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Abstract

This is a review of recent work on constructing and finding statistics of string theory vacua, done in collaboration with
Frederik Denef, Bogdan Florea, Bernard Shiffman and Steve Zelditchite this article: M.R. Douglas, C. R. Physique 5
(2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Résultats élémentaires dans des statistiques de vidget article est une revue de travaux récents sur la construction et
découverte de statistiques des vides de théories des cordes, réalisée en collaboration avec Frederik Denef, Bogdan Florea,
Bernard Shiffman et Steve Zelditdhour citer cet article: M.R. Douglas, C. R. Physique 5 (2004).
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Tout ce qui est simple est faux, mais tout ce qui ne I'est pas est inutilisable.
— Paul Valéry

1. Predictions from string theory

For almost 20 years we have had good qualitative argumentsdhgiactification of string theory can reproduce the Stan-
dard Model and solve its problems, such as the hierarchy problem. But we still seek distinctive predictions which we could
regard as evidence for or against the theory.

One early spin-off of string theory, four dimensional supersymmetry, is the foundation of most current thinking in ‘be-
yond the Standard Model’ physics. Low energy supersymmetry appears to fit well with string compactification. But would not
discovering supersymmetry be evidence against string/M theory?

In recent years, even more dramatic pbaisies have beenigygested, which would lead to wgedistinctive particles or
phenomena: large extra dimensions (KK modes); a low fundamental string scale (massive string modes); rapidly varying warp
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factors (modes bound to branes; conformal subsectors), and so on. Any of these could lead to dramatic discoveries. But should
we expect string/M theory to lead to any of these possibilities? Would not discovering them be evidence against string theory?

At Strings 2003, | discussed a statistical approach to these and other questions of string phenomenology. Over the last year,
our group at Rutgers, and the Stanford group, have made major progress in developing this approach, with

— Explicit proposals for vacua with all moduli stabilizeadag) the lines of KKLT [1] (work with Denef and Florea [2]);

— Detailed results for distributions of these vacua (with Shiffman, Zelditch and Denef [3,4]);

— Preliminary results on the statistics of the volume of the extra dimensions (in progress with Denef), and on supersymmetry
breaking scales [5-7].

These ideas have already begun to inspire new phenomenological models (for example [8,9]). Even better, if we are lucky
and the number of vacua is not too large (as we explain below), fairly convincing predictions might come out of this approach
over the next few years. While much work would be needed to bring this about, we may be close to making some predictions:
those which use just the most generic features of string/M theory compactification, namely the existence of many hidden sectors.

2. Hidden sectors

Before string theory, and during the ‘first superstring revolution’, most thinking on unified theories assumed that internal
consistency of the theory would single out the matter content we see in the real world. In the early 1980s it was thought that
d = 11 supergravity might do this. Much of the early excitement about the heterotic string came from the fact that it could easily
produce the matter content 8, SQ(10) or SU(5) grand unified theory.

But this was not looking at the whole theory. The typical compactification of heterotic or type Il strings on a Calabi—Yau
manifold has hundreds of scalar fields, larger gauge groups and more charged matter. Already in the perturbative heterotic
string an extrakEg appeared. With branes and non-perturbative gauge symmetry, far larger groups are possible, with many
simple factors. If we live in a ‘typical’ string compactification, it seems that there are many hidden sectors, not directly visible
to observation or experiment.

Should we care? Does this lead to any general predictions? Hidden sectors may or may not lead to new particles or forces.
But what they do generically lead to is a multiplicity of vacua, because of symmetry breaking, choice of vev of additional scalar
fields, or other discrete choices.

Let us say a hidden sector allowslistinct vacua or ‘phases’. If there axehidden sectors, the multiplicity of vacua will go
as

Nvac’\’ CN.

While the many hidden sectors certainly make the detailed study of string compactification more complicated, we should
consider the idea that they lead to simplifications as well. Thus we might ask, what can we say about the case of a large number
N of hidden sectors? Clearly there will be a large multiplicity of vacua.

We only live in one vacuum. However, as pointed out by Brown and Teitelboim [10], Banks, Dine and Seiberg [11], and no
doubt many others, vacuum multiplicity canlhén solving the cosmological consta(c.c.) problem. In an ensemble &fac
vacua with roughly uniformly distributed c.el, one expects that vacua will exist with as small asMgl/Nvac. To obtain the

observed small nonzero c.g.~ 10*122Mé|, one requires\yac > 10120 or so.

Now, assuming different phases have different vacuum energies, adding the energies from different hidden sectors can
produce roughly uniform distributions. In fact, the necesseyc can easily be fit with\yac~ ¢¥ and the parameters~ 10,

N ~ 100-500 one expects from flux compactification of string theory, as first pointed out by Bousso and Polchinski [12].

One might regard fitting the observed small nonzero c.aniyotherwise acceptable vacuum as solving the problem, or one
might appeal to an anthropic argument such as that of Weinberg [13] to select this vacuum. In the absence of other candidate
solutions to the problem, we might even turn this around and call these édétencefor the hypothesis that we are in a
compactification with many hidden sectors.

3. Supersymmetry breaking

So can we go further with these ideas? Another quantity which can get additive contributions from different sectors is the
scale of supersymmetry breaking. Let us call M&Sy(we will define it more carefully below).

We recall the classic arguments for low energy supersymmetry from naturalness. The electroweak gcedar below
the other scales in naturdp and MgyT. According to one definition of naturalness, this is only to be expected if a symmetry
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is restored in the limitzgyw — 0. This is not true ifngyy is controlled by a scalar (Higgs) massy, but can be true if the Higgs
has a supersymmetric partner (we then restore a chiral symmetry).
A more general definition of naturalnessjuires the theory to be stable under radi&atiorrections, so that the small quantity
does not require fine tuning. Again, low energy supersymmetry can accomplish this. Many theories have been constructed in
which

2 A2
My ~ cMsysy

with ¢ ~ 1/10 without fine tuning. Present data typically requires 1/100, which requires a small fine tuning (the ‘little
hierarchy problem’).

On the other hand, the solution to the cosmological constant problem we accepted above, in terms of a discretuum of vacua,
is suspiciously similar to fine tung the c.c., putting the role of natlmass in doubt. What should replace it?

The original intuition of string theorists was that string theory would leaduniguefour dimensional vacuum state, or at
least very few, such that only one would be a candidate to describe real world physics. In this situation, there is no clear reason
the unique theory should be ‘natural’ in the previously understood sense.

With the development of string compactification, it has become increasingly clear that there is a large multiplicity of vacua.
The vacua differ not only in the cosmological constant, but in every possible way: gauge group, matter content, couplings, etc.
What should we do in this situation?

The ‘obvious’ thing to do at present is to make the following definition:

Definition 3.1. An effective field theory (or specific coupling, or observatifg)is more naturalin string theory tharf», if the
number of phenomenologically acceptable vacua leadirfg ie larger than the number leading T [14].

Now there is some ambiguity in defining ‘phenomenologically acceptable’ (or even ‘anthropically acceptable’, as some
would have it [15]). One clearly wants= 4, supersymmetry breaking, etc. One may or may not want to put in more detailed
information from the start.

In any case, the unambiguously defined information provided by string/M theory is the number of vacua and the distribution
of resulting EFT'’s. For example, we could define

du [Ma, Mszusy A]= ,o(ME', Mszusy 4) dMI?I dMszusydA = Z‘S(Mszusy_ MSZUS)JT,')‘S(MI?I - MI?I‘T,')‘S(A —Alr)
T

a distribution which counts vacua with given c.c., susy breaking scale and Higgs mass, and study the function

p(10* GeV2, M5, A ~0).

4, Statistical selection

Is this definition of ‘stringynaturalness’ good for anything? Suppose prop&r{gay low scale susy) were realized b)/‘?lo
phenomenologically acceptable vacua, wiilgsay high scale susy) were realized bf‘i@uch vacua. If by prediction we
mean not just a hunch or a reason to bet on a particular property, but a property whose observation would actually falsify string
theory (and this is what we really need in the end), we shoatdonclude that string theory predicts low scale susy.

On the other hand, if the distribution is sharply enough peaked, and there are not too many vacua, it could well turn out that
some regions of theory space would haeevacua, and we would get a prediction.

For example, suppose there weré@vacua with the propert (say low scale susy), and which realize all known physics,
except for the observed c.c. Suppose further that they realize a uniform distribution of cosmological constants; then out of this
set we would expect about 4®to also reproduce the observed cosmological constant. Suppose furthermore*tRaiat0a
with property X work except for possibly the c.c.; out of this set we only expect the correct c.c. to come out if an additional
1020 fine tuning is present in one of the vacua which comes close. Not having any reason to expect this, and having other
vacua which work, we have reasonable grounds for predicXinin the strong sense that observifgwould be evidence
againststring theory.

In a systematic approach, one would take all aspects of thégshyesulting from each choice of vacuum, not just the c.c.
but couplings and matter content as well, and make the analogous argument. As discussed in [14], the rest of the information
at hand is comparable in selectivity to the c.c.; say a rough fractiodfof vacua out of a fairly uniform ensemble might
reproduce the Standard Model, and thus this is an important improvement. However the basic idea leading to predictions is
more or less the same.



968 M.R. Douglas / C. R. Physique 5 (2004) 965-977

Upon considering the entire problem in this way, the most crucial advantage of the statistical approach becomes apparent.
It is that we can benefit by the hypothesis that some properties of the distribution of vacua are (to a good approximation)
statistically independent, in which case we can argue that vacua exist which realize a group of properties simultaneously, even
without finding explicit examples.

For example, it seems very likely that the value of the c.c. is independent of the number of Standard Model generations,
in the sense that even if we restrict attention to vacua with a given numfeyof generations we will still find a uniform
distribution of c.c.’s with cutoff independent @&fgen. Then, suppose for sake of argument that a fraction*16f the vacua
have Ngen= 3. While not rare compared to other properties, this is sufficiently rare to make it significantly more difficult to
find models with bothVgen= 3 and the small c.c. Rather than do this, we should study the larger population of models with
arbitrary Ngen and check the hypothesis that these properties are independent. Having done this, we can argue that the fraction
of vacua which realize both propertiesthe product of the fractions which reaieach, without explicitly finding the vacua
which realize both. Of course, the independence hypothesis might turn out to be false; if we found evidence of a correlation
betweenNgenand the c.c., that would be even more interesting (and surprising).

We can go on to make the same type of analysis for each of thaathastic properties of the Standard Model (the gauge
group, the hierarchy, the details of the couplings and so on). While any one of its specific properties is ‘rare’ in the sense that
the great majority of vacua do not realize it (most vacua will not have unbroken gauge symmetry at low energy, etc.), it seems
unlikely that any one of them (even the c.c.) is so rare as to allow only a few candidate vacua. Multiplying the fractions of vacua
which realize the various properties leads to an estimated fraction of vacua which agree with the Standard Model, finite but so
small that the task of finding the vacuum which actually realizes all of its properties simultaneously is almost impossible. On
the other hand, by separating the various properties of intenessibsets, such that correlations are possible only within each
subset, we can hope to divide up the problem into manageable pieces.

These arguments and examples illustrate how, under certagibb® outcomes for the actuaumber and distribution of
vacua, we could make well motivated predictions. Of course the actual numbers and distribution are not up to us to chose, and
one can equally well imagine scenarios in which this type of predictivity is not possible. For exaviygte; 161090 would
probably not lead to predictions, unless the distribution were very sharply peaked, or unless we make further assumptions which
drastically cut down the number of vacua.

5. Absolute numbers

The basic estimate for numbers of flux vacua [16] is

Mac~ %[%],
where K is the number of distinct fluxesk( = 2b3 for IIlb on CY3) and L is a ‘tadpole charge’'I{ = x /24 in terms of the
re_Iated CY,). The ‘geometric factor[c,] does not change this much, while otheultiplicities are probably subdominant to
thlsT?/Bii:-al K ~ 100-400 and. ~ 500-5000, leading tdVyac ~ 10°90, This is probably too large for statistical selection to
Wor(lj(ﬁ the other hand, this estimate did not put in all the consistency conditions. Here are two ideas, still rather speculative:

— Perhaps stabilizing the moduli not yet considered in detail (erane moduli) is highly nogeneric, or perhaps most of
the flux vacua become unstable after supersymmetry breaking due to KK or stringy modes becoming tachyonic. At present
there is no evidence for these ideas, but neither have they been ruled out.

— Perhaps cosmological selection is important: almost all vacua have negligible probability to come from the ‘preferred initial
conditions’. Negligible meang <« 1/Nyac, and most proposals for we functions or ppbability factors & not so highly
peaked, bueternal inflation(as studied by Linde, Guth, Vilenkin and others) might be (work in progress with Silverstein
etal.).

Such considerations might drastically cut the number of vacua. While we would then need to incorporate these effects in the
distribution, it is conceivable that to a good approximation these effects are statistically independent of the properties of the dis-
tribution which concern us, so that the statistics we are computing now are the relevant ones. Even if not, it seems very unlikely
to us that cosmology will select a unique vacuum a priori; rather we believe the problem with these considerations taken into
account will not look so different formally (and perhaps even physically) from the problem without them, and thus we proceed.
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6. Stringy naturalness

The upshot of the previous discussion is that in this picture, either string theory is not predictive because there are too many
vacua, or else the key to making predictions is to count vacua, find their distributions, and apply the principles of statistical
selection.

To summarize this, we again oversimplify and describe statistical selection as follows: we propose to show that a property
X cannot come out of string theory by arguing thatvacuum realizingk reproduces the observed small c.c. (actually, we are
considering all properties along with the c.c.). One might ask how we can hope to do this, given that computing the c.c. in a
specific vacuum to the required accuracyaisbeyond our allities. The point isthat it should be far easier to characterize the
distribution of c.c.’s than to compute tleec. in any specific vacuum. To illustrate, suppose we can compute it at tree level, but
that these results receive complicated perturbative and non-perturbative corrections. Rather than compute these exactly in each
vacuum, we could try to show that they are uncorrelated with the tree level c.c.; if true and if the tree level distribution is simple
(say uniform), the final distribution will also be simple.

If so, tractable approximations to the true distribution of vacua can estimate how much unexplained fine tuning is required
to achieve the desired EFT, and this is timelerlying significance of the definitiori stringy naturalness’ we gave above.

Thus, we need to establish that vacua satisfying the various requirements exist, and estimate their distribution. We now
discuss results on these two problems, and finally return to the question of the distribution of supersymmetry breaking scales.

7. Constructing KKLT vacua

The problem of stabilizing all moduli in a concrete way in ggradompactification has beerustied for almost 20 years. One
of the early approaches was to derive an effective Lagrangian by KK reduction, find a limit in which nonperturbative effects are
small, and add sufficiently many nonperturbative corrections to produce a generic effective potential. Such a generic potential,
depending on all moduli, will have isolated minima. While the idea is simple, the complexities of string compactification and
the presence of hundreds of moduli have made it hard to carry out.

A big step forward was the development of flux compactification by Polchinski and Strominger [17]; Becker and Becker
[18]; Dasgupta, Rajesh and Sethi [19], and many others. Since the energy of fluxes in the compactification manifold depends
on moduli, turning on flux alls stabilizing a large subset of moduli at thasdical level. Acharya [20] has proposed that
in G» compactification, all metei moduli could be stabilized by fluxes. However it is not yet known how to make explicit
computations in this framework.

The most computable class of flux compactifications at present is that of Giddings, Kachru and Polchinski [21], in llb
orientifold compactification, because one can appeal to the highly developed theory of Calabi—Yau moduli spaces and periods.
However the IIb flux superpotential does not depend on K&hler moduli, nor does it depend on brane or bundle moduli. Now
one can argue that the brane/bundle moduli parameterize compact moduli spaces (e.g. consider the D3 brane), and thus they
will be stabilized by a generic effective potential. However, for the Kéhler moduli, we need to show that the minimum is not
at infinite volume, or deep in the stringy regime (in which case we lose control). Thus we need a fairly explicit expression for
their effective potential.

Kachru, Kallosh, Linde and Trivedi (KKLT) [1] proposed to combine the flux superpotential with:

— a nonperturbative superpotential produced by D3 instantons and/or D7 world-volume gauge theory effects. These depend
on Kahler moduli and can in principle fix them.
— energy from an anti-D3 brane, which would break supersymmetry and lift the c.c. to a small positive value.

However they did not propose a concrete model which contained these effects, and in fact such models are not so simple to
find. The main problem is that most brane gauge theories in compactifications which cancel tadpoles, have too much matter to
generate superpotentials. One needs systematic techniquesrmidetthis matter content, or compute instanton corrections,

and find the examples which work.

In [2], Denef, Florea and | found the first examples which work. Our construction relies heavily on the analysis of instanton
corrections in F theory due to Witten [22], Donagi and especially Grassi [23]. Their starting point was to compactify M theory
on a Calabi—Yau fourfold(. This leads to a 3D theory with four supercharges, related to F theory andXlbsifr 2-fibered,
by taking the limit vo{72) — 0. The complex modulus of tHE2 becomes the dilaton-axion varying on the b&se

In M theory, an M5 brane wrapped on a dividdi(essentially, a hypersurface), will produce a nonperturbative superpotential,
if D has arithmetic genus one:

1=x(Op)=hn%0 —p01 4 402 _ 103
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Each of these complex cohomology groups leads to two fermion zero modes; an instanton contribuiEthese are exactly
two. A known subset of these (vertical divisors) survive in F theory.

In the F theory limit, only divisors which wrap tH#2 contribute, and these correspond to D3-instantons wrapping surfaces
in B. Thus, we looked for F theory compactifications on an elliptically fibered fourfolaith enough divisors of arithmetic
genus one, so that a superpotential

W = Whux + Zbi e D

1

will lead to non-trivial solutions taDW = 0 by balancing the exponentials against the dependence coming from the K&hler
potential.
In the math literature, there is a very general relation between divisors of a.g. one, and contractions of manifolds. It implies
that no model with one Kahler modulus caalsitize K&hler moduli (see also [24]), East by using a.g. one divisors. Now
there may be ways beyond the a.g. @oedition: Witten [22] suggested thai D) > 1 might work as well (without providing
examples); furthermore Gorlich et al. [25] have argued that flux lifts additional matter and relaxes some of these constraints.
In any case, there is no problem if the CY threefold has more than one Kahler modulus, as in the vast majority of cases.
Using the very complete study of divisors of a.g. one of A. Grassi [23], we have found 6 models with toric Fano threefold base
which can stabilize all Kéhler oduli, and could be analyzed in détasing existing techniques.
The simplest,F1g, has 89 complex structure moduli. According to the AD counting formula, it should have roeghly
10397 flux vacua with all moduli stabilized, where

|W 2

€=g5 X .
mg  Imax

Models which stabilize all Kéhler moduli using a.g. one dosis are not generic, but they are not uncommon either; there
are 29 out of 92 with Fano base, and probably many more Wtfibered base. This last class of model should be simpler, in
part because they have heterotic duals, but analyzing them requires better working out the D7 world-volume theories. We also
expect one can add antibranes or D breaking as in the KKLT discussion to get de Sitter vacua, but have not yet analyzed this.

8. Flux vacua
We recall the ‘flux superpotential’ of Gukov, Taylor, Vafa and Witten in Ilb string on CY,
w :/.Q(z) ANF® 4 tHD),
The simplest example is to consider a rigid CY, i.e. with! = 0 (for example, the orbifoI(TB/Zg). Then the only modulus is
the dilatonz, with Kahler potentialk = —log Imz, and the flux superpotential reduces to
W=At+B; A=aj+Ilay; B=b1+11by

with I7 = [, 2O/ [ 2®, aconstant determined by CY geometry.
Now it is easy to so]Ive the equatianW = 0:
oW 1 —Ai—B

DW= —— -W = —
ot T—7T T—1

soDW =0 att = —B/A wheret is the complex conjugate.

The resulting set of flux vacua fdr = 150 andIT =i is shown in Fig. 1. A similar enumeration for a Calabi—Yau with
complex structure moduli, would produce a similar plokin- 1 complex dimensions, the distribution of flux vacua. It could
(in principle) be mapped into the distribution of possible values of coupling constants in a physical theory.

This intricate distribution has some simple properties. For example, one can get exact results for thealymtotics,
by computing a continuous distributigrn(z, t; L), whose integral over a regiaR in moduli space reproduces the asymptotic
number of vacua which stdize moduli in the regionr, for largeL,

/dz dr p(z,7; L) ~L 00 N(R).
R

For a region of radius, the continuous approximation should become good.fos K/rz. For example, if we consider a
circle of radius- aroundr = 2i, we match on to the constant density distributionfor /K /L, as we see in Fig. 2.
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Fig. 1. Values ofr for rigid CY flux vacua withLmax = 150, from [4].
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Fig. 2. Number of vacua in arcile of coordinate radiu® aroundr = 2i, with R increasing in stepsRl= 0.01. Light bars give the estimated
value, dark bars the actual value.

0.3

Explicit formulae for the continuous densities daafound, in terms of the geometry of the moduli spéc&he simplest
such result [16] computes the index density of vacua:

(27 L)3

W de'(—R —w - 1),

pr(z,7) =
wherew is the Kéhler form andr is the matrix of curvature two-forms. Integrating this over a fundamental region of the moduli
space produces an estimate for the total number of flux vacua. For exampd®, fige found ~ 4 x 10?1 for L = 32. Since
r ~ 1in the bulk of modilspace, the conditiod > K/r2 for the validity of this estimate should be satisfied.
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Another example is the ‘mirror quintic’, with a one parameter moduli spmz({é) [4]. The integral is

1 1 ~ 1
i det(—R — = — = —.
2 / et w) 12)((/\/lc(Q)) 60
C
This density is ‘topological’ and there are mathematical techniques for integrating it over general CY moduli spaces [26].
Good estimates for the index should become available for a large class of CY's over the coming years.

9. Distributions of flux vacua

In Fig. 3, we see the detailed of the distribution of flux vacua on the mirror quiftie=(4 andn = 1), on a real slice
through the complex structure moduli space. Note the divergenge=at. This is the conifold point, with a dual gauge theory
interpretation. It arises because the curvaiRre 99 loglog|y — 1)2 diverges there. The divergence is integrable, but a finite
fraction of all the flux vacua sit near it.

Quantitatively, for the mirror quintic,

— About 3% of vacua sit near the conifold point, with an induced sigale 1| < 103,
— About 1% of vacua havey — 1| < 10710, More generally, the density and number of vacua \§ita v — 1 goes as
d?s 1

—_— M ~—
510G S vacl$ <8, 1095, ]

Pvac™
Writing S = e~ /%%, this isp ~ d®g/|g|?. '
— About 36% of vacua are in the ‘large complex structure limit', defined as 3n® with 5y = e¥71//5, Here p ~
d?/(im1)2.

Vacua close to conifold degenerations are interesting for model building, as they provide a natural mechanism for generating
large hierarchies. We have found that such vacua are common, but are by no means the majority of vacua. Note that in some
cases they have a dual gauge theory interpretation, whildnar aases they should be thought of as supergravity backgrounds,
possibly leading to Randall-Sundrum phenomenology [27].

The question of which interpretation is appropriate depends on the local parggEterhereN is the specific flux dual to
the number of branes, and on the embedding of the Standard Model. It would be very interesting of course if one or the other
alternative were strongly favored in the vacuum counting. Assuming the uniform distribugiprand dV, one might expect a
preference fogs N > 1 and Randall-Sundrum, but the ratio would seem to be at most of oréet @owhich could easily be
outweighed by other considerations. To do this right, draufd also factor in the (model-dependent) relation betwgesnd
the known (string scale) Standard Model couplings, which probably lowers the exggdted

npg/12
D.Oaj

0.025 |
0.02/

0,015

-3 -2 -1 1 2 3 v

Fig. 3. The susy vacuum number density per gnitoordinate VOIumer,rpgwlp/lZ, on the real/-axis, for the mirror quintic.
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npg /12
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0.00025

Fig. 4. The number density of susy vacua with positive mass matrix, per unit coordinate volume, on thearés)| for the mirror quintic.
Compare to Fig. 3.
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Fig. 5. Left: Vacuum number densities (true and absolute value of index) in the large complex structurg lkmit/¢/3), as a function of
cosmological constant value, from [4]. Right: Same near the conifold lifi=(100 for this example).

Suppose we go on to break supersymmetry by adding an anti D3-brane, or by other D term effects. The previous analysis
applies (since we have not changed the F terms), but now it is necessary that the mass matrix at the critical point is positive.
The resulting distribtion of tachyon-free D breaking vacua is given in Fgln fact, most D breaking vacua near the conifold
point have tachyons (for one modulus CYs), so we get suppression, not enhancement. This is not hard to understand in detail;
the mechanism is a sort of ‘seesaw’ mixing between modulus and dilaton, which seems special to one parameter models.

In Fig. 5 one sees the distribution of (negative) AdS cosmological constaat8 eX |W|2, both at generic points (left) and
near the conifold point (right). Note that at generic points it is fairly uniform, all the way to the string scale. On the other hand,
imposing small c.c. competes with the enhancement of vacua near the conifold point. The left hand graph compares the total
number of vacua (green) with the index (red). The differeneasares the number of Kéhler stabilized vacua, vacua which
exist because of the structure of the K&hler potential, not the superpotential.

10. Large complex structure/volume

Another simple universal property: giverts> 1 moduli, the number of vacua falls off rapidly at large complex structure, or
in a lla mirror picture at large volumg, as

—n/3
/ P~V .

V>Vy
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To see this, first note that ~ w in this regime, so the distribution of vacua is determined by the volume form derived from
the metric on the space of metrics,

1 o
<5gij’58kl)=v/«/gglkg]lfsgijagkb
cY

The 1/ V factor (which compensates thgg) comes from the standard derivation of the kinetic term in KK reduction on CY.
Because of the inverse factors of the metric, this falls off with volum& a&/3. Since the volume form is/G, this factor
appears for each modulus. For large\V ~ v—"/3 s a drastic falloff, and (as we saw explicitly in an example in [2]) typically
there are no vacua in this regime.

A possible physical apigation of this: we know how to stabilize completucture modulusing fluxes in Ilb. Suppose we
can use T-duality to get a corresponding classodels in lla with stabilized Kahler moduThen, the mirror interpretation of
this result is the number of vacua which stabilize the volume of the compact dimensions at a given value. Clearly large volume
is highly unnatural in this construction, but day vacua reach th& ~ 1030 of the ‘large extra dimensions’ scenario [28]?

Writing V ~ RG, we find a number of vacua

(2rL)KR—K
K!
so largek disfavors large volume in this case, and the maximum volume one expects is of order

()
Vel —
K
where the parametdr = x /24 in F theory compactification on fourfolds.
In fact the maximal value we know of fdr is L = 75852 [29], but this comes with a lardé as well. Now the effectiv&k

might be reduced by imposing discrete symmetries, so a few large volume flux vacua might exist. But the general conclusion is
that large volume is highly disfavored within this class of vacua.

N

11. Supersymmetry breaking

Given a precise ensemble of effective field theories, such as the ensemble of IIb theories on CY with flux [21] in which we
assume that the effective potential is given by the standard supergravity formula,

v =eX (g D; WD;W* —3|WI?) + D2,

the problem of counting supersymmetry breaking vacua and finding their distribution is a problem in mathematics, very similar
to the problems we just discussed of counting supemsgtric vacua. We just want to count critical poitté= 0 with V" a
positive definite matrix (so the vacua are metastable). One of course needs to justify the assumptions, but we return to this later.
D breaking vacua (wittDhW = 0) are described by the earlier results, just we require the vacua to be tachyon free and have
near zero c.c. Some results fBrbreaking flux vacua appear in [4], and we are continuing this study [6]. As we discussed,
the flux vacua which stabilize near conifold points are dual to the hierarchically small scales arising from gauge theory, so flux
vacua should also include the traditionaésario in which such effects drive susyebking at small scales. While our results
are still preliminary, they are consistent with the idea that this is a generic class of vacuum.
However, our results also describe another generic class of vacuum not much discussed in previous literature, in which the
distribution of supersymmetry breaking scales is uniform with a fairly high cutoff, possibly of (Méﬁerand possibly lower
(for example, see Egs. (4.31) and (4.32) in [4]).
While this remains to be verified in detail, the likely picture of the distribution of supersymmetry breaking scales in a one
parameter model is the sum of uniform and hierarchically small components, which we could model by the ansatz

du [Msusyl ~ Cd(Mszus)) + (1 —c¢) dlogMsusy

with a parameter ~ 0.5-0.9. The intuition which leads to this is simply that there is nothing inherent in the problem of
supersymmetry breaking which favors low or high scales (as longsasy < Mpjanck. SO We should expect to see a distribution
much like what we saw in Fig. 3 for the scales which appear in supersymmetric vacua.

Now, once one believes in the existence of a significant population of vacua with high scale supersymmetry breaking, it
becomes conceivable that stringy naturalness will not favor supersymmetry as a mechanism for solving the hierarchy problem.
After all, the largest possible factor we could imagine gaining through supersymmetry is aﬂa%(fmn mitigating the c.c.



M.R. Douglas / C. R. Physique 5 (2004) 965-977 975

and hierarchy problems, as suggested in [14,30,31]), and if the ratio of high scale to low scale vacua was larger than this, then
stringy naturalness would favor high scale breaking.
In fact, the factor by which supersymmetry improves the hierarchy problem is much less #4naiargued in [5,7,32].
This argument is already subtle and interesting. We can phrasadrms of an estimate for the joint distribution of vacua
Eq. (3.1), which one might naively guess goes as
dM3i  da
du [M3, MZqy A] ~ —2 ——
M[ HoTsusy ] MsusyMsusy

dp [Mszus ®) @

leading to the 1870 factor. However, both explicit factors in this formula are incorrect.
One way to see that the fact0m¢MS4usyis not right, is to realize that it is based on the intuition that> 0 asMsysy— 0,

but in supergravity this is of course not true. Rather, one needs to know the distribution of the pararﬁﬁaﬁérzaehich tunes
away the vacuum energy from supersymmetry breaking,

V=M~ 3K W= "1F 7+ DZ -3 w2 @)
i o

As we saw in Fig. 5, in flux vacua the paramet&r{#|2 is fairly uniformly distributed, from zero all the way to many times

the string scale [4]. This means that an arbitrary supersymmetry breaking contribution to the vacuum energy, even one near but

below the string scale, can be compensated by the negative term, with no preferred scale.

The physics behind this is that the superpoteritfais a sum of contributions from the many sectors. This includes super-
symmetric hidden sectors, so there is no reagoshould be correlated to the scale of supersymmetry breaking, and no reason
the cutoff on theW distribution should be correlated to the scale of supersymmetry breaking. Such a sum over randomly chosen
complex numbers will tend to produce a distributidi#ié, uniform out to the cutoff scale. For fluxes this is the string scale, and
this is plausible for supersymmetric sectors more generally. Finally, writing e'e\W\ we have

W = —de d(|w?) = —d9 d(1w?) ®)

leading very generally to the uniform distribution fa8|2. Thus, the corrected version of Eq. (1) goes as/Mstr, and the
need to get small c.cloes not favor a partlcular scale of susy breakinghese models [5].

Next, the idea that a fractloMH/Msus of models will fine tune the Higgs mass is very likely incorrect as well, as pointed
out by Dine, Gorbatov and Thomas [32] This is because sofsamin models with a high scale of supersymmetry breaking
are naturally of the ordm§/2 = Mé‘us/M,%Ianck(through non-renormalizable operatorsagtino loop effects and so forth).

A plausible summary of the current understanding of this distribution is as follows:

— If the model contains no mechanism for solving I.heroblem supersymmetry does not help at all (there is a supersym-
metric mass termx Hq Hy), and we expect a fractloMH/M tof models to realize the observed Higgs mass.

— If Msusy> (MHMle/2 ~ 100 GeV, then

2

2
1 [ME, M, us)} M&ysy> My Mp

MSUS)/MZ ’
in a relatively model independent way.
— If Msusy< (M Mp)/2 ~ 100 GeV, we are in the situation of ‘gauge mediation’, in which the leading coupling of
supersymmetry breaking to the soft masses is model dependent. While we would need information about the distribution
of matter theories to say anything precise about this, it is reasonable to assumg,tiatroughly independent af/sysy
and

du [ M, M2ye) ~ e~ 1, Mg < MuMp.
While this is already a bit complicated, we can draw from it the conclusion that if the number of vacua grows faster with
supersymmetry breaking scale thMi§uSy
du[MEysy] ~ M3 d(M3ys).  With o > 1,

thenhigh scale breakingvill be favored. While there would be many further points to make precise, this would start to be the
gist of an argument predicting thae would not see superpartners at LHC

What makes this observation particularly interesting is that there is in fact a very simple mechanism which could lead to a
power law growth of the number of vacua with supersymmetry breaking scale [7,5]. It is that the total supersymmetry breaking
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scale (which enterafz,, for example) is the sum of positive quantities (as in Eg. (2)). Not only is there no possibility of the
cancellations which led to Eq. (3), one can easily imagine that such a sum could produce a rapidly growing distribution.
For example, convolving uniform distributions for each of the individual breaking parameté sl d», gives

nr np
2np -1
p(Mszusx) :/ Hsz 1_[ dDdMélus (Mgusy— |F|2—ZD2> ~ (Mszusx) R dMszusy
i=1 a=1

Now the inequality 2 + np > 2 is surely satisfied by almost all string models; indeed we see that even the distritsuion d
(in obvious analogy to Eq. (3)) would already be on the edge.

While all this oversimplifies the real distributions, | believe it does make the point that very simple and natural assumptions
— specifically, the existence of many hidden sectors, and theéhfatsupersymmetry breaking can receive independent contri-
butions in each — might in principle lead to so many high scale models that high scale supersymmetry breaking becomes the
natural outcome of string/M theory compactification.

As | mentioned, Denef and | hope to get more definite results for the distribution of susy breaking scales in flux vacua before
long. There are of course many more issues to consider: it might be that physics we neglected also puts a lower cutoff on the
maximal flux for supersymmetric vacua, it might be that theroblem is hard to solve, there might be large new classes of
nonsupersymmetric vacua (as suggested in [33]), etc.

12. Conclusions

We have gone some distance in justifying and developing the statistical approach to string compactification.

We have specific llb orientifold compactifitions in which all Kahler moduli areattilized, and vacuum counting estimates
which suggest that all moduli can be stabilized. So far, it appteat such vacua are not generic, but they are not uncommon
either: about a third of our sample of F theory models with Fano threefold base should work.

We have explicit results for disbutions of flux vacua of many types: supgmsmetric, non-supersymmetric, tachyon-free.
They display a lot of structure, with suggestive phenomenological implications:

Large uniform components of the vacuum distribution.
Enhanced numbers of vacua near conifold points.

Correlations with the cosmological constant.

Falloff in numbers at large volume and large complex structure.

There are intuitive arguments for some of the most basic properties. For exampt& ¢fi¢W |2 contribution to the super-
gravity potential is uniformly distributed with a large (at least string scale) cutoff, because of contributions from supersymmetric
hidden sectors. Thus, the need to tune the c.c. does not much influence the final numbers.

We start to see the possibility of making real world predictions:

Large extra dimensions are heavily disfavored with the present stabilization mechanisms.

— Hierarchically small scales (gauge theoretic or warp factor) are relatively common.

Uniform distributions involving many susy breaking parameters, favor high scales of supersymmetry breaking.

— This may imply that the gravitino and even superpartnessaa should be high, thanks to supersymmetry breaking in
hidden sectors.

While various assumptions entered into the arguments we gave, the only essential ones are that

e Our present pictures of string compactification are representative of the real world possibilities.
e The absolute number of relevant string/M theory compactifications is not too high.

With further work, all the other assumptions can be justified @nddrrected, because they were simply shortcuts in the project
of characterizing the actual distribution of vacua.

Since interesting results already follow from general properties of the theory, and we now have evidence that the detailed
distribution of string/M theory vacua has many simple properties, we are optimistic that a reasonably convincing picture of
supersymmetry breaking and other predictions can be developed in time for Strings 2008 at CERN.
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