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Abstract

In this article we will first discuss the construction of brane world models being built either by intersecting D6-branes in type
IIA orientifolds or, in the T-dual mirror picture, by D3- plus D7-branes with f-flux in type IIB orientifolds. We will show how
their effective action is obtained by the calculation of scattering amplitudes between open and closed string states on intersecting
Dé6-branes respectively on D3- and D7-branes. Secondly, turning on type 11B 3-form fluxes we will compute the induced soft
supersymmetry breaking terms for the matter fields, like gaugino and scalar field masses. Finally, we will discuss the generation
of 3-form flux in type 1IB supergravity, which can be associated to the dynamical formation of a gaugino condensate in the
confining phase of the dual = 1* gauge theoryTo cite thisarticle: D. Lust, C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Action effective pour I'intersection de mondes branaires, flux et condensation de jaugin®ans cet article nous discutons
tout d’abord la construction de modéles de monde branaires construits soit par intersection de branes D6 dans des orientifolds
de type IlA ou, dans la représentation T-duale, par des branes de type D3 et D7 avec des flux f dans les orientifolds de type
IIB. Nous montrons comment obtenir leurs actions effectives en calculant les amplitudes de diffusion sur des intersections de
branes de D6 et aussi sur des branes de type D3 et D7. Ensuite, nous allumons des flux pour la 3-forme de type 1IB et nous
calculons les termes de brisure douce de la supersymétrie pour les champs de matiére, comme les masses du jaugino et des
champs scalaires. Enfin, nous discutons la génération de flux pour la 3-forme de type 1B en supergravité, qui peut-étre associée
a la dynamique de la formation de condensat de jaugino dans la phase confinante de la théorie de jange-difalour
citer cet article: D. Lugt, C. R. Physique 5 (2004).
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Keywords:Brane world; Gaugino; Gauge theory

Mots-clés :Monde branaires ; Jaugino ; Théorie de jauge

E-mail addresseduest@theorie.physik.uni-muenchen.de, luest@mppmu.mpg.de (D. LUst).

1631-0705/$ — see front mattét 2004 Académie des sciences. PublishgdElsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.09.014



998 D. Liist/ C. R. Physique 5 (2004) 9971009

1. Introduction

One of the main goals of superstring theory is the embedditigedbtandard Model into a unified description of gravitational
and gauge forces. In this article we will considér= 1 orientifold (type I) models with D-branes (for a review see [1]). One of
their characteristic features is that gravity is mediated in the entire 10-dimensional bulk by the exchange of closed strings. On the
other hand, the gauge and matter fields are localized at the D-brane (intersections) and correspond to open string excitations. Of
course, at the end of all realistic model building effavts= 1 supersymmetry must be broken. There are (at least) two scenarios
of how supersymmetry breaking can be readi: (i) The closed string sector preser®és- 1 SUSY, however the various open
string sectors break SUSY. In order to solve the hierarchy problem, this scenario normally requires the existence of large extra
dimensions, transversal to the D-branes of the Standard Model. (i) In the second avenue, which we like to follow here, all open
string sectors preservé = 1 SUSY, i.e. all D-branes together with the orientifold planes, are mutually supersymmetric (either
1/2 oder ¥4 BPS configurations). Then the closed string sector breaks SUSY, which manifests itself as soft SUSY breaking
terms in the effective action of the open string matter fields. The concrete scenario, which we will discuss in the following, is
that SUSY is ‘spontaneously’ broken in the closed string sector by internal background fluxes of closed string field strength
fields <Gijk> #0[2].

The further plan of the article is the following: In the next section we will introduce the type IlIA intersecting D6-brane
orientifold models and their 11B mirrors, which contain D9/D5 and D3/D7, respectively, with open string 2-form f-flux on
the worldvolume of the D-branes [3-9]. After thahe scattering amplitudes of gauge, matigy &nd moduli fields ¥/)
from (intersecting) D-branes are computed [10]. They give rise ta\tke 1 supersymmetric low-energy supergravity action
of the matter fields, described by the Kahler potenkialy, ¢, M, M) and the gauge kinetic functiofi(M). Alternatively,
the effective action of orientifolds with D3/D7-branes can be obtained by dimensional reduction of the Born—Infeld action
[11,12]. In the fourth section we will add internal 3-form fluxes in orientifolds with D3/D7-branes [13-21]. They will give
to an effective superpotential which generically leads to spontaneous supersymmetry breaking (F-term bregkinig)alf
ISD (0, 3)-form, this case corresponds @onon-vanishing auxiliary field"? of the overall Kahler modulus of the internal
space, and supersymmetry is spontaneously broke&ry is an imaginary anti-self dual (IASD) (8)-form it is equivalent to
an auxiliary fieldFS. As an effect of the supersymmetry breaking in the bulk sectoF byand/or FS, soft supersymmetry
breaking terms for the open string matter fields are induced [22—26]. For D7-branes with non-vanishing f-flux, i.e. with mixed
D/N boundary conditions, the gauge kindiimction contains both the dilatafias well as the Kéhler moduli’. It follows that
the corresponding gaugino masses get contributions both fro®1Be G-flux, which corresponds t67 = 0, and also from
the (3 0)-flux, i.e. F§ = 0, as it will happen in realistic models with 3 chiral generations. For the scalars living on the D3-branes,
a mass is only generated by the @3-flux, whereas scalars on pure D7-branes get their masses entirely from (0,3)-flux. On the
other hand, scalars on D7-branes with f-fluxes get mass contributions both fr@n &d (0,3)-fluxes. Most importantly,
‘chiral’ scalar fields, which correspond to twisted open string sectors, i.e. open strings which stretch either between D3-branes
and D7-branes with f-flux or two D7-branes with diffetéype of f-flux boundary conditions, get also soft masses frofi):&as
well as from (0,3)-fluxes. In the last section we [27] will discuss the relation betwe&) Gflux and the dynamical formation
of gaugino condensation in thé = 1* model of Polchinski/Strassler [28] using the AAS/CFT correspondence. Specifically we
will extend their type 1IB supergravity solution with 3-form flux to third order in the mass perturbation parameter, and show
that this 3-form flux corresponds in the dual field theory to a gaugino condensate.

2. llA intersecting D6-brane models and their [IB mirrors with D3- and D7-branes

Intersecting D6-branes in type IlA orientifold compactifications can give rise to 4-dimensional models with spectra very
close to the Standard Model. Let us start to consider a locddfaGe configuration in flat 10-dimensional Minkowski space-time
RLO [6,7,29,30], see Fig. 1. Staek the so called color branes, consists of 3 D6-branes, the stdhk weak branes, contains
2 D6-branes, and furthermore there are two additierexhdd D6-branes. The corresponding gauge groufy (8) x U (2) x
U(1)2. The weak hypercharge group(1)y is a suitable linear combination of the foli(1)s. Note that in a compact model
(see below) some of th&' (1) gauge bosons may get a mass by a generalized Green—Schwarz mechanism. The chiral matter
fields with SM gauge quantum numbers are localized at the D-brane intersections which all fill a comp@ndimensional
subspace oR19 and are point-like in the remaining transversal 6 spational dimenshasl1 space-time supersymmetry is
preserved if all stacks of D-branes preserve the following angle conditions among each other,

0L, +62, +063, =0 modr, @)

where each of the 3 intersection ang@ég, defines the D6-brane intersection in a two-dimensional sub%i%\oéthe transver-
sal 6-dimensional space.
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Table 1

Topological intersection numbers
Sector Rep. Number
da Ag %(ﬂ; 0Ty + TOEO Ta)
da Sa %(n; 0 Tg — OGO Ta)
ab (Ng, Np) g 0 Tp
a'b (Ng, Np) ) omp

Next we have to embed the D6-branes into a compact 6-dimensional & cemely more precisely we are considering
type lIA orientifold compactifications on a space-time

(RY3 x M8) /(2 x Ig),

wheres2 is the world-sheet parity group, arg is a reflection on 3 internal coordinates. The fixed locuga$ the orientifold
6-plane, which is supersymmetric 3-cyaigg inside MS.

The D§;-branes are wrapped around supersymmetric 3-cycjes), inside M5, i.e. the D6-brane world volume has the
form RL3 x 7, or RY3 x 7/, wherex/, is the Ig reflected 3-cycle. Since we are considering D-branes and orientifold planes
on a compact space, there are the following important differences compared to the flat, non-compact case:

— The 3-cycles can intersect more than oncaffh The corresponding intersection number has a natural geometric interpre-
tation of a family number:

Np =1, =#(y Nmp) =14 0 1)

— The internal Ramond charges of the D-branes and thetddkl plane on the compact space must cancel (Gauss law).
This condition can be phrased as an equation for the homology cycles

> Nu(ra + 7)) — 4106 =0. 2)

a
— In order that the D-branes are stable, all NS tadpoles must cancel, which is equivalent to the cancellation of internal brane
tensions. This condition can be formulated using a D-term scalar potential

38
\/ﬁ ( Xaj Na Vol (U;) — 4V0lrg (U; )) €)

Absence of the NS-tadpoles meab®y, /0(3S) = dVp/dU; = 0. This is automatically ensured if all D6-branes mutually
satisfy theN = 1 angle condition. Note the minimization &, fixes some of the IIA bulk complex structure modul;
of M® as well as the 4-dimensional dilatah§ = e—%4.

Vp(S,Up) =

The chiral matter spectrum is completely fixed by the topological intersection numbers of the 3-cycles of the configura-
tion [9], as given in Table 1.

The non-Abelian gauge anomalies will canaéter satisfying the tadpole conditions abidl) anomalies are canceled by a
generalized Green—Schwarz mechanism involving dimensionally reduced RR-forms.

Let us now switch to the T-dual type IIB mirror picture. The internal compact space is described by the mirror midfifold
and the orientifold is defined in terms of reflection grdypwith n = 0, 2, 4, 6 depending on the action of the mirror symmetry.
Starting from supersymmetric intersecting D6-branes, there are two possible type IIB mirror orientifolds with the following
brane content:

— D5- and Dg-branes, plus O9/05-planes £ 0, 4);
— D7,- and D3-branes, plus O3/0O7-planas 6, 2).

The intersection angle,;, between two D6-branes is mapped to open string 2-form fjyxthrough 2-cycles on the Q%e-
spectively D7 -brane world volumes. Now chiral matter originates from open strings between RQ5ED99-D9, respectlvely
D3-D7,, D7,-D7, with 2-form flux. Note thatV, now fixes the 11B bulk K&hler modulf; of the mirror manifolda7®.

As an example of a class of type 1B orientifolds let us consider orbifold compactifications with

M8 =(12)3 /@y x Zy). )
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There will be always 3 Kahler moduli’ for each of the 3 subtoﬁr2 and, depending on the orbifold group, also some unfixed
complex structure moduli?. In addition, there is the complex dllaton fiesd Next we will include D7-branes together with
their open string sectors. To obtain a chiral spectrum, we must introduce (magnetic) two-formHAllkes A dy/ on the
internal part of the D7-brane world volume. Together with the internalBN&Id 5/ we form the complete 2-form flux

3
F= Z Fl="(b/ +2nfT)dx) A dy’.
j=1
The latter gives rise to the total internal antisymmetric background

o f/ i1 ;
(—ff 0)’ / _<2n>2/F’ ©)

T2j
w.r.t. the jth internal plane. The 2-form fluxes/ have to obey the quantization rule:
. 1 . .
mJ—Z/FJ:nJ, nez, (6)
(2r)%a’
T2.j

e fl=do j . This setup is T-dual to intersecting D6-branes in type IIA orientifold compactifications. In a compact model,
all tadpoles arising from the Ramond forr@g and Cg must be cancelled either by the D-branes or by the 3-form fluxes (see
Section 4). More concretelyh¢ cancellation condition for thedpole arising from the RR 4-for@ is (a D3-brane has f-flux
quantum number&:’, m') = (1, 0))

2" Naninin3 =32 @)
a

a-a-a

Furthermore, the cancellation conditions for the 8-form tadpoles yields:
22 Namim2n3 = —32,
22 Ngmim3n2 = —32, (8)
22 Namzmg’ngl‘ -32

The condition that all branes are mutually supersymmetric has the form:

‘(Ti)) —o. 9
i 9

Z arctar( N
;

This condition will fix sane of the Kahler moduli .

Finally, let us consider a configuration of 3 stacks of different D7-branes with spectrum identical to the MSSM, which is a
concrete, type 1IB mirror realization of the local brane set up in Fig. 1. Specifically, it is built by the f-flux quantum numbers
[31] given in Table 2.

b C
a // = U0
QL Ur D
\LL E
d // u)
v u()

Fig. 1. Local D-brane set up for the Standard Model.
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Table 2 o

MSSM D7-brane configuration with f-flux numbega/, n/)
Stack Gauge group nf, nl) (m2, n?) (m3,n3) Ny
1 U@ (0,1) (L8 (=19 4
2 SU2) (1,0) (0,1) (-1,0) 2
3 SU(2) (1,0 (=10 (01) 2

The corresponding gauge groupls= U (4) x U(2) x U(2).1 Only stack 1 carries non-trivial f-flux. Fgr = 3, there are
3 chiral generations of supersymmetric MSSM matter fields, namely lefthandend matter fields in the represedafioibs 3
from open strings stretching between the (12)-branes, 3 righthanded matter fields in the represeafioPsfBom the (13)
open string sector and a Higgs multiplet in the representatity® 2) from the (23)-sector. By pulling apart the first stack
of branes into a stack of 3 1 D7-branes, th&U(4) gauge group is Higgsed 8U3) x U(1)g_;, and the matter fields
decompose into the known SM representations of quarks and leptons. Then the four stacks of D7-brane precisely correspond to
the brane set up in Fig. 2 in the T-dual type IIA picture.

Being supersymmetric, the 3 stacks of D-branes satisfy the supersymmetry conditions provided the 3 Kahler moduli obey
the following two conditions:

72 =713, arctar(3 ( )/3) + arctar{3 ( )/4) = /2 + arctar(3(T1) /2). (10)

These 3 stacks of D7-branes will be a subsector in any corgliaial model that satisfies the Ramond tadpole conditions by the
addition of fluxes and some additial hidden sectors (for recent, concrete faldiexamples see [32—38]; for supersymmetric
CFT constructions see [39-42]).

3. The effective low-energy action from open/closed string amplitudes

In N = 1 supersymmetric models the low-energy supergravity action of the massless gaugel’)fialnls matter fields,
is determined by three moduli-dependent functions [43]:

— the gauge kinetic functioyi”(M) W’
— the superpotentidV = W(M) + WabC(M)q>aq§bq§c +-
— the Ké&hler potentiak = K(M M)+ K (M, M)ab <1>a<1>1, +

The matter field Kahler potential together with the cubic matter field superpotential is needed to compute the physical Yukawa
couplings

Yape =eK/2 [k -2k K- FWaer. 11)

We [10] will compute f, K, W of brane world models by calculating string tree level scattering amplitudes on the disk, which
containN, open andV, closed strings as in Fig. 2. The boundary of disk, being conformally equivalent to the upper half plane
H., is attached to the D-brane world volume. Hence we are using the following correlatis:on

(X4 (z)XP(z2)) = —g®log(z1 — z2),  (X*(z)X?(Z2)) = —D"log(z1 — 72),

b gab - pab
(V¥ () = ——, (v (¥’ (22) = —. (12)
71—22 -2
D depend on the open string boundary conditions, i.e. on the F-flux:
D=-g 420+ P7L (13)
Consider the following mixed open/closed string disk amplitude:
AN, ~(VEGL 20 - VY G an ) V) - VoV (wy,)). (14)

1 Note that in some orbifold models, thé, will take values different from those in Table 2, if the D-branes are fixed under the orbifold
groupZy x Zy and 21,; e.g., for theZ, x Z, orientifold, N1 = 8 because the corresponding gauge group is brokén(1é;/2) by the
orbifold symmetry.
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/

Fig. 2. The calculation model.

Here the open string vertex operators have the strudtyce) = V (z) at the boundary = z; on the other hand, the closed
string vertex operators live on the entifg, and have the fornV,(z, z) = V() V.(z). The closed string vertex operators
formally have two momenta, one along the D-brakhg,and one transversal momentukn,, respectivelyk = g andk = Dq
(k) = (g + Dg)/2). Therefore the above amplitude involves the integration og&r-2 N, — 3 real positiong;. This leads
to a non-trivial momentum dependencieeady for the 3-point amplitude wittv, = 1, N, = 2, namely A3 is of 0(k?).
Furthermore correlators between holomorphic and anti-holomorphic operators in general contribute at the boundary. Hence
there are less restrictions from internal charge conservation. In summary, these kind of mixed amplitudes are not just the square
roots of the correspondingjosed (heterotic) stig matter amplitudes.

Now let us discuss a few specific amplitudes.

3.1. The gauge kinetic function

The gauge kinetic function for type 1B gauge fields on D3-branes and D7-branes with f-flux (or also for D5/D9-branes with
f-flux) can be derived from the 3-point function between 2 gauge bosons and one modulus (Fig. 3). The explicit computation of
the 3-point function yields [10]

I'(=2r)

.l_)]
— aj paz .] - — - =
Az=(A"ART]) = 1) [ (p1p2)(£162) (P1§2)(P2$1)] ra_nz =nrs (15)

_2 .
This amplitude is proportional tgdg’ﬁ (M =S, T"). So by integrating above equation and taking into accounvteel SUSY
condition,

i

3 3
Z 3(TT) 1_[ FIS(TT) (7 =6 +2nd F),

we derive for the gauge kinetic functions:

fo3=S,  for, = |mkmt|(T" = £ f15). (16)

A

/

Fig. 3. 3-point function between 2 gauge bosons and one modulus.

A
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Note that for D7-branes with f-flux, the gauge kinetic function depends bothaond on the Kahler modulf?. For a D7-brane
without f-flux, the gauge kinetic function only depends on the modiifusf the torus, transversal to its world volurfe.

3.2. The matter field K&hler potential

To compute the Kahler metrics of the matter fields (see also [44,45]) we need the 3-point amplitude shown in Fig. 4. It
will give us information on the moduli dependence of the derivative of the Kahler metsie: 0K -, /0 M" . In addition we
need also the 4-point functioretween two moduli and two matter fields, aswhn Fig. 5. This amplitude will allow us to get
additional information about the Riemann tensor derived from the matter fields K&hler metric [46]:

ts
Aa~ Keago Kygiggi 7+ 5Reacopingi -

Let us first consider the Kéhler metric for those matter fields which originate from open strings with endpoints on one single
stack of D-branes. They transform in the adjoint representation of the gauge @réngonformal field theory language they
correspond to untwisted open string vertex operators. The métyiess andGC7_ ieli for the untwisted matter fieldgf’ and

e Tial

C,.7j may be obtained from the following differential equation, which follows 'freé)

DJ + DJ y
d7iGe,e, = W(1 —-26Y)G .- 17)
Via integration we obtain for the D3-brane matter fields
KZZ )
G = i=123 (18)

CIC} T Wi =0T — 1)’
The Cf’ are the matter fields which describe the positions of the [28ws in each of the three internal tori. They are the scalars
of an N =4 vector supermultiplet. .
Let us now move on to the untwisted D7-matter fieﬂq7sf. For concreteness, let us consider the fieTas3, i.e. we shall
discuss the case of a D7-brane, which is transversal to the third¥8résin this specific case, we find:
75 1+if?

G 73578 = : ) —.
CrC* T W= 0h(T2=T2) 144

C

v

Fig. 4. 3-point amplitude for calculation of the K&hler metrics.

C

M

Fig. 5. 4-point function between two moduli and two matter fields.

2 Note that there is a field redefinition involved going from the Kéhbedulus in the string basis to the one in the supergravity basis.
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-2 .z
G, 73-73= _K4 = |1+Ui1|,
Cy Cy (U2—U2)(T1—T1) |1+if2|
-2
Goasprs= —o—A 1172,
C7C3" (U3 -UB(S-9)
GCiék =0, 1i#k, (19)

where fi = f is the physical 2-form flux. Here the indiceés= 1, 2 refer to scalar fields living on the world volume of the
D7-branes, constltutlng aM = 2 hypermultiplet, whereas the sca(ag 3 describes the position of the D7-brane®h3, being
member of ariV = 2 vector multiplet. The other casés 7 ,C7 j with j =1, 2 are obtained from the above results by permuting
fields.

Now let us come to those matter fields which located at the intersection of two D6-branes & aegpectively between
D3-D7,, D7,-D7, respectively D5-Dg, D9,-D9, branes with fluxesy. These are the fields, which transform in bifunda-
mental representations, and which play the role of the Standard Model matter fields in any realistic model. From the open string
conformal field theory point of view these fields correspond to twisted vertex operators, since the open strings end on different
stacks of D-branes. In case the two intersecting branes form a supersymryiétB&3$ configuration, i.e. the D7-branes wrap
different 4-cycles, the 3-point function takes the form:

iT(=20[T (=t + 69+ (A=) (=1—1t+67)]

Ag=(COTICO) ~ —=i70 : : : (20)
N—1-¢t+6/)I'(—t+6/)I'A—r—-06J)

From that we obtain the following differential equation:

OReyy . -miey sinz0 ) [2vg +¥0)) + (1 —6)]K o 1)

o7, PLEvE i DKy,
Integrating this equation and taking the limit— 0 yields:
3
Gc7a7b Clalp ™~ 1_[ (22)

j=1

Here the angl@ajb, reminiscent from the intersecting D6-brane description, encodes the two flux components on the different
stacksa andb of D-branes:

, Jj j
o), = ! [arctar(f—b> - arctar(f—“.)]. (23)
“ (1) 3(T7)

Further moduli dependences can bei from the 4-point amplitude4 = (C? U™ U™ C~?). Then we obtain the following
final result for the twisted (4 BPS) matter field K&hler metric [10]:

r@; T,

(24)
ra—6/,)

3
_91
GC7“7bC7“7b —K l_[

By similar methods we can also derive the K&hler metric for two intersection branes that/@&®&BR3 configuration, e.g.,
two D7-branes which are transversal with respect to the same torus:

-2
Ky 1

o= 5')1/2(]"1 _ Tl)l/Z (U2 _ 02)1/2(U3 _ 03)1/2'

GC7273 67273 = (25)

Finally let us also give the result for the K&hler potential of the bulk moduli fields, which can be derived from scattering of
the corresponding closed string states on the D-branes:

3 3

—In(S=38) =Y In(r" = 7") = "In(U' = T"). (26)

i=1 i=1
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3.3. The matter field superpotential/Yukawa couplings

At the end of this section we discuss very briefly the computation of the twisted matter field Yukawa couplings [47,48,10]
and the associated cubic matter field superpotential. Now we need to compute the 4-point an@jt0g€, Cy). Taking
a suitable factorization limit this amplitude can be used to derive the following expression for the physical Yukawa coupling
among 3 twisted chiral matter fields

Voo Nﬁ[l"(l—@j)l"(l—@k)r‘(ej+9k)]1/4. |
e FOHTOITL—0; —6) k= k-

27)

W is the exponential superpotential describing the classical world sheet instaitops: j_x ~ e~ Aik-j-k A being the area

between the 3 D6-branes in type IlA. Note that using the general expression Eq. (11) for the Yukawa couplings, above equation
is consistent with the previous result for the twisted matter field kinetic energies in Eq. (24).

4. The 3-form flux induced soft SUSY breaking terms
Now we will study the effect of turning on non-vanishing bulk 3-form flux in type 1IB orientifolds [13—21]:

1 1
——— [ G3#0, G3=F3— SH3, Nfjuyx=——-+— [ H3 A F3. 28
(27r)2a’,/ 3F 3=1F3 3 flux (271)40/2/ 3N F3 (28)
C3
Non-vanishing 3-form fluxes have several interesting effects:

— A modified Ramond tadpole condition:

Niux +2  NantnZn =32 (29)
a

— A modified D-term scalar potential:
Vp(T") = Vbz/p7 + Voz/o7 — ¢ ?10T3Njux. (30)

As before,Vp fixes some of the Kahler moduli‘ . '
— The generation of a superpotential, which depends on the difaéma on the complex structure moduli, but not on the
Ké&hler moduliT*:

. . 1
w(s,U" :—/G AS2. 31
The associated scalar potential has the form:

N : 1 _
iy _ IASD IASD (A)ISD _ 4 ~(A)ISD
Vp(S.U") = (2n>7a/4/G A xgG , *6G =G . (32)
Possible flux vacua are defined by minimization of the scalar potential:

Ve av
IVFE _9YF _ (33)
s~ aUl

So minimizing Vg, which is of the standard supergravity foriiy = K;; F' F/ — 3¢K W2, generically fixes the complex
structure moduliU* and the dilatonS, but leaves the K&hler moduli undetermined (these are partially fixed by the D-term
potentialVp). Concerning the breakdown of = 1 supersymmetry there are possible classes of vacua:

(i) Supersymmetric vacuhere all F-terms vanish in a given vacuum solutisl’ = FU' = F$ = 0. One can show that in
this the 3-form flux must be a primitive ISD (2)-form: G5 1 # 0.
(i) Non-supersymmetric vacuaere N = 1 supersymmetry is spontaneously broken by one or all non-vanishing F-terms.
More specifically, there are the following 3 possibilities:
- FT = Dfi:f/ = xfl/ffarle ~ [ G A £2 #0. In this case5 is a ISD (0 3)-form: Go,3 0.
- FS= DiW =0ogW +K§W85K ~ [G3 A 82 #0. Inthis case&5 is a IASD (3 0)-form: G3 g # 0.

— FU' =D W =i W + k2Wayi K #0. In this cases is a IASD (1 2)-form: G 5 #0.
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To be more specific let us consider 3-form fluxes in toroidal and orbifold compactifications. In fact, not all flux components
in will survive the orbifold projection. In addition, some or all complex modiiii will be frozen to discrete values by the
Zn x Zyy modding. In theZ, x Z orbifold, 8 complex flux components indeed survive and also all ottheemain unfixed.
However, e.g., for thezz orbifold, only G(30) and G g 3, are allowed, and alU’ are frozen toU! = 1/2+ i/3/2. As a
general result of this investigation it turns out that only the IASD fie o) and the ISD fluxG g 3) are generic for all
orbifolds. Therefore we will concentrate in the following discussion on these two complex fluxes. Expressed in terms of a
complex basis, th€& 3 gy andG g 3 fluxes take the following form:

_ =1 =2 =3
WGO3—AO(dZ /\dZ /\dZ ),

_ 1 2 3
WGgO—BO(dZ ANdzcNdz ) (34)

Let us just remark that due to the absence of the ISR)3-form fluxes in many of the orbifold models, supersymmetric flux

solutions do not exist.
In orbifold compactifications, we obtain for the superpotential:

W= (ao — SCO)U:I‘UzU3 — {(al — Scl)UZUS + (a2 — Scz)UlUS + (a3 — Sc3)U1U2}
3
— > (b = Sdj)U" — (bo — Sdp), (35)
i=1
where thea!, b', ¢!, d' are real, integer flux coefficients. Then the explicit expressiongfoand F* are the following:

3
-G _ _ . . A _
FS=(s=8Y3(r - 1) ¥?T[ (v - 0') Y22 /G 2
(§=8)"(1-T) i|:|1( ) “4 oz | 937

3
= (s = 821 - 1) ¥ (v - oty M2
i=1

X (ao — S‘co)UlUZUS — [(al — S’cl)UZUS—I— (a2 — S’CZ)UJ‘US—I— (a3 — S’c?’)Ule]

3
_ Z(bi — S‘dl')Ui — (b() — Sdo)},
i=1
. 3
FT = (s=8) Y31 - 1) VT - 0') 23w (36)

i=1

Itis easy to see thaty is only non-vanishing if the 3-form flux is IASD, i.e. f@¥ 3 o) (and also foiG 3 2)). Specifically, when
we express; 3 ) by its complex coefficienBg, Vi becomes:

3 i _ i
5 [ .10 -0
Vp=kgBf— e —————. (37)
IS = SIT[q 17" =T

Now we can combine the 3-form flux induced bulk effective action with the effective action for the matter fields on
D3/D7-branes with f-flux. This will lead to soft supersymmetry breaking terms for the matter fields in case supersymmetry
is spontaneously broken [22—-26]. The general supergravityesgjams for the soft scalar masses and the trilinear couplings
are:

2 2. v i j
mep son=(m3/21°+ VF)K¢ 6, = F'F R 545,
Aabe = F' D (eX/2Y,p.). (38)
For the soft scalar masses some simplifications are possible by plugging the actual expressioharidrF? into above
equation. For this and for applying the formulas to the MSSM construction at the end of Section 2, we refer to [24,49].
The gaugino masses have the following general form:

mgy = F'3; log(Im 7). (39)
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More specifically, for the gaugino masses for the gauge fields living on the D7-branes wrapped around th@ &fycle? !,
using Eq. (16), we obtain:

_fkfl i 1
mg p7, = F5 —— MRy F _ _ (40)
T @ =T = fR s = S) (T =TH = frfls =9
Finally, for the MSSM D7-brane set-up with wrapping number as specified in Table 2, this formula looks even simpler [49]:
1
rT 2pS
Mg 1= —7 _l+g2 — for stack 1
(T>=TH+g(S-9)
FT.i
for stacks 23. (41)

My j = —————=——
LTI - T

5. Gaugino condensation and 3-form fluxes

The last section steps a little bit aside from the discussion on intersecting branes and models D3/D7-branes with chiral
fermions. We will rather discuss the generation of 3-form flad &s relation to gaugino condensation in the context of the
AdS/CFT correspondence. Specifically we would like to pose the question whether certain 3-form fluxes correspond to the
dynamical formation of a gaugino condensate in the gauge sector of the theory? The motivation to assume such a correspondence
is the following:

— In the context of the large N transition (geometrarisition) the flux is related to a gaugino condengate [50].

— In heterotic string compactifications with gaugino condensate one nedt)dH3lux for stabilization of the vacuum.

— As we discussed before, in type II1B orientifolds g is proportional toFS = 0; this corresponds to the dilaton dominated
spontaneous SUSY breaking, which is indeed very similar to gaugino condensation.

However from now on we are switching from compact models to non-compact supergravity backgrounds with 3-form fluxes.
Via the AdS/CFT correspondence these are dual to certain supersymmetric gauge theory. As we will show [27] turning on a
(3, 0) G-flux in the supergravity background indeed correspaadbe formation of a gaugino condensate in the dual globally
N =1 supersymmetric field theory. Since the gaugino condensate does not spontaneously break glaétmlpersymmetry,
the (3 0)-flux must be also a supersymmetric solution in type 1I1B supergravity on a non-compact background, in contrast to the
compact case. This will be further discussed at the end of this chapter.

Specifically we will use the AdS/CFT correspondence betweemvteel* SU(N) gauge theory and Polchinski—Strassler
solution [28] of type IIB supergravity with 3-form flux. Th&& = 1* gauge theory is defined by a mass deformatiow et 4
SU(N) super-Yang—Mills theory, namely by tung on the following superpotential:

W=mij¢idj, mjj=m, i=123 (42)

W explicitly breaksN = 4 supersymmetry down ty = 1 supersymmetry giving a common mass to all three chiral, adjoint
supermultiplets inside th&¥ = 4 vector multiplet. So in the infrared, for mass scales much smallenthame is dealing with
pure N = 1 SU(n) gauge theory; this theory possesses in the confining phase a non-vanishing gaugino coriiensate’

at large 'tHooft couplingg%M N. The dual supergravity solution, describing the RG flow fr¥m= 4 to N = 1, has the form of

a warped background with 3-form flux

ds? = Z*l/znlw dx™’ + Zl/zgmn dx™ dx",
G3=F3—tH3, F3=dCy, H3z=dBy, Gg:Gg(xm), ‘L’:‘L’(xm). (43)

However the exact supergravity solution is not known, but there exists only an iterative expansion in pawers thear
order inm with constantr it was shown by [28] that turning on the 3-form flux in supergravity corresponds to turning on the
mass parametet: in the gauge theory. This was extended by [51] to a solution quadraticand non-constant in. Without
going into any detail, one can show [27] that at cubic orden iane gets

2N2,0 /.j j
GO =aay?, A(zz"’):mf‘r‘%uk(z—z) Z_d<z_)“’<z_)' (44)
r

r r r

As it is known in AdS/CFT, this4<22’o) corresponds tgaa)!
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As already emphasized; 39 preservesv = 1 supersymmetry. How can that be? The answer lies in the form how super-
symmetry is realized on the supergravity background. Specifi¢htlye exist several kinds &hown supersymmetric Killing
spinor solutions:

— Type A(ndy): This is realized in heterotic/type Il strings with H-flux [52].
— Type B(ecker): its solution is the supersymmetric 16B 1-flux in type 1IB, already discussed in the section on G-flux
compactifications [53-55]. The corresponding spinor ansatz for the above two cases reads

e(x,y) =a(ex) @ n—(y) +b(»)e*x) @ ny (), (45)

wherea andb denote complex functions,is the four-dimensional supersymmetry parametengne:= (n—)™* is a globally
defined spinor normalised to one. The existence of one globally defined gpimpmlies that the tangent bundle over the
transverse 6-dimensional space hasSali3) group structure. This ansatz includes the type A ansatz, where*, the
type B, whereb = 0, and the more general type discussed in [56], called type C.

— Type D(all’Agata): There exists an even more general supersymmetry ansatz [57], which can be expressed:

e(x,y) =a(»ex) @ n—(y) +*(x) @ (b(n+(y) + c(Mx+())- (46)

It is based on the existence of two globally defined spingrand x, which are linearly independent. It implies that the
group structure of the tangent bundle of the transverse 6-dimensional space is further re@@l. tim particular, using

the ansatz (46), the Hodge type of the 3-form flux is no more constrained by supersymmetry, and one can naWhave (3
as well as (03) fluxes. Moreover, and in contrast with the casestk3)-structures, there is no preferred choice for the
(almost) complex structurg, but one actually has & (1)-worth of possibilities. Indeed, after some algebra one can show
that the Polchinski/Strassler background at ord@mwith IASD flux G 3.9 satisfies the type D Killing spinor ansatz and

is supersymmetric with aBU(2) group structure. Let us finally remark that the type D ansatz is a manifestation of the
dielectric nature of solution, namely that the underlying D3-branes are dissolved into D5-branes by the 3-form flux (see
also [58]).
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