (vectti)l) R-charge, which becomes part of thé= 2 superconformal algebra in
the IR. The equivalent statement on the boundary is that there must exist an assignment of R-charge on CP spacead such that
has charge one

M Ro(eMix;)e R =" Q(x;).
This R-charge provides an additional grading on the space of open strings,
&R p (701 ;)& MR = 0 @ (1)

where @ is a matrix with polynomial entries, and since there is only a finite number of polynomials of fixed degree, this
condition makes the proble@? = W effectively finite-dimensional, in contrast to geometric versions of the same problem.

The condition that thé/ (1) charges are integer, which is a necessary condition for the GSO projection, can be achieved as
usual by orbifolding, which means giving a representation of the orbifold gfoop the CP space such the matrix factorization
is equivariant

yO(y(x))y = 0. (25)
(Orbifolding also produces a non-trivial K-theory of the category of matrix factorizations, which otherwise is at most torsion.)
Finally, unitarity requires that the R-charges be contained between 8, and
0<gp <C (=93

which should provide a notion of stitity (at the Landau—Ginzburg point).

One can see from this that matrix factorizations are naturally equipped with all the structure for a ‘D-brane category’, and
this finally makes Landau—Ginzburg models a natural place to revisit the questions about such categories that have been asked
many times, in the abstract setting as well as in the geoesetoi which the LG models are connected at large volume. (The
equivalence with the large volume category has been discussed in [12].)

3.2. Deformations
Here, we want to focus on the spacetime superpotemialwhich one thinks of naively simply as the object that captures
the deformation problem a2 =Ww, according to a point of view that has been taken many times in the literature, see, e.g.,

[24-27]. In fact, there are two natural questions in this context:

(i) Can we deformQ, holding W fixed?
(i) If we deform W, is there a corresponding deformation@?
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There is a traditional answer to (i), which is that the infinitesimal deformations are giveit bgnd the obstructions b2
(where the grade is given by the R-charge). The usual answer to (ii) is that there is a map from infinitesimal deformations of
closed strings to obstructions of open strings, and this can also lead to a superpotential.

Indeed, writingQ = Qo + ¢® andW = Wo + y ¥, and assumingz(z) = Wy, one finds the equation

0% - W =9(Q, @)+ ¢?®% —yw (26)

which expresses what we just said. The point we want to emphasize is that it can actually happen that for given bulk deformation,
¥, this equation has no solution far, thus providing an example of a brane inducing a potential for a previously marginal bulk
deformation. It should be interesting to use this kafanechanism in the conterf moduli stabilization.

3.3. F-terms beyond perturbation theory

Compared to other approaches, the main advantage of stullyin@ the equatiorQ2 = W is that the problem of defor-
mations of solutions, their obstructions, and even the global properties of moduli spaces of D-branes is a finite-dimensional
algebraic problem, at least up to the possibility of adding an arbitrary number of brane-antibrane pairs.

The usual approach to a problem of this sort is to use perturbation theory, with ansatz

0=00+01+ 02+ 27
whereQq=a € Hl(Qo) and Q,, is of ordern with respect ta:. Now solving Q2 = W recursively
{0, 02} + (Q1? =0, (28)
{Qo0, 03} +{01, 02} =0, (29)
[Q0, 04} +{Q1, 03} + (02)* =0, (30)
. n—1
{Q0. On}+ Y Qi Qn_i =0, (31)
i=1

requires gauge fixing at each step. Formally, matrix factorizations equif-iraded vector spacgé* = Endx;] with a dif-
ferential d = adQq with cohomology H*(Qg). Gauge fixing is a choice of degreel-operatoru: V* — V*~1 such that
P :=1—du — ud is a projector on{*.

In the unobstructed case, the formal solution is

02 =—u((Q1?) = —u(da?). (32)

03=—u{Q1. 02} = ufa.u(a?)}, (33)

04=—u((Q1. 03} + (02)) = ~ula.ufa,u(a®)}} ~ u(u(a®) -u(a?)). (34)
n—1

On=-u ( Z Qi Qni) =uhp (a®n)7 (35)
i=1

whereh,, 1 (v1H®n v2 s defined recursively.
Obstructions are measured by the cohomology classes

my ([a]®") := [An (a®")] € H?(Mo, Mo). (36)

(my, are the higher products of atw, structure.)
In the general (obstructed) case,

Q=Q0+a+ ) urn(a®") @37
n=2
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satisfies

0%=Wo— Y my(a®) = (-1 u|:AQ : ~u|:AQ, > my (a®”):| } (38)
n=2 (=1

n=2
¢
whereAQ = Q — Qp. The F-term equations are (assuming, for simplicity, #fat Wy is fixed)

Y m(a®) =0 e H?(Qo). (39)
n=2

In principle, up to diniV1) < co terms can appear. In practice, perturbation theory closes on a small number of operators,
Aq,...,Ap.One can then study the complete problem without resorting to a perturbative expansion (and without the need for
gauge fixing). Indeed, the ansatz=£ dim H1)

n N
AQ=0-Q0=) ¢i®i+ ) ajA; (40)
i=1 I1=1
satisfies
0% — Wo=P(AQ)? +d(AQ +u(AQ)?) + ud Q? (41)

(where we used = 1 — ud + du). We obtain three equations

P(AQ)? =0,
d{AQ +u(AQ)?} =0, (42)
ud(Q?) =0.

Perturbation theory amounts to neglecting(Qz) =0, which is self-consistent to all orders in the perturbation. In general,
however, one might obtain new solutions which are invisible in perturbation theory. Matrix factorizations are a framework in
which the more complete treatment of such problems is possible.

4. Example 1: thetorus

A Landau—Ginzburg model for the two-dimensional torus can be built on the LG potential

(W=x3+y3+23+ yxyz)/Zs 43)
whereyr is the complex structure parameter of the torus. Consider the matrix
ax Bz yy
A=<yz ay ﬂx). (44)
By yx «az
We see that
detA = (oz3 +83+ y3)xyz - 06,3)/()63 +y3+29) (45)
which is equal to. W with
A=—aBy (46)
if and only if
oS+ B2+ 3+ yapy =0 47)

Thus, if we letB be the adjoint ofd (the matrix of subdeterminants) up to a factor,
1 ayz — Byx? yPxy —ap®  BPxz—ayy?
Bi=—adi(d)=——— | Py —ayz® aPyz—Pyy? yZiyz—ap® . (48)
afy \ 27 o 2 o ot o
yexz —afyc Byz—ayxc a“xy —pByz
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Then we find
AB=BA=Wid, (49)

as long ago, B, y) obeys (47) andgy is non-zero. The moduli space of this brane on the torus is thus isomorphic to the torus
itself, as expected of any B-type D-brane on the torus.

What happens as — 0, where the matrix factorization becomes naively singular? The trick here is to add a trivial brane-
antibrane pair

A0 (3 )

and make a gauge transformation on CP spaces that removes the singulaart of

5. Example 2: the quintic

The ‘mirror quintic’ Landau—Ginzburg model is
(W = x% + xg + xg + x;? + xg’ + 1//x1x2x3x4x5)/(Z5)4. (51)

At ¥ = 0, an interesting factorization of thi® can be obtained by taking the tensor product of minimal model factorizations
discussed before

2 2 2 2 2

o0=(i¢ 9ol §)o(g T)els 3)e(s 3) &
It turns out that this has exactly one marginal operator

o= (% 0)e (S o) (S 0)e (S o)e (s o) 5
as well as one obstruction

¥ = x1x2x3x4x5 - id (54)
which is exactly the marginal bulk deformation. One can also easily see that

2=y (55)
S0, 0 = Qg + ¢@® will square toW = Wg + ¢ ¥ iff

9% +y =0. (56)

This is the F-flatness equation on the D-brane worldvolume, which one may integrate to the superpotential
1
W= §<p3+<pw. (57)

(This confirms a prediction of [28,23].) Treating as a closed string parameter, we learn that except=at0, our brane has
two supersymmetric vacua. The coalescence of the two vactya=a0 is accompanied by the appearance of an additional
massless open string fiettl.

5.1. Amirror symmetry interpretation

In conclusion, we want to offer a geometric interpretation involving the mirror geometry, which here is the Fermat quintic
in CP*

X={3+5+5+25+22=0} cCP* (58)

Closed string mirror symmetry gives the map between the marginal closed string ogertorthe generator df2(X, Z), or
in other words, between the complex structure paramgtend the Kéhler parameterof X. The Yukawa coupling which on
the B-model side can be computed to be

1
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can then be expanded on the A-model side
kit =5+ »_ (worldsheet instantons) (60)

where the 5 is the result from classical geometry, and the sum over holomorphic sph€rissipower series ip = exp(—1).
What about open string mirror symmetry? One can show [29,23] that the brane we have been discussing in the Landau—
Ginzburg model is mirror to a familiar special Lagrangian cycl&imamely the real locus of,

L={z€X, z eRVi}, (61)

L is topologically anRP3. Since H;(RP3) = Z,, a brane wrapped oRP? has two vacua, distinguished by a discrete Wilson

line. These can be identified with the two vacua we had found for the Landau—Ginzburg brane. To identify the field that becomes
massless at = 0, we have to recall that the zero modes of strings wrappespecial Lagrangians is determined not by ordinary
cohomology but by Floer cohomology, which differs from ordinary cohomology by a sum over holomorphic discs endling on

In our context, the relevant complex is

@ %t 20 8 (62)

where for ordinary cohomology, afl’ = Z, ands = 2. For Floer cohomology, we will have (after tensoring the complex with
the appropriate coefficient field)

§=2+ Z(holomorphic disce (63)

where the sum over holomorphic discs should be a power serig¥4n= exp(—t/2), because the discs have half the volume
of the spheres. At large volume— oo, the cohomology is trivial except in degree 0 and 3. But # 0 for some value of
(after analytic continuation), there will be an additional massless field in degree 1. The conjecture is that this is precisely what
happens a#y = 0, the additional massless field beigg

Of course, making this proposal more precise depends on identifying the correct map between the (generally) massive field
@ on the Landau—Ginzburg side and the integral generat6rtah the Floer complex.

6. Summary and outlook

We have seen that matrix factorizations are a useful B-type model for topological D-branes on Calabi—Yau manifolds. In
particular, they allow simple calculations of worldvolume superpotentials for D-branes wrapped on supersymmetric cycles.
When combined with orientifolds (see, e.qg., [29]), this will allow a rather more systematic investigation of some properties of
N =1 string vacua. We have also seen that the approach holds some promises toward realizing open string mirror symmetry
for compact Calabi—Yau manifolds (see [30] for some recent progress in this direction).

The computation of the superpotential also illustrates that one may @giéw= W as a finite-dimensional model of
(background-independent, topological) string field theory, which would be interesting to explore further.

One aspect of the story that we have not mentioned here is the direct connection to geometry in the B-model. There exist
mathematical constructions that relate matrix factorizationi& aé bundles on the hypersurfa@ = 0} in the corresponding
weighted projective space. It would be interesting to realize such connections via physical models of the linear sigma model

type.
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