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Abstract

A unitary quantum gas is a gas of quantum particles with a binary interaction of infinite scattering length and ne
range. It has been produced in recent experiments with gases of fermionic atoms by means of a Feshbach resonance. Usin
Fermi pseudo-potential model for the atomic interaction, we show that the time evolution of such a gas in an isotrop
dimensional time dependent harmonic trap is exactly given by a gauge and scaling transform.To cite this article: Y. Castin,
C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Évolution d’un gaz quantique unitaire dans un potentiel harmonique variable : solution par changement d’échelle.
Nous entendons par « gaz quantique unitaire » une assemblée de particules dont le mouvement est décrit quantiq
qui interagissent par un potentiel de longueur de diffusion infinie et de portée négligeable devant leur distance
et leur longueur d’onde thermique. Un tel gaz a été produit récemment à l’aide d’une résonance de Feshbach da
d’atomes fermioniques. En modélisant les interactions entre particules par le pseudo-potentiel de Fermi, nous mon
l’évolution d’un gaz unitaire dans un potentiel de piégeage harmonique isotrope tridimensionnel de dépendence te
quelconque est décrite exactement par la composition d’un changement d’échelle et d’une transformation de jauge.Pour citer
cet article : Y. Castin, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Experiments with quantum gases of spin 1/2 fermionic atoms are currently making rapid progresses. One of the
fascinating properties of these fermionic gases is the possibility to freely tune the sign and the strength of the atomic int
without reducing the lifetime of the sample: the value of thes-wave scattering lengtha of two particles with opposite spi
components can virtually be adjusted from−∞ to +∞ with a Feshbach resonance technique [1], without inducing
instability of the gas even in the unitary limita = ±∞ [2]. These systems are still gases, in the sense that the effe
range of the interaction potential is negligible as compared to the mean interparticle separation and to the thermal d
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wavelength. We shall take advantage of this crucial property and model the true interaction potential by the so-calle
pseudo-potential [3].

Such stability of the strongly interacting Fermi gases opens up fascinating possibilities, e.g. the study of the crossove
between a Bose–Einstein condensate of dimers (already observed, see [4–7]) and a BCS condensate of pairs, by pass
the strongly interacting regimekF |a| � 1, wherekF is the Fermi momentum [8,9]. In the unitary limitkF |a| → +∞, the
thermodynamic properties of the spatially homogeneous gas are universal: they depend only on the Fermi energy a
temperature. At zero temperature, the chemical potential of the homogeneous gas is thenµ = ηµ0 whereη is a pure numbe
andµ0 is the chemical potential of the ideal Fermi gas [2,10]. An accurate measurement ofη would provide a crucial test o
many-body theories [2,5,7].

The standard imaging technique used with quantum gases is to switch off the trapping potential, to let the gas ex
to perform a light absorption imaging of the atomic cloud. Such a ballistic expansion acts as a magnifying lens: it was us
to reveal the vortex lattice in arotating Bose–Einstein condensate [11], and very recently to obtain the value of the univers
numberη for the unitary Fermi gas [7]. Clearly the interpretation of the time of flight images strongly relies on a theo
understanding of the time evolution of the gas in a time dependent harmonic potential. In the case of a pure Bose
condensate in the regimekF |a| � 1, this was achieved starting from the Gross–Pitaevskii equation by a gauge plus s
transform [12,13]. When the Bose or Fermi gas enters the strongly interacting regimekF |a| > 1, no solution starting from firs
principles is available1 and one relies on the hydrodynamic approximation [14].

Here we consider the idealized case of an isotropic and harmonic three-dimensional trapping potential. In the lim
infinite scattering length, we show that the Fermi pseudo-potential has a scaling invariance that rigorously allows the
gauge plus scaling transform similar to the one of [15] to describe the time evolution of the gas due to an arbitrary var
the trapping frequency.

2. The model based on the Fermi pseudo-potential

Consider an assembly ofN non-relativistic particles, with an arbitrary spin. These particles may be indistinguishable b
or fermions, or even be distinguishable. All the particles have the same massm and interactvia the same binary interactio
potential independent of the spin degrees of freedom. The interaction potential is the Fermi pseudo-potential with
constantg related to thes-wave scattering lengtha by g = 4πh̄2a/m. At this stage, 0< |a| < +∞, we shall take the unitar
limit |a| → +∞ later.

Let ψ(r1, . . . , rN) be the wavefunction of the gas corresponding to a given (but arbitrary) spin configuration
wavefunctionψ then evolves according to the Schrödinger equation:

ih̄∂tψ =
N∑

i=1

[
− h̄2

2m
�ri + U(ri )

]
ψ +

∑
1�i<j�N

gδ(ri − rj )ψ
reg
ij . (1)

Here�ri is the three-dimensional Laplacian with respect to the spatial coordinatesri of particle numberi, U is the trapping
potential seen by each particle and eachψ

reg
ij

, the so-called regular part ofψ in ri = rj , is the following function ofN − 1
vectors of coordinates:

ψ
reg
ij

({rk, k �= i, j},Rij
) = lim

rij →0

∂

∂rij
(rij ψ), (2)

whererij is the norm ofrij ≡ ri − rj and where the limit and the partial derivative are taken for fixed positionsrk of theN − 2
particles other than particlesi andj , and for a fixed position of the center of mass of the particlesi andj, Rij ≡ (ri + rj )/2.

The domain of the Hamiltonian corresponding to the Fermi pseudo-potential is therefore not the Hilbert space of
interacting gas, but a functional space withspecific boundary conditions for the wavefunctionψ . More precisely, as we now se
the model amounts to replacing the true interaction potential bycontact conditions, i.e. by boundary conditions onψ when the
distancerij between two particles tends to zero, the wavefunctionψ otherwise evolving with the interaction free Schröding
equation [16]. As the wavefunctionψ does not contain any delta singularity, each delta singularity in the interaction te
Eq. (1) has indeed to be compensated by a delta singularity in the kinetic energy term. In 3D this implies thatψ can diverge as
1/rij whenrij → 0, a divergence which is still square integrable. Two cases can occur:

1 It was expected that a gauge plus scaling transform would provide an exact solution to theN -body problem in a strictly two-dimensiona
Bose gas in an isotropic harmonic trap [15], for an interaction potential modeled by a delta distribution. Actually a delta interaction potentia
2D does not lead to a mathematically well defined problem and therequired regularisation [17] breaks the scaling invariance.
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– case (i): limrij →0 ψ = 0: no delta singularity occurs from the kinetic energy operator, and there is no delta singularit

the interaction term asψ reg
ij

vanishes. For instance, this is the case when particlesi andj are indistinguishable fermions i
the same spin state.

– case (ii):ψ has a 1/rij singularity:

ψ = A

rij
+ B + O(rij ), (3)

whereA andB are still functions of therk ’s with k �= i, j , and ofRij. The regular part ofψ is thenψ
reg
ij = B. Writing the

kinetic energy operator for the pair of particlesi, j as�ri + �rj = 1
2�Rij + 2�rij and using�(1/r) = −4πδ(r), we find

that the total coefficient ofδ(ri − rj ) in the right-hand side of Eq. (1) vanishes provided thatA + aB = 0.

A way of summarizing the two cases is thensimply to impose the boundary conditions:

ψ(r1, . . . , rN) = A
({rk, k �= i, j},Rij

)[
r−1
ij

− a−1] + O(rij ) (4)

the first case corresponding toA = 0 and the second one toA �= 0. Having ensured that all the delta singularities cancel in th
Schrödinger equation, we can now restrict it to the manifold where the positions of the particles are two by two distinc

ih̄∂tψ =
N∑

i=1

[
− h̄2

2m
�ri + U(ri )

]
ψ for rij �= 0, ∀i �= j. (5)

Eqs. (4) and (5) constitute the basis of our model.

3. Scaling transform in the unitary limit

We specialize the previous section to the case of the unitary quantum gases: the scattering length is now infinite, s
set to zero the 1/a term in the boundary conditions (4), to obtain

ψ(r1, . . . , rN) = A({rk, k �= i, j},Rij)

rij
+ O(rij ). (6)

Note that the unitary limit does not look in any way singular in our formulation of the model, as the scattering leng
appears through its inverse in Eq. (4). Also we restrict to the case of an isotropic harmonic potential:

U(r) = 1

2
mω2(t)r2, (7)

where the oscillation frequencyω(t) of a particle in a trap is constant and equal toω0 for t < 0 and has an arbitrary tim
dependence fort � 0. The ballistic expansion of the gas mentioned in the introduction corresponds to settingω to zero for
t � 0.

We assume that the state vector of the gas fort < 0 is a steady state of Schrödinger’s equation with the energyE. The
corresponding wavefunction for the considered spin configuration isψ0, which in particular obeys the boundary conditi
equation (6). Our ansatz for the time-dependent wavefunction, inspired from [12,13,15], is then

ψ(r1, . . . , rN, t) = N (t)ei
∑N

j=1 mr2
j λ̇(t )/2h̄λ(t)

ψ0
(
r1/λ(t), . . . , rN/λ(t)

)
, (8)

where the time dependent normalisation factorN (t) and the time dependent scaling factorλ(t) need to be determined. Th
ansatz is the combination of a gauge transformation (see the Gaussian phase factor) and a time dependent scaling tra
the rescaling of the coordinates byλ(t) in ψ0).

The first step is to check that the ansatz equation (8) is in the right Hilbert space,i.e. that it satisfies the boundary conditio
equation (6). The scaling transform indeed preserves the boundary conditions: it rescales and multiplies the functionA by λ

but does not lead to the appearance of a O(1) term in Eq. (6). Note that for a non-zero value of 1/a the conclusion would be
different if A �= 0. The gauge transform also preserves the boundary conditions: for fixedrk ’s we writer2

i + r2
j = 2R2

ij + r2
ij /2

so that for a fixedRij, the gauge transform involves only as a non-constant factor

eimr2
ij λ̇/4h̄λ = 1+ imr2

ij λ̇/4h̄λ + O
(
r4
ij

)
. (9)

As r2
ij × A/rij = O(rij ), the boundary conditions are preserved by the gaugetransform, a conclusion that extends to t

non-zero 1/a case.
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What is left is to check that the free particle Schrödinger equation (5) is satisfied by the ansatz for an appropriate
λ(t) andN (t). One calculates the time derivative and the Laplacian of the ansatz. One uses the fact thatψ0 is an eigenstate o
energyE to express the action of the kinetic energy operator onψ0 in terms ofr2

j ψ0 terms andEψ0. Equating the termsr2
j ψ0

on both sides of Eq. (5) leads to

λ̈(t) = ω2
0

λ3(t)
− ω2(t)λ(t) (10)

to be solved with the initial conditionsλ(t < 0) = 1, λ̇(t < 0) = 0. For a ballistic expansion, one findsλ(t) = (1 + ω2
0t2)1/2.

Equating the terms proportional toψ0 gives Ṅ /N = −3Nλ̇/(2λ) − iE/(h̄λ2) which is readily integrated inN (t) =
λ−3N/2(t)exp[−iE

∫ t
0 dτ/λ2(τ)h̄]. The first factor in the right-hand side of this equation ensures the conservation of the

of the wavefunction.
The ansatz equation (8) therefore gives, in the unitary limit, the exact time evolution of the initial state vector for an a

time dependence of the isotropic harmonic potential. It rigorously confirms the scaling law that one would obtain from
temperature hydrodynamic approximation. It also allows to use the symmetry considerations developed in [15]: e.g.
of linear response to a sudden change in the frequencyω away fromω0 gives rise to an undamped oscillation at frequency 2ω0
which reveals the existence ofN -body stationary states of energyE ± 2h̄ω0 coupled toψ0 by the excitation operator

∑N
i=1 r2

i .
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