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Abstract

In this article we will first discuss the construction of brane world models being built either by intersecting D6-branes
IIA orientifolds or, in the T-dual mirror picture, by D3- plus D7-branes with f-flux in type IIB orientifolds. We will show h
their effective action is obtained by the calculation of scattering amplitudes between open and closed string states on in
D6-branes respectively on D3- and D7-branes. Secondly, turning on type IIB 3-form fluxes we will compute the indu
supersymmetry breaking terms for the matter fields, like gaugino and scalar field masses. Finally, we will discuss the g
of 3-form flux in type IIB supergravity, which can be associated to the dynamical formation of a gaugino condensat
confining phase of the dualN = 1∗ gauge theory.To cite this article: D. Lüst, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Action effective pour l’intersection de mondes branaires, flux et condensation de jaugino.Dans cet article nous discuton
tout d’abord la construction de modèles de monde branaires construits soit par intersection de branes D6 dans des o
de type IIA ou, dans la représentation T-duale, par des branes de type D3 et D7 avec des flux f dans les orientifold
IIB. Nous montrons comment obtenir leurs actions effectives en calculant les amplitudes de diffusion sur des interse
branes de D6 et aussi sur des branes de type D3 et D7. Ensuite, nous allumons des flux pour la 3-forme de type II
calculons les termes de brisure douce de la supersymétrie pour les champs de matière, comme les masses du jau
champs scalaires. Enfin, nous discutons la génération de flux pour la 3-forme de type IIB en supergravité, qui peut-êtr
à la dynamique de la formation de condensat de jaugino dans la phase confinante de la théorie de jauge dualeN = 1∗. Pour
citer cet article : D. Lüst, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

One of the main goals of superstring theory is the embedding ofthe Standard Model into a unified description of gravitatio
and gauge forces. In this article we will considerN = 1 orientifold (type I) models with D-branes (for a review see [1]). One
their characteristic features is that gravity is mediated in the entire 10-dimensional bulk by the exchange of closed string
other hand, the gauge and matter fields are localized at the D-brane (intersections) and correspond to open string exc
course, at the end of all realistic model building effortsN = 1 supersymmetry must be broken. There are (at least) two scen
of how supersymmetry breaking can be realized: (i) The closed string sector preservesN = 1 SUSY, however the various ope
string sectors break SUSY. In order to solve the hierarchy problem, this scenario normally requires the existence of la
dimensions, transversal to the D-branes of the Standard Model. (ii) In the second avenue, which we like to follow here
string sectors preserveN = 1 SUSY, i.e. all D-branes together with the orientifold planes, are mutually supersymmetric (
1/2 oder 1/4 BPS configurations). Then the closed string sector breaks SUSY, which manifests itself as soft SUSY b
terms in the effective action of the open string matter fields. The concrete scenario, which we will discuss in the follo
that SUSY is ‘spontaneously’ broken in the closed string sector by internal background fluxes of closed string field
fields〈Gijk〉 �= 0 [2].

The further plan of the article is the following: In the next section we will introduce the type IIA intersecting D6-
orientifold models and their IIB mirrors, which contain D9/D5 and D3/D7, respectively, with open string 2-form f-flu
the worldvolume of the D-branes [3–9]. After that, the scattering amplitudes of gauge, matter (φ) and moduli fields (M)
from (intersecting) D-branes are computed [10]. They give rise to theN = 1 supersymmetric low-energy supergravity act
of the matter fields, described by the Kähler potentialK(φ, φ̄,M,M̄) and the gauge kinetic functionf (M). Alternatively,
the effective action of orientifolds with D3/D7-branes can be obtained by dimensional reduction of the Born–Infeld
[11,12]. In the fourth section we will add internal 3-form fluxes in orientifolds with D3/D7-branes [13–21]. They will
to an effective superpotential which generically leads to spontaneous supersymmetry breaking (F-term breaking). IG3 is a
ISD (0,3)-form, this case corresponds toa non-vanishing auxiliary fieldFT of the overall Kähler modulus of the intern
space, and supersymmetry is spontaneously broken; ifG3 is an imaginary anti-self dual (IASD) (3,0)-form it is equivalent to
an auxiliary fieldFS . As an effect of the supersymmetry breaking in the bulk sector byFT and/orFS , soft supersymmetry
breaking terms for the open string matter fields are induced [22–26]. For D7-branes with non-vanishing f-flux, i.e. with
D/N boundary conditions, the gauge kineticfunction contains both the dilatonS as well as the Kähler moduliT i . It follows that
the corresponding gaugino masses get contributions both from the(0,3) G-flux, which corresponds toFT �= 0, and also from
the (3,0)-flux, i.e.FS �= 0, as it will happen in realistic models with 3 chiral generations. For the scalars living on the D3-b
a mass is only generated by the (3,0)-flux, whereas scalars on pure D7-branes get their masses entirely from (0,3)-flux.
other hand, scalars on D7-branes with f-fluxes get mass contributions both from (3,0)- and (0,3)-fluxes. Most importantly
‘chiral’ scalar fields, which correspond to twisted open string sectors, i.e. open strings which stretch either between D
and D7-branes with f-flux or two D7-branes with different type of f-flux boundary conditions, get also soft masses from (3,0)- as
well as from (0,3)-fluxes. In the last section we [27] will discuss the relation between (3,0) G-flux and the dynamical formatio
of gaugino condensation in theN = 1∗ model of Polchinski/Strassler [28] using the AdS/CFT correspondence. Specifica
will extend their type IIB supergravity solution with 3-form flux to third order in the mass perturbation parameter, and
that this 3-form flux corresponds in the dual field theory to a gaugino condensate.

2. IIA intersecting D6-brane models and their IIB mirrors with D3- and D7-branes

Intersecting D6-branes in type IIA orientifold compactifications can give rise to 4-dimensional models with spect
close to the Standard Model. Let us start to consider a local D6-brane configuration in flat 10-dimensional Minkowski space-ti
R

1,9 [6,7,29,30], see Fig. 1. Stacka, the so called color branes, consists of 3 D6-branes, the stackb, the weak branes, contain
2 D6-branes, and furthermore there are two additionalc andd D6-branes. The corresponding gauge group isU(3) × U(2) ×
U(1)2. The weak hypercharge groupU(1)Y is a suitable linear combination of the fourU(1)s. Note that in a compact mod
(see below) some of theU(1) gauge bosons may get a mass by a generalized Green–Schwarz mechanism. The chir
fields with SM gauge quantum numbers are localized at the D-brane intersections which all fill a common (1+ 3)-dimensional
subspace ofR1,9 and are point-like in the remaining transversal 6 spational dimensions.N = 1 space-time supersymmetry
preserved if all stacks of D-branes preserve the following angle conditions among each other,

θ1
ab + θ2

ab + θ3
ab = 0 modπ, (1)

where each of the 3 intersection anglesθi
ab

defines the D6-brane intersection in a two-dimensional subspaceR
2
i

of the transver-
sal 6-dimensional space.
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Table 1
Topological intersection numbers

Sector Rep. Number

a′a Aa
1
2 (π ′

a ◦ πa + πO6 ◦ πa)

a′a Sa
1
2 (π ′

a ◦ πa − πO6 ◦ πa)

ab (N̄a,Nb) πa ◦ πb

a′b (Na,Nb) π ′
a ◦ πb

Next we have to embed the D6-branes into a compact 6-dimensional spaceM6, namely more precisely we are consideri
type IIA orientifold compactifications on a space-time(

R
1,3 × M6)/(Ω × I6),

whereΩ is the world-sheet parity group, andI6 is a reflection on 3 internal coordinates. The fixed locus ofI6 is the orientifold
6-plane, which is supersymmetric 3-cycleπO6 insideM6.

The D6a -branes are wrapped around supersymmetric 3-cyclesπa,π ′
a insideM6, i.e. the D6-brane world volume has th

form R
1,3 × πa or R

1,3 × π ′
a , whereπ ′

a is theI6 reflected 3-cycle. Since we are considering D-branes and orientifold p
on a compact space, there are the following important differences compared to the flat, non-compact case:

– The 3-cycles can intersect more than once inM6. The corresponding intersection number has a natural geometric inte
tation of a family number:

NF = Iab ≡ #(πa ∩ πb) ≡ πa ◦ πb.

– The internal Ramond charges of the D-branes and the orientifold plane on the compact space must cancel (Gauss
This condition can be phrased as an equation for the homology cycles∑

a

Na(πa + π ′
a) − 4πO6 = 0. (2)

– In order that the D-branes are stable, all NS tadpoles must cancel, which is equivalent to the cancellation of inter
tensions. This condition can be formulated using a D-term scalar potential

VD(S,Ui) = 	S√
Vol(M6)

(∑
a,a′

Na Volπa (Ui) − 4VolπO6(Ui)

)
. (3)

Absence of the NS-tadpoles means:∂VD/∂(	S) = ∂VD/∂Ui = 0. This is automatically ensured if all D6-branes mutua
satisfy theN = 1 angle condition. Note the minimization ofVD fixes some of the IIA bulk complex structure moduliUi

of M6 as well as the 4-dimensional dilaton,	S = e−φ4 .

The chiral matter spectrum is completely fixed by the topological intersection numbers of the 3-cycles of the co
tion [9], as given in Table 1.

The non-Abelian gauge anomalies will cancelafter satisfying the tadpole conditions andU(1) anomalies are canceled by
generalized Green–Schwarz mechanism involving dimensionally reduced RR-forms.

Let us now switch to the T-dual type IIB mirror picture. The internal compact space is described by the mirror manifoM̃6,
and the orientifold is defined in terms of reflection groupIn, with n = 0,2,4,6 depending on the action of the mirror symmet
Starting from supersymmetric intersecting D6-branes, there are two possible type IIB mirror orientifolds with the fo
brane content:

– D5- and D9a -branes, plus O9/O5-planes (n = 0,4);
– D7a - and D3-branes, plus O3/O7-planes (n = 6,2).

The intersection angleθab between two D6-branes is mapped to open string 2-form fluxFab through 2-cycles on the D9a re-
spectively D7a -brane world volumes. Now chiral matter originates from open strings between D5–D9a , D9a–D9b respectively
D3–D7a , D7a–D7b with 2-form flux. Note thatVD now fixes the IIB bulk Kähler moduliTi of the mirror manifoldM̃6.

As an example of a class of type IIB orientifolds let us consider orbifold compactifications with

M6 = (
T 2)3/

(ZN × ZM). (4)
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There will be always 3 Kähler moduliT i for each of the 3 subtoriT 2
i

, and, depending on the orbifold group, also some unfi
complex structure moduliUi . In addition, there is the complex dilaton fieldS. Next we will include D7-branes together wi
their open string sectors. To obtain a chiral spectrum, we must introduce (magnetic) two-form fluxesFj dxj ∧ dyj on the
internal part of the D7-brane world volume. Together with the internal NSB-field bj we form the complete 2-form flux

F =
3∑

j=1

Fj :=
3∑

j=1

(
bj + 2πf j

)
dxj ∧ dyj .

The latter gives rise to the total internal antisymmetric background(
0 f j

−f j 0

)
, f j = 1

(2π)2

∫
T 2,j

F j , (5)

w.r.t. thej th internal plane. The 2-form fluxesFj have to obey the quantization rule:

mj 1

(2π)2α′
∫

T 2,j

F j = nj , n ∈ Z, (6)

i.e. f j = α′ nj

mj . This setup is T-dual to intersecting D6-branes in type IIA orientifold compactifications. In a compact m
all tadpoles arising from the Ramond formsC4 andC8 must be cancelled either by the D-branes or by the 3-form fluxes
Section 4). More concretely, the cancellation condition for the tadpole arising from the RR 4-formC4 is (a D3-brane has f-flux
quantum numbers(ni,mi) = (1,0))

2
∑
a

Nan1
an2

an3
a = 32. (7)

Furthermore, the cancellation conditions for the 8-form tadpoles yields:

2
∑
a

Nam1
am2

an3
a = −32,

2
∑
a

Nam1
am3

an2
a = −32, (8)

2
∑
a

Nam2
am3

an1
a = −32.

The condition that all branes are mutually supersymmetric has the form:

∑
i

arctan

(	(T i)

f i
a

)
= 0. (9)

This condition will fix some of the Kähler moduliT i .
Finally, let us consider a configuration of 3 stacks of different D7-branes with spectrum identical to the MSSM, wh

concrete, type IIB mirror realization of the local brane set up in Fig. 1. Specifically, it is built by the f-flux quantum nu
[31] given in Table 2.

Fig. 1. Local D-brane set up for the Standard Model.
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Table 2
MSSM D7-brane configuration with f-flux numbers(mj ,nj )

Stack Gauge group (m1, n1) (m2, n2) (m3, n3) Na

1 U(4) (0,1) (1, g) (−1, g) 4
2 SU(2) (1,0) (0,1) (−1,0) 2
3 SU(2) (1,0) (−1,0) (0,1) 2

The corresponding gauge group isG = U(4) × U(2) × U(2).1 Only stack 1 carries non-trivial f-flux. Forg = 3, there are
3 chiral generations of supersymmetric MSSM matter fields, namely lefthandend matter fields in the representations(4,2,1)

from open strings stretching between the (12)-branes, 3 righthanded matter fields in the representations 3(4,1,2) from the (13)
open string sector and a Higgs multiplet in the representations(1,2,2) from the (23)-sector. By pulling apart the first sta
of branes into a stack of 3+ 1 D7-branes, theSU(4) gauge group is Higgsed toSU(3) × U(1)B−L, and the matter field
decompose into the known SM representations of quarks and leptons. Then the four stacks of D7-brane precisely cor
the brane set up in Fig. 2 in the T-dual type IIA picture.

Being supersymmetric, the 3 stacks of D-branes satisfy the supersymmetry conditions provided the 3 Kähler mod
the following two conditions:

T 2 = T 3, arctan
(	(

T 2)
/3

) + arctan
(	(

T 2)
/4

) = π/2+ arctan
(	(

T 1)
/2

)
. (10)

These 3 stacks of D7-branes will be a subsector in any concreteglobal model that satisfies the Ramond tadpole conditions by
addition of fluxes and some additional hidden sectors (for recent, concrete orbifold examples see [32–38]; for supersymmet
CFT constructions see [39–42]).

3. The effective low-energy action from open/closed string amplitudes

In N = 1 supersymmetric models the low-energy supergravity action of the massless gauge fieldsAI
µ and matter fieldsΦa

is determined by three moduli-dependent functions [43]:

– the gauge kinetic functionfIJ (M) WI
α WJ

α ;
– the superpotentialW = Ŵ (M) + Wabc(M)ΦaΦbΦc + · · ·;
– the Kähler potentialK = K̂(M,M̄) + K(M,M̄)ab̄ ΦaΦ̄b + · · ·.

The matter field Kähler potential together with the cubic matter field superpotential is needed to compute the physica
couplings

Yabc = eK̂/2
√

K−1
ad̄

K−1
bē

K−1
cf̄

Wdef . (11)

We [10] will computef,K,W of brane world models by calculating string tree level scattering amplitudes on the disk,
containNo open andNc closed strings as in Fig. 2. The boundary of disk, being conformally equivalent to the upper hal
H+, is attached to the D-brane world volume. Hence we are using the following correlators onH+:〈

Xa(z1)Xb(z2)
〉 = −gab log(z1 − z2),

〈
Xa(z1)Xb(z̄2)

〉 = −Dab log(z1 − z̄2),

〈
ψa(z1)ψb(z2)

〉 = gab

z1 − z2
,

〈
ψa(z1)ψ̄

b(z̄2)
〉 = Dab

z1 − z̄2
. (12)

Dab depend on the open string boundary conditions, i.e. on the F-flux:

D = −g−1 + 2(g + F)−1. (13)

Consider the following mixed open/closed string disk amplitude:

ANc+No
∼ 〈

V 1
c (z̄1, z1) · · ·V Nc

c (z̄Nc
, zNc

)V 1
o (w1) · · ·V No

o (wNo
)
〉
. (14)

1 Note that in some orbifold models, theNa will take values different from those in Table 2, if the D-branes are fixed under the orb
groupZN × ZN andΩIn; e.g., for theZ2 × Z2 orientifold, N1 = 8 because the corresponding gauge group is broken toU(N1/2) by the
orbifold symmetry.
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Fig. 2. The calculation model.

Here the open string vertex operators have the structureVo(z) = V (z) at the boundaryz = z̄; on the other hand, the close
string vertex operators live on the entireH+ and have the formVc(z̄, z) = V̄c(z̄)Vc(z). The closed string vertex operato
formally have two momenta, one along the D-brane,k‖, and one transversal momentum,k⊥, respectivelyk = q andk = Dq

(k‖ = (q + Dq)/2). Therefore the above amplitude involves the integration over 2Nc + No − 3 real positionszi . This leads
to a non-trivial momentum dependence already for the 3-point amplitude withNc = 1, No = 2, namelyA3 is of O(k2).
Furthermore correlators between holomorphic and anti-holomorphic operators in general contribute at the bounda
there are less restrictions from internal charge conservation. In summary, these kind of mixed amplitudes are not just t
roots of the correspondingclosed (heterotic) string matter amplitudes.

Now let us discuss a few specific amplitudes.

3.1. The gauge kinetic function

The gauge kinetic function for type IIB gauge fields on D3-branes and D7-branes with f-flux (or also for D5/D9-bran
f-flux) can be derived from the 3-point function between 2 gauge bosons and one modulus (Fig. 3). The explicit compu
the 3-point function yields [10]

A3 = 〈
Aa1Aa2T j

〉 = iD̄j

2T
j
2

[
1

2
(p1p2)(ξ1ξ2) − 1

2
(p1ξ2)(p2ξ1)

]
t


(−2t)


(1− t)2
, t = p1p3. (15)

This amplitude is proportional to
∂g−2

I
∂M

(M = S,T i ). So by integrating above equation and taking into account theN = 1 SUSY
condition,

3∑
j=1

f j

	(T j )
=

3∏
j=1

f j	(
T j

) (
f j = bj + 2πα′Fj

)
,

we derive for the gauge kinetic functions:

fD3 = S, fD7i
= ∣∣mkml

∣∣(T i − f kf lS
)
. (16)

Fig. 3. 3-point function between 2 gauge bosons and one modulus.
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Note that for D7-branes with f-flux, the gauge kinetic function depends both onS and on the Kähler moduliT i . For a D7-brane
without f-flux, the gauge kinetic function only depends on the modulusT i of the torus, transversal to its world volume.2

3.2. The matter field Kähler potential

To compute the Kähler metrics of the matter fields (see also [44,45]) we need the 3-point amplitude shown in F
will give us information on the moduli dependence of the derivative of the Kähler metric:A3 ∼ ∂KCaC̄b/∂Mi . In addition we
need also the 4-point function between two moduli and two matter fields, as show in Fig. 5. This amplitude will allow us to ge
additional information about the Riemann tensor derived from the matter fields Kähler metric [46]:

A4 ∼ KCaC̄bKMiM̄j

ts

u
+ sRCaC̄bMiM̄j .

Let us first consider the Kähler metric for those matter fields which originate from open strings with endpoints on on
stack of D-branes. They transform in the adjoint representation of the gauge groupG. In conformal field theory language the
correspond to untwisted open string vertex operators. The metricsG

C3
i C̄3

j
andG

C
7,j
i C̄

7j
i

for the untwisted matter fieldsC3
i and

C
7j

i
may be obtained from the following differential equation, which follows fromA3:

∂	T j GCiC̄i
= Dj + D̄j

4	T j

(
1− 2δij

)
GCiC̄i

. (17)

Via integration we obtain for the D3-brane matter fields

G
C3

i C̄3
i

= κ−2
4

(Ui − Ū i )(T i − T̄ i )
, i = 1,2,3. (18)

TheC3
i

are the matter fields which describe the positions of the D3-branes in each of the three internal tori. They are the sca
of anN = 4 vector supermultiplet.

Let us now move on to the untwisted D7-matter fieldsC
7,j
i

. For concreteness, let us consider the fieldsC
7,3
i

, i.e. we shall
discuss the case of a D7-brane, which is transversal to the third torusT 2,3. In this specific case, we find:

G
C

7,3
1 C̄

7,3
1

= κ−2
4

(U1 − Ū1)(T 2 − T̄ 2)

|1 + if̃ 2|
|1 + if̃ 1| ,

Fig. 4. 3-point amplitude for calculation of the Kähler metrics.

Fig. 5. 4-point function between two moduli and two matter fields.

2 Note that there is a field redefinition involved going from the Kählermodulus in the string basis to the one in the supergravity basis.
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G
C

7,3
2 C̄

7,3
2

= κ−2
4

(U2 − Ū2)(T 1 − T̄ 1)

|1 + if̃ 1|
|1 + if̃ 2| ,

G
C

7,3
3 C̄

7,3
3

= κ−2
4

(U3 − Ū3)(S − S̄)

∣∣1− f̃ 1f̃ 2∣∣,
GCiC̄k

= 0, i �= k, (19)

wheref̃ i = f i

	T i is the physical 2-form flux. Here the indicesi = 1,2 refer to scalar fields living on the world volume of th
D7-branes, constituting anN = 2 hypermultiplet, whereas the scalarC

7,3
3 describes the position of the D7-brane onT 2,3, being

member of anN = 2 vector multiplet. The other casesG
C

7,j

i C̄
7,j

i

with j = 1,2 are obtained from the above results by permut
fields.

Now let us come to those matter fields which located at the intersection of two D6-branes at angleθ respectively between
D3–D7a , D7a–D7b respectively D5–D9a , D9a–D9b branes with fluxesFθ . These are the fields, which transform in bifund
mental representations, and which play the role of the Standard Model matter fields in any realistic model. From the op
conformal field theory point of view these fields correspond to twisted vertex operators, since the open strings end on
stacks of D-branes. In case the two intersecting branes form a supersymmetric 1/4 BPS configuration, i.e. the D7-branes wr
different 4-cycles, the 3-point function takes the form:

A3 = 〈
CθT j C̄−θ

〉 ∼ −e−iπθj 
(−2t)[
(−t + θj ) + (1− θj )
(−1− t + θj )]

(−1− t + θj )
(−t + θj )
(1− t − θj )

. (20)

From that we obtain the following differential equation:

∂KCθC̄θ

∂Tj
∼ e−πiθj sin(πθj )

[
2γE + ψ(θj ) + ψ(1− θj )

]
KCθ C̄θ

. (21)

Integrating this equation and taking the limitα′ → 0 yields:

GC7a7b C̄7a7b ∼
3∏

j=1

√√√√ 
(θ
j
ab)


(1− θ
j
ab)

. (22)

Here the angleθj
ab

, reminiscent from the intersecting D6-brane description, encodes the two flux components on the d
stacksa andb of D-branes:

θ
j
ab = 1

π

[
arctan

(
f

j
b

	(T j )

)
− arctan

(
f

j
a

	(T j )

)]
. (23)

Further moduli dependences can be derived from the 4-point amplitudeA4 = 〈CθUmŪmC̄−θ 〉. Then we obtain the following
final result for the twisted (1/4 BPS) matter field Kähler metric [10]:

GC7a7b C̄7a7b = κ−2
4

3∏
j=1

(
Uj − Ūj

)−θ
j

ab

√√√√ 
(θ
j
ab)


(1− θ
j
ab)

. (24)

By similar methods we can also derive the Kähler metric for two intersection branes that are a 1/2 BPS configuration, e.g
two D7-branes which are transversal with respect to the same torus:

G
C7273C̄7273 = κ−2

4

(S − S̄)1/2(T 1 − T̄ 1)1/2

1

(U2 − Ū2)1/2(U3 − Ū3)1/2
. (25)

Finally let us also give the result for the Kähler potential of the bulk moduli fields, which can be derived from scatte
the corresponding closed string states on the D-branes:

κ2
4K̂ = − ln

(
S − S̄

) −
3∑

i=1

ln
(
T i − T̄ i

) −
3∑

i=1

ln
(
Ui − Ū i

)
. (26)



D. Lüst / C. R. Physique 5 (2004) 997–1009 1005

,48,10]

oupling

equation

x
-term

n

erms.
3.3. The matter field superpotential/Yukawa couplings

At the end of this section we discuss very briefly the computation of the twisted matter field Yukawa couplings [47
and the associated cubic matter field superpotential. Now we need to compute the 4-point amplitude〈Cθ C̄θCθ C̄θ 〉. Taking
a suitable factorization limit this amplitude can be used to derive the following expression for the physical Yukawa c
among 3 twisted chiral matter fields

Yj,k,−j−k ∼
3∏

i=1

[

(1− θj )
(1− θk)
(θj + θk)


(θj )
(θk)
(1− θj − θk)

]1/4
Wj,k,−j−k . (27)

W is the exponential superpotential describing the classical world sheet instantons:Wj,k,−j−k ∼ e−Aj,k,−j−k , A being the area
between the 3 D6-branes in type IIA. Note that using the general expression Eq. (11) for the Yukawa couplings, above
is consistent with the previous result for the twisted matter field kinetic energies in Eq. (24).

4. The 3-form flux induced soft SUSY breaking terms

Now we will study the effect of turning on non-vanishing bulk 3-form flux in type IIB orientifolds [13–21]:

1

(2π)2α′
∫
C3

G3 �= 0, G3 = F3 − SH3, Nflux = 1

(2π)4α′2
∫

H3 ∧ F3. (28)

Non-vanishing 3-form fluxes have several interesting effects:

– A modified Ramond tadpole condition:

Nflux + 2
∑
a

Nan1
an2

an3
a = 32. (29)

– A modified D-term scalar potential:

VD

(
T i

) = VD3/D7 + VO3/O7− e−φ10T3Nflux. (30)

As before,VD fixes some of the Kähler moduliT i .
– The generation of a superpotential, which depends on the dilatonS and on the complex structure moduliUi , but not on the

Kähler moduliT i :

Ŵ
(
S,Ui

) = 1

(2π)2α′
∫

G3 ∧ Ω. (31)

The associated scalar potential has the form:

V̂F

(
S,Ui

) = 1

(2π)7α′4
∫

GIASD ∧ �6ḠIASD, �6G(A)ISD = ±G(A)ISD. (32)

Possible flux vacua are defined by minimization of the scalar potential:

∂V̂F

∂S
= ∂V̂F

∂Ui
= 0. (33)

So minimizingV̂F , which is of the standard supergravity form,V̂F = K̂ij F i F̄ j − 3eK̂ |Ŵ |2, generically fixes the comple
structure moduliUi and the dilatonS, but leaves the Kähler moduli undetermined (these are partially fixed by the D
potentialVD ). Concerning the breakdown ofN = 1 supersymmetry there are possible classes of vacua:

(i) Supersymmetric vacua: here all F-terms vanish in a given vacuum solution:FT i = FUi = FS = 0. One can show that i
this the 3-form flux must be a primitive ISD (2,1)-form: G2,1 �= 0.

(ii) Non-supersymmetric vacua: hereN = 1 supersymmetry is spontaneously broken by one or all non-vanishing F-t
More specifically, there are the following 3 possibilities:
– FT = DT̄ Ŵ = κ2

4Ŵ∂T K̂ ∼ ∫
G3 ∧ Ω �= 0. In this caseG is a ISD (0,3)-form: G0,3 �= 0.

– FS = DS̄Ŵ = ∂SŴ + κ2
4Ŵ∂SK̂ ∼ ∫

Ḡ3 ∧ Ω �= 0. In this caseG is a IASD (3,0)-form: G3,0 �= 0.

– FUi = DŪi Ŵ = ∂Ui Ŵ + κ2
4Ŵ∂Ui K̂ �= 0. In this caseG is a IASD (1,2)-form: G1,2 �= 0.
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To be more specific let us consider 3-form fluxes in toroidal and orbifold compactifications. In fact, not all flux comp
in will survive the orbifold projection. In addition, some or all complex moduliUi will be frozen to discrete values by th
ZN ×ZM modding. In theZ2 ×Z2 orbifold, 8 complex flux components indeed survive and also all of theUi remain unfixed.
However, e.g., for theZ3 orbifold, only G(3,0) andG(0,3) are allowed, and allUi are frozen toUi = 1/2 + i

√
3/2. As a

general result of this investigation it turns out that only the IASD fluxG(3,0) and the ISD fluxG(0,3) are generic for all
orbifolds. Therefore we will concentrate in the following discussion on these two complex fluxes. Expressed in ter
complex basis, theG(3,0) andG(0,3) fluxes take the following form:

1

(2π)2α′ G03 = A0
(
dz̄1 ∧ dz̄2 ∧ dz̄3),

1

(2π)2α′ G30 = B0
(
dz1 ∧ dz2 ∧ dz3)

. (34)

Let us just remark that due to the absence of the ISD (2,1) 3-form fluxes in many of the orbifold models, supersymmetric fl
solutions do not exist.

In orbifold compactifications, we obtain for the superpotential:

Ŵ = (
a0 − Sc0)

U1U2U3 − {(
a1 − Sc1)

U2U3 + (
a2 − Sc2)

U1U3 + (
a3 − Sc3)

U1U2}
−

3∑
i=1

(bi − Sdi )U
i − (b0 − Sd0), (35)

where theai , bi , ci , di are real, integer flux coefficients. Then the explicit expressions forFT andFS are the following:

F̄ S̄ = (
S − S̄

)1/2(
T − T̄

)−3/2
3∏

i=1

(
Ui − Ū i

)−1/2
κ2

4
λ

(2π)2α′
∫

Ḡ3 ∧ Ω

= λκ2
4
(
S − S̄

)1/2(
T − T̄

)−3/2
3∏

i=1

(
Ui − Ū i

)−1/2

×
{(

a0 − S̄c0)
U1U2U3 − [(

a1 − S̄c1)
U2U3 + (

a2 − S̄c2)
U1U3 + (

a3 − S̄c3)
U1U2]

−
3∑

i=1

(
bi − S̄di

)
Ui − (

b0 − S̄d0
)}

,

F̄ T̄ = (
S − S̄

)−1/2(
T − T̄

)−1/2
3∏

i=1

(
Ui − Ū i

)−1/2
κ2

4Ŵ . (36)

It is easy to see that̂VF is only non-vanishing if the 3-form flux is IASD, i.e. forG(3,0) (and also forG(1,2)). Specifically, when
we expressG(3,0) by its complex coefficientB0, V̂F becomes:

V̂F = κ2
4B2

0

∏3
i=1 |Ui − Ū i |

|S − S̄|∏3
i=1 |T i − T̄ i | . (37)

Now we can combine the 3-form flux induced bulk effective action with the effective action for the matter fie
D3/D7-branes with f-flux. This will lead to soft supersymmetry breaking terms for the matter fields in case supersy
is spontaneously broken [22–26]. The general supergravity expressions for the soft scalar masses and the trilinear coup
are:

m2
ab̄,soft

= (|m3/2|2 + V̂F

)
KCaC̄b

− FiF j̄ Rij̄ab̄,

Aabc = FiDj

(
eK̂/2Yabc

)
. (38)

For the soft scalar masses some simplifications are possible by plugging the actual expressions forFS andFT into above
equation. For this and for applying the formulas to the MSSM construction at the end of Section 2, we refer to [24,49].

The gaugino masses have the following general form:

mgI = Fi∂i log(ImfI ). (39)
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More specifically, for the gaugino masses for the gauge fields living on the D7-branes wrapped around the 4-cycleT 2,k × T 2,l ,
using Eq. (16), we obtain:

mg,D7i
= FS −f kf l

(T j − T̄ j ) − f kf l(S − S̄)
+ FT j 1

(T j − T̄ j ) − f kf l(S − S̄)
. (40)

Finally, for the MSSM D7-brane set-up with wrapping number as specified in Table 2, this formula looks even simpler

mg,1 = FT 1 + g2FS

(T 1 − T̄ 1) + g2(S − S̄)
for stack 1,

mg,j = FT j

(T j − T̄ j1)
for stacks 2,3. (41)

5. Gaugino condensation and 3-form fluxes

The last section steps a little bit aside from the discussion on intersecting branes and models D3/D7-branes w
fermions. We will rather discuss the generation of 3-form flux and its relation to gaugino condensation in the context of
AdS/CFT correspondence. Specifically we would like to pose the question whether certain 3-form fluxes correspon
dynamical formation of a gaugino condensate in the gauge sector of the theory? The motivation to assume such a corre
is the following:

– In the context of the large N transition (geometric transition) the flux is related to a gaugino condensate〈λλ〉 [50].
– In heterotic string compactifications with gaugino condensate one needs (3,0) H-flux for stabilization of the vacuum.
– As we discussed before, in type IIB orientifoldsG3,0 is proportional toFS �= 0; this corresponds to the dilaton dominat

spontaneous SUSY breaking, which is indeed very similar to gaugino condensation.

However from now on we are switching from compact models to non-compact supergravity backgrounds with 3-form
Via the AdS/CFT correspondence these are dual to certain supersymmetric gauge theory. As we will show [27] turn
(3,0) G-flux in the supergravity background indeed correspondsto the formation of a gaugino condensate in the dual glob
N = 1 supersymmetric field theory. Since the gaugino condensate does not spontaneously break globalN = 1 supersymmetry
the (3,0)-flux must be also a supersymmetric solution in type IIB supergravity on a non-compact background, in contra
compact case. This will be further discussed at the end of this chapter.

Specifically we will use the AdS/CFT correspondence between theN = 1∗ SU(N ) gauge theory and Polchinski–Strass
solution [28] of type IIB supergravity with 3-form flux. TheN = 1∗ gauge theory is defined by a mass deformation ofN = 4
SU(N) super-Yang–Mills theory, namely by turning on the following superpotential:

W = mij φ(iφj), mij = m, i = 1,2,3. (42)

W explicitly breaksN = 4 supersymmetry down toN = 1 supersymmetry giving a common mass to all three chiral, ad
supermultiplets inside theN = 4 vector multiplet. So in the infrared, for mass scales much smaller thanm, one is dealing with
pureN = 1 SU(n) gauge theory; this theory possesses in the confining phase a non-vanishing gaugino condensate〈λ̄λ̄〉 = m3

at large ’tHooft couplingg2
YM N . The dual supergravity solution, describing the RG flow fromN = 4 toN = 1, has the form of

a warped background with 3-form flux

ds2 = Z−1/2ηµν dxµν + Z1/2gmn dxm dxn,

G3 = F3 − τH3, F3 = dC2, H3 = dB2, G3 = G3
(
xm

)
, τ = τ

(
xm

)
. (43)

However the exact supergravity solution is not known, but there exists only an iterative expansion in powers ofm. At linear
order inm with constantτ it was shown by [28] that turning on the 3-form flux in supergravity corresponds to turning o
mass parameterm in the gauge theory. This was extended by [51] to a solution quadratic inm and non-constant inτ . Without
going into any detail, one can show [27] that at cubic order inm one gets

G(3,0) = ∂A
(2,0)
2 , A

(2,0)
2 = m3r−�εijk

(
z̄2

r2

)2 zi

r
d

(
zj

r

)
∧ d

(
zj

r

)
. (44)

As it is known in AdS/CFT, thisA(2,0)
2 corresponds to〈λλ〉!
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As already emphasized,G(3,0) preservesN = 1 supersymmetry. How can that be? The answer lies in the form how s
symmetry is realized on the supergravity background. Specifically, there exist several kinds ofknown supersymmetric Killing
spinor solutions:

– Type A(ndy): This is realized in heterotic/type II strings with H-flux [52].
– Type B(ecker): its solution is the supersymmetric ISDG2,1-flux in type IIB, already discussed in the section on G-fl

compactifications [53–55]. The corresponding spinor ansatz for the above two cases reads

ε(x, y) = a(y)ε(x) ⊗ η−(y) + b(y)ε∗(x) ⊗ η+(y), (45)

wherea andb denote complex functions,ε is the four-dimensional supersymmetry parameter andη+ = (η−)∗ is a globally
defined spinor normalised to one. The existence of one globally defined spinorη implies that the tangent bundle over t
transverse 6-dimensional space has anSU(3) group structure. This ansatz includes the type A ansatz, whereb = a∗, the
type B, whereb = 0, and the more general type discussed in [56], called type C.

– Type D(all’Agata): There exists an even more general supersymmetry ansatz [57], which can be expressed:

ε(x, y) = a(y)ε(x) ⊗ η−(y) + ε∗(x) ⊗ (
b(y)η+(y) + c(y)χ+(y)

)
. (46)

It is based on the existence of two globally defined spinors,η andχ , which are linearly independent. It implies that t
group structure of the tangent bundle of the transverse 6-dimensional space is further reduced toSU(2). In particular, using
the ansatz (46), the Hodge type of the 3-form flux is no more constrained by supersymmetry, and one can now h,0)
as well as (0,3) fluxes. Moreover, and in contrast with the case ofSU(3)-structures, there is no preferred choice for
(almost) complex structureJ , but one actually has aU(1)-worth of possibilities. Indeed, after some algebra one can s
that the Polchinski/Strassler background at orderm3 with IASD flux G(3,0) satisfies the type D Killing spinor ansatz a
is supersymmetric with anSU(2) group structure. Let us finally remark that the type D ansatz is a manifestation
dielectric nature of solution, namely that the underlying D3-branes are dissolved into D5-branes by the 3-form fl
also [58]).
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