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Abstract

We demonstrate that weakly coupled, larged-dimensional SUN) gauge theories on a class of compact spatial manifolds
(including S~ x time) undergo deconfinement phase transitions at tesyess proportional to theverse length scale of the
manifold in question. The low temperature phase has a free energy of order one, and is characterized by a stringy (Hagedorn)
growth in its density of states. The high temperature phase has a free energy of 8rdéiese phases are separated either by a
single first order transition that geneaily occurs below the Hagedorn temperature or by two continuous phase transitions, the
first of which occurs at the Hagedorn temperature. These phase transitions appear to be continuously connected to the usual flat
space deconfinement tratian in the case of anfining gauge theories, and tethlawking—Page nucleation AflS; black holes
in the case of th& = 4 supersymmetric Yang—Mills theor@ur analysis proceeds by firgducing the Yag—Mills partition
function to a(0 + 0)-dimensional integral over a unitary matrix, which is the holonomy (Wilson loop) of the gauge field
around the thermal time circle in Euclidearasp; deconfinement transitions are lafgéransitions in this matrix integrallo
citethisarticle: O. Aharony et al., C. R. Physique 5 (2004).
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Résumé

Transitions de déconfinement et de Hagedorn dans le régime de couplage faible pour la limite de grafddes théories
de jauge.Nous montrons que dans le régime de couplage faible, et dans la limite de/grdesl théories de jauge $N)
en dimension/ définies sur une classe de variétés spatiallement compactes (ingfugnk temps) présentent des phases de
déconfinement a des températures proportionnelles a I'inverse de I'échelle typique des variétés en questions. La phase de basse
énergie a une énergie libre d’ordre un, et est caractérisée par une croissance de type Hagedorn de la densité d’états. La phase de
haute température a une énergie libre d'ortife Ces deux phases sont séparées soit par une unique transition du premier ordre
qui a lieu génériquement en dessous de la température de Hagedorn, soit par deux transitions de phase continues, la premiere
ayant lieu a la température de Hagedorn. Ces transitions de phase sont connectées continiiment a la transition de déconfinement
traditionnelle des théories de jauge confinantes ayant lieu en espace plat et a la nucléation de Hawking—Page des trous noirs
d’AdS; pour la théorie de Yang—Mills supersymétriqiie= 4. Dans notre analyse nous réduisons tout d’abord la fonction de
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partition de Yang—Mills & une tégrale matricielle erf0, 0) dimensions sur les matrices unitaif@s qui sont les boucles de
Wilson d’holonomie de la théorie de jaugddeg de la coordonnée temporelle thermalasiBespace euclidien;; les transitions
de déconfinement sont les transitions de graNdsans cette intégrale matriciellBour citer cet article: O. Aharony et al.,

C. R. Physique 5 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Many non-Abelian gauge theories it431 dimensions are believed to exhibit the property of ‘confinement’ — all finite
energy states are singlets of the gauge group (they carry no charge). Experimentally, this is known to be a property of QCD,
the SU3) gauge theory describing the strong nuclear interactions, and it is believed to be a general property of a large class
of asymptotically free non-Abelian gauge theories. Studying this property theoretically is difficult, since it is not visible in
perturbation theory (whose basic building blocks are charged states). Confinement can be seen in numerical simulations of
various gauge theories, but there is gtil good theoretical understanding of how ibnks (and no general way to predict
whether a given theory confines or not), despite a lot of work on various theoretical models. In this work we will be interested
in studying confinement in SW) gauge theories which have only fields in the adjoint representation, and we will specialize to
this case from here on (except in some places where we will give more general results); this case includes theories such as the
pure Yang—Mills theory and its supgymmetric generalizations.

Confinement is usually viewed as a strong-coupling phenomenon, associated with the fact that in asymptotically free gauge
theories the coupling constant becomes strong at low energies. Thus, if we consider a gauge theory at a high temperature
compared to its strong coupling scalg)cp, we expect confinement to disappear since the temperature serves as an infra-red
cutoff and the effective coupling at the scale of the tempeeais weak. So, as we raise the temperature, we expect to have
adeconfinement phadransitionat a temperature of ordetgcp; for QCD this temperature is of order 170 Mé\Bince the
coupling constant at the transition is strongsitlifficult to analyze theatically the order of the pls& transition, and in general
the order is not known (except in some special cases like pu(8)$jduge theory [1]).

In order to argue that deconfinement is a sharp phase transtioeed to show that there are ardarameters distinguishing
the confined and deconfined phases. Two order parametiétzevuseful in this article. Tie canonical péition function for
a field theory at finite temperature is equal to the Euclidean path integral of the theory with the time direction periodically
identified with a periodicityd = 1/T. In such a theory one can consider the operator

W= %tr(P exp(i 7§ At>> (2)

which is the Wilson loop (in the fundamental representation) around the periodic time direction, sometimes called the Polyakov
loop. The expectation value of this operator may be identified witl{-eg#,;) where F; is the free energy of the theory in
the presence of an external particle in the fundamental representation of the gauge group. Thus, in the confitigd phase
(sinceFy is infinite), but(W) is generally non-zero in a deconfined phase (and it can be computed in perturbation theory at high
temperatures), sOV) is a good order parameter for the deconfinement ptrassition. The gauge theory with a periodic time
direction has a globdLy symmetry (coming from SUV) gauge transformations which are periodic only up to elements of the
center of the gauge group), amd is charged under this symmetry. Thus, theatdmement transitiomivolves a spontaneous
breaking of the globaZ symmetry.

Another order parameter appears in the lakgéimit. States in the confined phase are made out of singlet particles like
mesons or glueballs, whose properties do not change in the Aalgait, so in this phase the free energy is of order one as
N — oo. On the other hand, states of the deconfined phase can be described in terms of weakly coupled gluons, and the number
of gluon species iev2 — 1, so in the deconfined phase the free energy scald&as the largeN limit. Thus, another order
parameter for deconfinement is lim, oo FSU(N)(T)/NZ, which also vanishes in the confined phase.

It would be nice if we could study the deconfinement phase transition perturbatively, but in infinite space this is impossible
since it occurs at strong coupling. However, suppose that we compactify space on a manifold with characteri®icsschle

1 A similar transition is also expected to occur at large densities, andstigurrently being investigated experimentally at RHIC. We will
not discuss this here, even though it can be analyzed by similar methods to those we present below.
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that /R > Agcp, and such that none of the fields have zero modes on the compact manifold (for instance, we can choose the
manifold to be a three-sphes®). Then, the compactified theory has a mass gap of order and since the gauge coupling is

weak at this scale (and at all higher scales) we can analyze this theory perturbatively. Thus, if the deconfinement phase transition
persists in this finite volume case, we should be able to studypierturbation theory (which gstill have much better control

over than non-perturbative computations, despite much progress in the latter in the last few years).

At first sight this idea sounds ridiculousince there are no phase transitionfirdte volume due to quantum fluctuations.

And, correspondingly, the order paramet8f) that we defined always vanishes at finite volume, since one cannot put a single
charge on a compact manifold due to Gauss’ law. However, it turns out that even at finite volume one can still have phase
transitions in the larg@’ limit, in which the large number of degrees of freedom overcomes the quantum fluctuations. A large

N deconfinement phase transition at finite volume could be characterized by the second order parameter we described above, or
by (|W|2) which is also a good order parameter for deconfinement in the Miiait (though it does not vanish in the confined

phase for finite values a¥). These phase transitions are smoothed out for any finite valg btit in the largav limit one

obtains a sharp transition. For large volumgRk« Agcp, one expects this transition to be very similar to the deconfinement
transition at infinite volume.

So, itis natural to ask whether the lar§edeconfinement phase transition persists to small valu@s ¥fe will show below
that indeed it does, and that we can compute all the details of this transition (including the order of the phase transition) by a
perturbative analysis.

The largeN deconfinement transition is also interesting for another reason. 't Hooft has argued [2] thaV laimege
theories (in the limit of largev with A = g%MN fixed) are equivalent to string theories with the string coupling con-
stant proportional to AN. Indeed, the confined phase of gauge theorigslwes a ‘stringy’ spectrum of particles sitting
on Regge trajectories, similar to the spectrum of weakly coupled string theories. On the other hand, the deconfined phase
does not seem ‘stringy’ since it is described in terms @faity coupled gluons. The trdtien between such phases is
qualitatively similar to theHagedorn phas transitionwhich has been conjectured to occur in weakly coupled string the-
ories at the Hagedorn temperatufg, at which the contribution to the caneal partition function from very massive
string states (whose density of states behaves(&3 ~ exp(E/Ty)) seems to diverge. Such a transition is unlikely to oc-
cur for string theories in flat space (for which the high-energy density of states seems to be governed by Schwarzschild
black holes whose density of states grows too fast for the canonical ensemble to be well-defined), but it could occur for
string theories in curved space, such as those which are dual to gauge theories, and it has been suggested that for large
gauge theories the Hagedorn and deconfinement phase transitions should be identified. The order parameter for the Hage-
dorn transition is a winding modaround the periodic time dirdon, which is similar to the Polyakov loop (1) described
above.

Can these two phase transitions really be identified? In order to answer this question we need to analyze examples of
large N gauge theories whose string theory dual is known, but unfortunately only a few such examples are known. The best
understood example is the AdS/CFT correspondence [3] betweé¥ thé supersymmetric Yang—ills theory compactified
on 53 and type 1IB string theory oMdS; x S° (in global coordinates for AdS space). When the gauge theory is strongly
coupled ¢ > 1), its dual string theory is weakly curved and we can easily study it (in the Frgmit when the dual string
theory is weakly coupled), leading to the following results. In the microcanonical ensemble, there is a large range of energies
for which the density of states of the string theory indeed grows exponentially with the energy, so the theory has a Hagedorn
temperature proportional to the type 1B string scale; when translated into the gauge theory this temperature is proportional to
Ty « A1/4/R. On the other hand, in the canonical ensemble, it wasvahin [4] that the theory exhibits a phase transition
between a gas of particles in AdS space and an AdS black hole at a temp@&igture3/27 R, and Witten [5] has argued
that this transition is a deconfinement transition in the gauge theory (by using theMargier parameters described above).

Thus, in this example we find that we have deconfinement and we have Hagedorn behavior, but there seems to be no relation
between them sincByp « Ty . However, as we decrease the coupling constatite two temperatures come closer together,
suggesting that maybe at weak coupling the deconfinementtiocansould be related to the Hagedorn transition. This gives us

an additional motivation for atlying deconfinement transitions at weak cooglito see whether they are related to Hagedorn
transitions at weak coupling or not. Even though naively the string picture of Mrgauge theories would not be expected to

make sense at weak coupling (since the Feynman diagrams are not dense and do not resemble smooth worldsheets), we will
find that even at weak coupling the compactified gauge theories exhibit a Hagedorn behavior, and that the two phase transitions
are indeed related to each other in weakly coupled gauge theories.

Following these motivations, we turn to computing the panifianction of compactified weakly coupled gauge theories. In
the next sections we will summarize the results of [6] and justify the statements made above. More details and discussions (as
well as a complete list of references) may be found in [6].
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2. The partition function of free Yang—Mills theory

We are interested in weakly coupled gauge theories, so we start in this section by analyzing the extreme case of a free Yang—
Mills theory (this case was first analyzed Byndborg in [7]). Naivel, this theory is comietely trivial, but we define the free
theory as the limit of the finite coupling theory in which we take the coupling constant to zero, and then even in the free limit we
still have the Gauss law constraint telling that the total charge should vanish (a#ites must be singlebf the global gauge
group; note that this constraint does not imply confinement according to the order parameters for confinement that we described
above). At finite volume this constraint is non-trivial and leads to effective interactions even when all interaction terms in the
Lagrangian are set to zero. We will show that these ‘global interactions’ are sufficient to lead to non-trivial dynamics and to a
deconfinement phase transition in free gauge theories (at finite volume).

There are two methods we can use to pate the canonical pation function Z(T') = 3 ginglet state§ E/T . The firstis to
sum over the Fock space of all possible mpbirticle states and projeotto the singlet stas. The input to this computation
is the partition function of single-particle states (in the theory on the compact manifold) in each represéhtdtibe gauge

group,

R —E/T
25(T) = > e BT,
bosonic single particle states
in representatio®

(T = > e P/, )
fermionic single particle states
in representatio®
which is easily computable (for instance, the contribution of a scalar field is simply related to the spectrum of the Laplacian
operator on the compact manifold). Given these partition functions it is a straightforward combinatorical problem to compute
the full multi-particle partition function and to project it onto singlets; the last step is most easily performed using the characters
xR (U) of the gauge group, defined as the trace in the represenfidthe group elemert/. A second method to compute the
partition function is to simply compute the 1-loop Euclidean path integral of the free gauge theory with a periodic time direction
(with appropriate gauge-fixings, and taking care of the Gauss law constraint). Both methods turn out to lead to precisely the
same formula for the exact gaion function of a free Yag—Mills theory with geneal matter content,

- 1 R T n—-R T n
Z(T)—/[dU]eXp(§§ln[zB<n) -1 zF<n)]xR(U> : ©)
where[dU] is the measure on the $N) group manifold (in fact, this equation is valid for arbitrary gauge groups). In the first
method the integral ovely comes from the projection onto the singlet states, while in the second métlmthe holonomy
of the gauge fieldd; (averaged over the compact manifold) around the periodic time direction (whose trace is related to the
Polyakov loop (1)), which is the only zero mode in the Euclidean path integral (all other modes appear quadratically and can be
easily integrated out).

Next, we would like to solve the matrix integral and compute expectation values of the Polyakov(lGppdrsee if we
have a deconfinement transition in this theory. We will now restrict to the case where all fields are in the adjoint representation
of SU(N), in which we can write (in the larg®’ limit) Xadj(U") =tr(U™)tr(U™") in terms of traces in the fundamental repre-
sentation. As usual, to solve the unitary matrix integral we change variables to the eigenvadlu¢d®f; j =1,...,N; -7 <
aj <7}, and in the largeV limit we can replace those by the eigenvalue distribupiom) = % > 8(a — a;), which becomes
a continuous function in the largé limit.

In terms of the eigenvalues, we can write the partition function (3) as

Z(T):/ (ﬁdai) exp(—ZV(ai —aj)), 4)
i=1 i<j

in terms of a pair-wise potential for the eigenvalues given by

Vo) =— In(sin(%)) - i %[ZB<§> - (—1)”ZF<§)] cosno). (5)
n=1

The first term in (5) gives a repulsive force coming from the measure, while the second term gives an attractive force which
grows as the temperature is increased (we are discussing theories which have a mass gap after the compactifjo@ticando
zr(T) go to zero ag — 0). Thus, we expect that the repulsive force should dominate at low temperatures, so the eigenvalues
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should be uniformly spread and«) should be a constant, while for high temperatures the eigenvalues will want to be come
together.

The matrix model (3) can actually be solved exactly in this case, by a generalization of the methods used in [8] to solve the
two-dimensional lattice gauge theory. However, for our purposes the form of the exact solution (which is quite complicated) will
not matter, since a simpler analysis suffices to describe what happens near the phase transition. Let us change variables again,
to the Fourier components of the eigenvalue distribufigr= ffﬂ p(a) @™ da = tr(U™)/N, which are complex variables
obeyingp_, = p;;. These variables obey complicated constraints coming from the fact that the eigenvalue distribution must be
non-negative everywhere, but the fiion function turns out to be very simpie these variables (in the largé limit),

2z = | ( I dzpn) exp(—N2 5 Hima()+ (—D“z;(%)}mz). ©)
n=1 n=1

At low temperatures the expressions in the square brackets are all positive, so in tiéé liangehis integral is sharply localized
around the saddle poimt, = 0 (for all n # 0) corresponding to the uniform eigenvalue distribution, as expected. Moreover, it
is easy to compute explicitly the partition function (6) in this phase, and we find the simple formula for the low-temperature
partition function

o0

1

7= };[1 1—zp(T/n)+ (=D"zp(T/n)’

The free energy (T) = —T log(Z(T)) in this low-temperature phase is of order one in the lavgemit.
As we raise the temperature, the analysis above breaks down at the tempEgafaravhich

2g(TH) +2r(Tp) =1, 8)

at which the modeyq in (6) becomes effectively massless (and later tachyonic). As we appfgac (T) computed above
diverges asZ(T) « 1/(Ty — T). This is precisely the characteristic behavior of a system with a Hagedorn density of states,
p(E) ~ eE/TH | Thus, we find that the low-temperature phase of this system is governed by a Hagedorn density of states, with a
characteristic Hagedorn temperat@@g given by the simple equation (8). This equation may easily be solved for a given theory;
for example, for the fre pure Yang—Mills theory o83 we find Ty = —1/Rlog(2 — +/3), while for theN = 4 supersymmetric
Yang-Mills theory ons3 we find Ty = —1/R log(7 — 4/3).

Of course, the partition function of the free gauge theory is not really divergent, but rather the approximation we used in
deriving (7) breaks down as we come very clos@'te- Ty . This reflects the fact that the Hagedorn density of states in the
gauge theory is cut off at an energy of ordeéf, and for much higher energies the density of states is actually similar to that
of a free theory with no constraints (since the Gauss law constraint is negligible when we look at states with a very large
number of particles). We can also see this directly by counting the gauge-invariant states in the theory, which are of the form
tr(0103 - -- Oy) whereO; are creation operators for single-particle states in the adjoint representation. One can show that this
leads to a Hagedorn spectrum with the partition function (7) and with the tempefgjugéven above, in the approximation
in which single-trace and multiple-trace states are independent. However, this approximation breaks down when we have more
than N operators in the same trace, and this is the effect which smooths out the divergence of (7).

When we increase the temperature slightly abbve Ty, p1 becomes tachyonic and goes to its maximal possible value;
when all othefp,, = 0 the maximal value for which the eigenvalue density is non-negatiyg jis= 1/2, while the phase gf is
arbitrary (reflecting th& y global symmetry of the theory, which multiplies all the eigenvalue& péand alsqoq, by eZ”'/N).

This gives an eigenvalue distributigrie) = %(14— coSw — «p)). As we increase the temperature further, the other mpgles
also become non-zero allowing to increase further; this leads to a localized eigenvalue distribution with a gap. The behavior
of the eigenvalue distribution is summarized in Fig. 1 (where we arbitrarily chose the distribution to be localizedwato0d

We see that this system has a sharp phase transition at the Hagedorn temieeatilige, and based on our two order
parameters for deconfinement, we can identify it also with a deconfinement transition. The free energy clearly cligpges at
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Fig. 1. A schematic graph of the distribution of the eigenvalueti®@hblonomy matrix in compactified free Yang—Mills theories as a function
of the temperature.
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Fig. 2. The free energy of free pure Yang—Mills theory&?’nas a function of temperature in the larydimit; the behavior for other free gauge
theories is qualitatively similar.

from being of order one to being of ordar; a graph of limy_ F(T)/N2 based on the exact solution is drawn in Fig. 2.
And, even though the expectation value of the Polyakov Iin@/)) = (p1) vanishes both for low temperatures and for high
temperature, in the high temperature phase this vanishing comes from a sumdifferent saddle points with different phases
of p1 (which is as close as we can get to a spontaneous breaking Bfitlsymmetry at finite volume), so in this pha&g |2)

is non-zero. Thus, we have shown that compactified free Yang—tfélsries have a deconfinemefitase transition in the large
N limit, which happens precisely at their Hagedorn temperature.

3. The partition function of weakly coupled gauge theories

Next, we wish to turn on a small coupling constantand see how the results of the previous section change. In our first
method of computation, this requires computing the change in the energy of all the states in the theory (in a conformal theory
on $3 this can be mapped to the anomalous dimensions of the operators), which is very complicated even at leading order in
A (see [9]). Luckily, our second method of computation, via the Euclidean path integral, is more suitable at finite coupling. It
turns out that at finite coupling we can still integrate out all the modes appearing in the Euclidean path integral ekicepitfor
this induces additional interactions for, which we can compute order by order in perturbation theory.-fop order we find
that the effective action fa/ (which at one-loop order involved only terms of the forrdtf) tr(U —")) is deformed by terms
of the formak—Ltr(U"1) tr(U"2) - - - tr(U+1)/ N¥—1 which involve up tok + 1 traces (the number can be smaller if some of
the n; vanish); the terms we wrote here arise from planar diagrams, non-planar diagrams also contribute terms with a smaller
number of traces, but their contributions are down by powelm%)fThe coefficients of all of these terms can be computed by
computing thek-loop vacuum diagrams in the Euclidean Yang—Mihgory, with a non-trivial background holonomy af
given by the unitary matriv/.

Even at low orders ir, the resulting matrix model is quite complicated, and it is not known how to solve it exactly.
However, we are mostly interested in the behavior of the theory near its phase transition point. As we saw in our analysis of the
free theory, this is dominated by the modge=tr(U)/N which is light near the transition. Thus, the region near the transition
can be described by an effective action fgrin which we integrate out all other modes, and from our discussion above this
effective action takes the form (up to second order)in

Seft = N?[a(Ty — T)lp1/% + bA%|p1]], 9)

wherea and Ty for A = 0 may be computed from the results of the previous section (and they then receive perturbative
corrections in.), while b (the leading non-quadratic term at weak coupling) may be computed from 2-loop and 3-loop vacuum
diagrams in the Yang—Mills then Terms of third order irp; are not allowed by the glob&l symmetry.

The action (9) is the standard Landau—Ginzburg action describing a phase transition whose order parameter is a complex
scalar. As usual, the behavior of the theory near its phase transition depends on the sign of the quartic cheffftriént 0,
as we increase the temperature the effective potentidpfigr(which is bounded between zero and a half) goes from the top
graph on the left side of Fig. 3 to the bottom graph. We see that at some critical temp&gatdmeh is smaller tharfy (since
the quadratic term there is still positive), the global minimum of the action (or the free energy) shifts from bejng @tto
being at|p1| = 1/2. Thus, in this case we have a first order (diginuous) phase transition at a temperafiye: Ty, as drawn
in Fig. 3.

Forb > 0, the behavior of the effective potential is depicted on the left side of Fig. 4T FofTy, the only minimum is at
the originp; = 0. As we increase the temperature ab@yethe minimum shifts away from the origin, with the value|pf| at
the minimum increasing smoothly with the temperature, until it reaches its maximal possiblépadlael /2 at a temperature
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Fig. 3. The leftmost figure depicts the effective potential|far for various temperatures wheén< 0; the top graph corresponds to the lowest
temperature. On the right the eigenvalue distribuf®drawn (schematically) for various temperatures.
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Fig. 4. The leftmost figure depicts the effective potential|fan for various temperatures whén> 0; the top graph corresponds to the lowest
temperature. On the right the eigenvalue distribui®drawn (schematically) for various temperatures.

T». At this point another smooth transitidakes place, in which the eigenvalustdbution changefrom being non-uniform

but everywhere non-zero to having a gap. The eigenvalue distributions for this case are depicted on the right-hand side of Fig. 4.
In order to know which of these two alternatives occurs in a given theory — namely, whether the transition is of first order or

of second order, and whether it happens at the Hagedorn temperature or below it — we must compute thé ial(®. dthis

requires summing up all the diagrams contributing to the vacuum energy up toxGtdetrthe time of this article (September

2004) we are nearing the end of this computation for the case of the puré)Stdng—Mills theory compactified 083. The

contributing diagrams in this case, in a convenient choice of gauge and after integrating out some of the fields, are drawn in

Fig. 5. More details will be given, together with the results of this computation, in [10].

4. Summary and future directions

To summarize, we have shown that weakly coupled la¥ggauge theories on compact spaces exhibit a Hagedorn density
of states,o(E) ~ exp(E/Ty) for high energies (this behavior is cut off at an energy of odérin the largeN limit), and
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One loop:

Two loops
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8 Da

Three loops %
3a
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3

Fig. 5. All the diagrams contouting to the computation df in the pure Yang—Mills theory 083. The solid lines are gauge field propagators,
the circles denote vertices arising from intaing out the ghosts and some components of the gauge field, and the cross in the bottom left
diagram denotes a double-trace counter-term of ogéﬁr(which contributes at the sanoeder as the 3-loop diagrams).

that they exhibit a deconfinement phase transition at a temperature which (like the Hagedorn temperature) is inversely related
to the size of the compactification manifold. The deconfinement transition can either be a first order transition occurring below
the Hagedorn temperature, or a secondkotransition at the Hagedorn temperatwhich is followed by another continuous
transition at a higher temperature. The properties of the transition and of the stringy spectrum in specific theories may be
computed in perturbation theory, through a unitary matrix model.

Our analysis applies both to asymptotically free theories compactified on manifolds much smalley Algpland to
compactified weakly coupled conformal field theories (sucH as4 supersymmetric Yang—Mills), as long as there are no zero
modes appearing in the reduction of any of the fields on the compact manifold. In particular, our analysis applies to the large
N pure Yang—Mills theory on a very smatf. We expect that the transition we fincetle should be continuously related (by
increasing the size of the3) to the deconfinement transition on a lar§@ which is a first order transition as in flat space.
Depending on the sign df, the simplest possibilities for the phase diagram of this theory as a function of the dimensionless
parameteR Aqcp are depicted in Fig. 6.

We are continuing to work on computing the signpoiin this theory, as well as in th¥ = 4 supersymmetric Yang—Mills
theory onS$3. One can show that in general both signsbotan occur, depending on the precise Lagrangian of the gauge
theory, and it is not clear if there is any simple way to determine the signwthout doing the full 3-loop computation. The
generalization of the analysis of the free theory above to include fields in the fundamental representation was performed in [11].
Other interesting future directions are:

— Our results provide explicit formulas for the spectrum of the free string theories which are dual to fre& |Xeye—
Mills theories. It would be interesting tanderstand these theories better andytddrfind their worldsheet description. In
particular for the case of th¥ = 4 supersymmetric Yang—Mills theory ¥, these results are supposed to apply to type
1B string theory onAdS; x $° in the limit in which the radius of curvature (in string units) goes to zero. Note that even in
this limit we find a finite Hagedorn temperature, so it seems that this limit does not involve tensionless strings. This limit of
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Hagedorn Terfiperature

Hagedorh

PHASE III

PHASETII

TR TR

Hagedorn

PHASE I PHASE I

RAqep R Aqcp

Fig. 6. The simplest possible phase diagrams for pure Yang—Mills theofy ofihe solid lines are phase boundaries. Phase | (the confining
phase) has a uniform eigenvalue distributiphase Il has a non-uniform but nowhere vanishirggritbution, while phase Il has a distribution
with a gap. The left-hand diagram could apply ik 0 in this theory, and the right-hand diagranbif- 0.

the AdS/CFT correspondence was discussed from other points of view in the talks at the conference by Gopakumar [12,13]
and by Bianchi [14].

— Whenb > 0 we find an interesting intermediate phase, involving an eigenvalue distribution which is non-uniform but
nowhere-vanishing (this phase also appears when0 but it never dominates the canonical ensemble in that case). It
would be interesting to understand this phase better and to learn how to distinguish it from the ‘standard’ deconfining
phase which has a gapped eigenvalue distribution, both fine point of view of the Yang—Ms theory and from the point
of view of possible string theory duals (where deconfined phases are generally mapped to black holes).

— There is mounting evidence that tNe= 4 supersymmetric Yang—Mills theory &% may be integrable in the largeé limit.

It would be interesting to understand how this is reflected in the canonical ensemble, and whether the integrable properties
of the theory (such as degeneracies of energy eigenstates) may be analyzed using our methods. Note that the canonical
partition functions which we can compute perturbatively encode the full spectrum of perturbative anomalous dimensions

in the case of conformal field theories 68, at least when the deconfinement phase transition is of second order.

— It would be interesting to try to generalize our analysis here to cases where the fields have zero modes, such as toroidal
compactifications. In such cases perturbation theory breaks down since the zero modes are strongly interacting, so other
methods must be used; some preliminary results for the cadetol)-dimensional Yang—Mills thories on a circle were
recently presented in [15], and more will follow in [16]. In these cases the gauge field has also spatial holonomies, and
there is an intricate phase structure involving both the spatial and the temporal holonomies. The spatial holonomies also
have phase transitions similar to the ones described above, and at strong coupling these are mapped in the string theory
duals to the Gregory—Laflamme black hole/black string transitions.

— Finally, it would be interesting to study to what extent one can indeed smoothly interpolate between the weak and strong
coupling regimes, as we suggested in Fig. 6, and to what extent we can use our results to study (or generate models for) the
deconfinement phase transition of QCD at infinite volume (at |arg® for finite N). It is clear that some features differ
between the regime of smak Agcp and the regime of larg& Aqcp (typical low-energy states in the former regime
are uniformly spread out on the compact manifold, while typical low-energy states in the latter regime look like a gas of
glueball particles), but it seems that no order parameters distinguish them so there is no obstruction to having a smooth
interpolation between them. Unfortunately, there are no good methods to study the intermediate regime in which the size
of the compactification manifold is of the same order as the QCD scale.
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