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Abstract

The asymptotic behavior of a class of nonlinear Schrödinger equations is studied. Particular cases of 1D weakly foc
Bose–Einstein condensates are considered. A statistical approach is presented following Jordan and Josserand (P
61 (2000) 1527–1539) to describe the stationary probability density of a discretized finite system. Using a maximum
argument, the theory predicts that the statistical equilibrium is described by energy equivalued fluctuation modes ar
coherent structure minimizing the Hamiltonian of the system. Good quantitative agreement is found with numerical sim
In particular, the particle number spectral density follows an effective 1/k2 law for the asymptotic large time averaged solutio
Transient dynamics from a given initial condition to the statistically steady regime show rapid oscillations of the cond
To cite this article: C. Josserand, C. R. Physique 5 (2004).
 2004 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Fluctuations turbulentes dans les condensats de Bose–Einstein. Le comportement asymptotique des solutions d’équat
différentielles hamiltoniennes est présenté dans le cas général des équations de Schrödinger nonlinéaires. Ce travail r
étude précédente s’appuyant sur une description statistique de l’espace des phases de la solution (Phys. Rev. E 61 (2
1539). La recherche de la distribution stationnaire à l’équilibre statistique s’effectue pour la dynamique discrète en ma
l’entropie autour de la solution concentrant toute la masse du système. On trouve alors que la distribution d’équilibre co
à l’équipartition statistique de l’énergie en excès sur tous les modes accessibles. Les simulations numériques sur u
faiblement focalisant et dans le cas particulier d’un modèle 1D de condensat de Bose–Einstein permettent de montr
accord quantitatif avec les prédictions de la théorie.Pour citer cet article : C. Josserand, C. R. Physique 5 (2004).
 2004 Published by Elsevier SAS on behalf of Académie des sciences.
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1. Introduction

The emergence and persistence of large scale coherent structures in the midst of small scale turbulent fluctua
common feature of many turbulent fluids, plasma systems and nonlinear dynamics in general [1–4]. Classical example
the formation of large vortices in two-dimensional high Reynolds turbulence or the emergence of solitary solutions in n
optics [5,6]. Moreover, and quite surprisingly, such complex phenomena survive even when the dissipationless versio
dynamics are taken. In these cases as in many classical Hamiltonian systems, the dynamics are formally reversible [7].
one can question how such apparently irreversible processes can be compatible with these irreversible dynamics?
attainment of Bose–Einstein condensates (BEC) [8–10] provides a fascinating new system exhibiting similar behav
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being attained, the condensate can indeed be viewed as a large coherent structure, persisting in the atomic trap and
by fluctuations. When thermal fluctuations are neglected, BEC can be modelled by the usual semi-classical Gross–
equation. It is strictly valid only atT = 0 and is also Hamiltonian dynamics. Moreover, note that for all these example
dynamics resume in partial differential equations describing the evolution of one or few classical fields (velocity for tu
flows or wave function for BEC for instance).

The interplay between the fluctuations and the coherent structures in these systems is of crucial interest to our unde
of nonlinear dynamics. Important questions are related to the asymptotic behavior of the dynamics and to their possible
description. In particular, the expected thermal equilibrium would in fact lead to the well-known Rayleigh–Jeans dive
for a classical field. The aim of this article is precisely to investigate how this black body-like catastrophe manifests
priori smooth dynamics, driven by the partial differential equations (PDE) considered here. For simplified reversible
it is believed and borne out by numerical simulations that the coherent structures may act as statistical attractors
the whole system relaxes. Following weak turbulence theory, in continuum systems, the fluctuations were shown to
without bound in addition to cascading to smaller and smaller scales. The explanations proposed for this cascade-lik
invoke in fact thermodynamical considerations [11,12]. In collaboration with R. Jordan, we have recently focused
scenario for the class of nonintegrable nonlinear Schrödinger (NLS) equations [13,14]. Following [15] we seek the pro
density of a solution for a finite numbern of modes version of the NLS equations. Usual thermodynamical arguments, whe
probability density corresponds to the standard Maxwell–Boltzmann distribution, fail, and one has to consider that a
structure emerges from the solution of the PDE. Indeed, from numerical simulations we assume the presence of a
mean field which contains most of the conserved particle number (L2-norm squared). Such specific treatment of a partic
part of the solution is therefore very close to the statistical theory of the Bose–Einstein transition! The stationary pro
distribution is obtainedvia the maximization of the entropy of this finite statistical system. It describes an ensemble wh
mean-field corresponds to a large-scale coherent solitary wave, which minimizes the Hamiltonian given the particle
coupled with small-scale random fluctuations, or radiation. The fluctuations equally share the difference of the conser
of the Hamiltonian and the Hamiltonian of the coherent state. The effective temperature of this thermal-like system is i
proportional ton, the number of modes, and goes therefore to zero in the continuum limit. Thus the discretization leveln of the
dynamics triggers an effective energy cut-off which avoids the Rayleigh–Jeans divergencies. This statistical theory fo
good qualitative and quantitative agreement with numerical simulations done for a weakly focusing NLS equation. S
ensemble can be retrieved by time and ensemble averaging of large time numerical solutions starting from rando
conditions. At large enough time, the dynamics of the solutions present statistical stationary properties in full agreem
the statistical theory. The road to this statistically stationary state is also investigated and allows a consistent scena
dynamics in the continuum limitn→ ∞.

In this article, we discuss how these results apply to the case of BEC dynamics. The Gross–Pitaevskii equation in
trap used to model the condensate evolution is in fact a particular case of NLS system so that the introduced descriptio
Before that, the general theory for the NLS equation in one spatial dimension with a finite number of modes will be pr
in detail.

2. Self-organization in NLS-systems

In this section I briefly introduce the results obtained for the NLS-equations. Most of the conclusions and the fig
presented for a specific 1-D focusing NLS equation but the results apply to the whole class of these models. The pre
here will follow [13] and the reader will find more details and references there.

2.1. Generalities

We consider the general dimensionless NLS equation:

i∂tψ +	ψ + f (|ψ |2)
ψ = 0, (1)

whereψ(r, t) is a complex field and	 is the Laplacian operator. The functionf (|ψ |2) stands for nonlinear interactio
and external potential. Among other phenomena, it is used to model gravity waves on deep water [16], Langmuir
plasmas [6], pulse propagation along optical fibers [3], superfluid dynamics [17] and Bose–Einstein condensates [18
latter case, the interaction functionf (|ψ |2) depends also on the positionr to describe the atomic trap in which Bose–Einst
condensates are achieved. Whenf (|ψ |2)= ±|ψ |2 and Eq. (1) is posed on the whole real line or on a bounded interval
periodic boundary conditions, the equation is completely integrable [20]. In any other configuration it is nonintegrable.
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The Hamiltonian equation associated to (1) is: i∂tψ = δH/δψ∗, whereψ∗ is the complex conjugate of the fieldψ , andH
is the Hamiltonian:

H(ψ)=
∫ (|∇ψ |2 −F (|ψ |2))

dr. (2)

Here, in addition to the kinetic term|∇ψ |2, thepotential F is defined via the relationF(a)= ∫ a
0 f (y)dy. The dynamics (1)

conserve, in addition to the Hamiltonian, the particle number (also called the mass)

N(ψ)=
∫

|ψ |2 dr. (3)

Without loss of generality we hereafter restrict the statistical analysis and the numerics to nonintegrable models in o

dimension. Eq. (1) exhibits solitary wave solutionsψ = φ(x, t)eıλ2t which satisfy

φxx + f (|φ|2)
φ − λ2φ = 0. (4)

It is worthwhile to notice that the solution of Eq. (4) minimizes the Hamiltonian (2) for a given particle number. W
denoteH ∗(N) the value of the energy of this solution. These localized structures are found to play an important role
time evolution of Eq. (1). Fig. 1 indeed, shows snapshot of the dynamics for the weakly focusing nonlinearityf (|ψ |2)= |ψ |.
Starting with a slightly perturbed homogenous solution, a collection of solitary peaks emerge from this linearly unstab
These solitary waves rapidly coalesce into a single coherent structure surrounded by small amplitude fluctuations
quasistatic dynamics follows where the fluctuations are seen to decrease in wavelength and in amplitude. The solitary
gathers almost all the mass of the system while the energy reaches smaller scales. In other words, the dynamics p
condensation of the mass into a coherent structure while the energy is distributed in the system.

Fig. 1. Profile of the modulus|ψ |2 at four different times for the system (1) with nonlinearityf (|ψ |2)= |ψ | and periodic boundary condition
on the interval[0,256]. The initial condition isψ(x, t = 0)= A, with A= 0.5, plus a small random perturbation. The numerical scheme
to approximate the solution is the split-step Fourier method. The grid size is dx = 0.125, and the number of modes isn= 2048. (a)t = 50 unit
time: due to the modulational instability, an array of soliton-like structures separated by the typical distanceli = 2π/

√
A/2 = 4π is created;

(b) t = 1050 unit time: the solitons interact and coalesce, giving rise to a smaller number of solitons of larger amplitude; (c)t = 15050: The
coarsening process has ended. One large soliton remains in a background of small-amplitude radiation. Notice that fort = 55050 unit time (d),
the amplitude of the fluctuations has diminished while the amplitude of the soliton has increased.
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2.2. Statistical model

To explain these numerical observations, we construct a consistent mean-field statistical theory based on [15]. I
describe the solution as a mean field which contains most of the particle number of the system while the amount of e
accounted by this solution is dispersed towards small scales. The theory is in fact presented for finite dimensional appr
of the NLS equation, using also the Dirichlet boundary conditions on the interval[0,L]. Other boundary conditions, such as t
periodic ones used in the simulations can easily be considered without any change in the conclusions.

Let ej (x) = √
2/Lsin(kj x) with kj = πj/L, and for any functiong(x) onΩ = [0,L] denote bygj = ∫

Ω g(x)ej (x)dx
its j th Fourier coefficient with respect to the orthonormal basisej , j = 1,2, . . . . We consider now a truncated version of t

NLS equations to then first Dirichlet modes. We writeψ(n) = u(n) + iv(n), whereu(n) andv(n) are two real functions whos
Fourier coefficients satisfy the coupled system of ordinary differential equations

u̇j − k2
j vj + (

f
((
u(n)

)2 + (
v(n)

)2)
v(n)

)
j

= 0, (5)

v̇j + k2
j uj − (

f
((
u(n)

)2 + (
v(n)

)2)
u(n)

)
j

= 0. (6)

It corresponds forψ(n) to:

iψ(n)t +ψ(n)xx + Pn(f (∣∣ψ(n)∣∣2)
ψ(n)

) = 0,

wherePn is the projection onto the span of the eigenfunctionse1, . . . , en. This equation is a natural spectral approximation
the NLS equation (1), and it may be shown that its solutions converge asn→ ∞ to solutions of (1) [19,21].

For givenn, the system of Eqs. (6) defines a dynamics on the 2n-dimensional phase spaceR2n. This finite-dimensiona
dynamical system is a Hamiltonian system, with conjugate variablesuj andvj , and with Hamiltonian

Hn =Kn +Θn, (7)

where

Kn = 1

2

∫ ((
u
(n)
x

)2 + (
v
(n)
x

)2)
dx = 1

2

n∑
j=1

k2
j

(
u2
j + v2

j

)
, (8)

is the kinetic energy, and

Θn = −1

2

∫
F

((
u(n)

)2 + (
v(n)

)2)dx, (9)

is the potential energy. The HamiltonianHn is, of course, an invariant of the dynamics. The truncated version of the pa
number, up to a multiplicative factor in the definition

Nn = 1

2

∫ ((
u(n)

)2 + (
v(n)

)2)dx = 1

2

n∑
j=1

(
u2
j + v2

j

)
, (10)

is also conserved by the dynamics (6).
We argue that we can build a statistical treatment of the system using the usual assumption that the dynamics is er

noting also that system (6) satisfies the Liouville property (the measure
∏n
j=1 duj dvj is invariant) [22].

We thus replace the time dependant dynamics by a statistical (time independent) description of the solution at a
We introduce a probability densityρ(n)(u1, . . . , un, v1 . . . , vn) on the 2n-dimensional phase space and we seek the de
functionρ(n) which maximizes the Gibbs–Boltzmann entropy functional:

S(ρ)= −
∫

R2n

ρ logρ
n∏
j=1

duj dvj . (11)

We easily obtain the usual canonical ensemble solution:

ρ ∝ exp(−βHn −µNn),
subject to the mean constraints〈Hn〉 =H0 and〈Nn〉 =N0.H0 andN0 are the given values of the Hamiltonian and the part
number, respectively, andβ andµ are the Lagrange multipliers associated to these constraints. Such a density is actu
defined since it is not normalizable (i.e.,

∫
R2n exp[−βHn − µNn]∏nj=1 duj dvj diverges) for the focusing nonlinearities w
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discuss here [15,24]. Moreover, this distribution does not take into account the numerical observed fact that an impo
of the phase space consists of configurations where most of the mass is concentrated in the solitary wave solution.

Inspired by these remarks, we have built an adapted statistical description of the dynamics. We decompose the fielun and
vn into two contributions: the means denoted〈uj 〉 and〈vj 〉 and the fluctuations(δu(n), δv(n))≡ (u(n)− 〈u(n)〉, v(n) − 〈v(n)〉).
This decomposition will be clarified by the yet to be determined ensembleρ(n). We now impose that in the long-time NL
dynamics (6) and for the continuum limitn→ ∞, the amplitude of the fluctuations vanishes. Consequently, the numb
particles in this limit is almost determined by the mean field. The vanishing fluctuations hypothesis is written:∫

Ω

[〈(
δu(n)

)2〉 + 〈(
δv(n)

)2〉]
dx ≡

n∑
j=1

[〈
(δuj )

2〉 + 〈
(δvj )

2〉] → 0, asn→ ∞. (12)

Using this assumption, it follows that forn large enough, the total number of particles is well approximated by the m
contribution. Similarly, one can show that the potential energy is almost entirely determined by the potential of th
However, although the fluctuations do not contribute much to the particle number and the potential energy, they ma
significant kinetic energy. Indeed, this contribution(1/2)

∑n
j=1 k

2
j [〈(δuj )2〉 + 〈(δvj )2〉], need not tend to 0 asn→ ∞, even if

(12) holds. Actually, it must in general not tend to 0 since the total energy of the system is conserved.
From these remarks, we can impose the following mean-field constraints onρ:

Ñn(ρ)≡ 1

2

n∑
j=1

(〈uj 〉2 + 〈vj 〉2
) =N0, (13)

H̃n(ρ)≡ 1

2

n∑
j=1

k2
j

(〈
u2
j

〉 + 〈
v2
j

〉) − 1

2

∫
Ω

F
(〈
u(n)

〉2 + 〈
v(n)

〉2)
dx =H0. (14)

HereN0 andH0 are precisely the conserved values of the particle number and the energy, as determined from
conditions.

The solutionsρ(n) of the statistical equilibrium states with the particle number constraint (13) are calculated now, in
again a maximum entropy principle. Notice that, similar to its above use, this principle has no reason to hold in such Ham
and reversible systems. However, it allows a consistent calculation of the density following an ergodic assumption
somehow corresponds to the determination of the density distribution around the most probable state (see also fo
discussion the recent work [23]).

The solutionsρ(n) are therefore calculated through usual techniques: two Lagrange multipliers are used to enforce
and the energy constraints. Considering independent statistical variables, the factorization of the maximum entropy di
is straightforward:

ρ(n)(u1, . . . , un, v1, . . . , vn)=
n∏
j=1

ρj (uj , vj ), (15)

where, forj = 1, . . . , n,

ρj (uj , vj )=
βk2
j

2π
exp

{
−
βk2
j

2

((
uj − 〈uj 〉

)2 + (
vj − 〈vj 〉

)2)}
. (16)

In addition, we find that the complex field〈ψ(n)〉 = 〈u(n)〉 + i〈v(n)〉 is a solution of (settingλ= µ/β)〈
ψ(n)

〉
xx

+ Pn(f (∣∣〈ψ(n)〉∣∣2)〈
ψ(n)

〉) − λ〈ψ(n)〉 = 0, (17)

which is clearly the spectral truncation of the eigenvalue equation (4) for the continuous NLS system (1). It follows, th
that the mean-field predicted by our theory corresponds to a solitary wave solution of the NLS equation. On the other
fluctuationsδuj andδvj are independent Gaussian variables with identical variance 1/βk2

j .
The energy constraint (13) imposes:

H0 = n

β
+Hn

(〈
u(n)

〉
,
〈
v(n)

〉)
, (18)

where the termnβ reflects the equipartition of energy among the 2n independent fluctuating modes. The calculation of the t
entropy is straightforward:

S
(
ρ(n)

) = C(n)+ n log

(
L2[H0 −Hn(〈u(n)〉, 〈v(n)〉)]

n

)
, (19)
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whereC(n) = n − ∑n
j=1 log(j2π/2) depends only on the number of Fourier modesn. Thus, the key results follow th

maximization of the entropy: firstly the mean-field pair(〈u(n)〉, 〈v(n)〉) has in fact to realize the minimum possible value
Hn over all fields(u(n), v(n)) that satisfy the constraintNn(u(n), v(n))= N0. Moreover, the excess energy not present in
mean field is equally distributed among the fluctuating modes, with the inverse temperature:

β = n

H0 −H ∗
n

, (20)

whereH ∗
n is precisely this minimum value ofHn allowed by the particle number constraintNn =N0. We obtain also that th

inverse temperature scales linearly with the number of modes in the continuum limit.
The vanishing of fluctuations hypothesis is also verified if one computes the contribution of the fluctuations to the

of particles. It can be written:

1

2

n∑
j=1

[〈
(δuj )

2〉 + 〈
(δvj )

2〉] = H
0 −H ∗

n

n

n∑
j=1

1

k2
j

= O

(
1

n

)
, asn→ ∞. (21)

The limitation of our statistical description follows directly from Eq. (21). Indeed, for a fixed number of modesn, the coher-
ent structure can only emerge ifN � (H0−H ∗

n )/n. If this criterion is not satisfied, the condensation of the solution into the
herent structure can even be broken. In fact, it is still under debate whether such a coherent structure can emerge in the
limit when starting with a highly fluctuating state concentrated at relatively small wavelengths [26]. In this approach the
tion modes have been choosen as theej (x) Fourier functions. This assumption is in fact a direct consequence of the factoriz
of the entropy, considering independent Fourier coefficients. Such an hypothesis is correct for defocusing homogen
equation but is, in general, only valid for a large wave numberkj . Indeed, it is well known by linearizing Eq. (1) around a giv
state that the perturbation modes have to be found through the so called Bogoliubov theory. Although the full determi
the Bogoliubov modes is needed to improve the statistics, we note that plane waves are a good approximation of the fl
modes for large enoughkj so that our theory is always relevant to describe the statistics of the small wavelength perturb

Finally, regardless of these restrictions, our statistical equilibrium approach gives the following prediction for the
number spectral density:

〈|ψj |2〉 = ∣∣〈ψj 〉∣∣2 + H
0 −H ∗

n

nk2
j

, (22)

where we have used the identityψj = uj + ivj .

2.3. Numerical results

In [13], we discuss how numerical simulations compare with these statistical predictions. Starting from any set o
condition, one expects, following ergodic theory, that large time and large ensemble (over different initial conditions) a
will reproduce the statistical description of the system. Alternatively, one can choose to measure ‘quasi-static’ a
quantities by measuring only few time unit averages and (if possible) large ensemble average. Such quasi-static d
would converge to the sought after statistical regime for large enough integration time of the dynamics where the t
effects due to the initial conditions can be ignored. We address here the weakly focusing nonlinearityf (|ψ |2) = |ψ | already
used for Fig. 1. The transient dynamics can be estimated by plotting the two contributions to the conserved total ener
shows over a large period the evolution of the kinetic and the potential energy, averaged over 16 slightly noisy hom
states. Fast but small oscillations of the energies around a smooth evolution account for the rapid fluctuation mo
kinetic (potential) energy is then found to increase (decrease) as time goes on, indicating the transfer of energy towar
scale. Moreover, after a short transient (untilt = 50000 time units) corresponding to the formation of peaks and to
coalescence into one single structure, a slow quasistatic regime is observed as described in Fig. 1. This slow evolution
the convergence of the coherent structure to the Hamiltonian minimizer. The straight line below the potential energy
the potential energy of the minimizer for the total particle numberN0. The potential energy approaches a constant value c
to this bound, the difference being due to the finite particle number which still remains in the fluctuations. This qua
dynamics seems in fact to saturate for thisn-modes calculations at large time (t � 900000). Indeed, such convergence
observed on the mean particle number spectra averaged over few time units and 16 initial conditions, which shows
properties thereafter.

Fig. 3 shows this particle number spectral density. The spectral density of the solitary solution which contains the to
particle number is drawn (smooth line) for comparison. The equipartition for large wavenumber deduced from the theo
marked, corresponding to a straight line in the log–log plot. Very good quantitative agreements are found between the t
predictions and the numerics, for the coherent structure at large scale as well as for the 1/k2 spectrum for small scale.
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Fig. 2. Kinetic (top curve) and potential (bottom curve) energies as function of time for the weakly focusing NLS. The straight line be
potential energy corresponds to the potential energy of the minimizer of the Hamiltonian for the particle number. The calculations
with n= 512 discretization points and ensemble averaged is performed over 16 different initial configurations.

Fig. 3. Particle number spectral density|ψk |2 as a function ofk for t = 1.1× 106 unit time (upper curve). The lower curve (smooth one) is
particle number spectral density for the solitary wave that contains all the particles of the system. The straight line drawn for largek corresponds
to the statistical prediction (22) for the spectral density for large wavenumbers. The numerical simulation has been performed withn = 512,
dx = 0.25,N0 = 20.48 andH0 = −5.46.

Before this stationary regime is attained, one can ask how the system finds its road to statistical equilibrium start
given initial conditions (taken here as homogenous states perturbed by a slight random noise). Since the dynamics
coalescence regime is quasistatic, converging slowly towards the statistical equilibrium, one can follow this evolution u
average of the particle number spectral density at timet . Here the mean value is taken over the ensemble of 16 initial condi
and also by time averaging over few time units only. Thus the average smoothes the fast variations while the e
due to the quasistatic dynamics can be neglected. Fig. 4 shows the particle spectrum for such an intermediate timti . The
statistical equilibrium has not been reached yet, but the solution has already converged into a single solitary wave su
by fluctuations. The spectrum at long wavelengths accounts again for the soliton-like coherent structure containing
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Fig. 4. The particle number spectral density forn= 512 and dx = 0.1 (thusL= 51.2) at unit timet = 5× 105. The coherent soliton structur
already accounts for almost the entire number of particles of the system, but the system has not yet reached statistical equilibrium.
noise level is still present for large wavenumbers (k � 20), while at smaller wavenumbers, one can recognize both the soliton-like structu
a fluctuation spectrum following approximately ak−2 law. The spectrum has been obtained by an ensemble average over 16 initial con
and a time average over the final 10 unit times.

almost all the total particles. On the other hand at small scales, the fluctuation modes already exhibit the 1/k2 law but only
for wavenumbers smaller than a well defined wavenumberK(ti). For higher wavenumbers, the amplitudes of the fluctua
modes are at the level of the initial noise. Somehow, the system acts as if at each timet the statistical equilibrium (22) wer
satisfied only for scales larger thanλ(t) = 2π/K(t). As time goes on, the frontk = K(t) advances in the momentum spa
as the ‘quasistatic’ equilibrium invades smaller and smaller lengthscales. For a finite number of modes, this slow d
saturates when all available modes are reached by the equilibrium. Thermal equilibrium between the fluctuations
attained. The front dynamics is found to obey the scalingK(t)� t1/4 using high derivative moments of the wavefunctionψ . It
is then tempting to generalize these results to the continuum limitn→ ∞. In that case, we expect that at any time the dynam
is made of a solitary coherent structure containing most of the particle number in quasi-statistical equilibrium with
number of fluctuating modes. As time goes on, the number of modes at equilibrium increases and the effective tem
due to the equipartition of the energy among the modes decreases. Thus the contribution of the fluctuations to the
decreases providing an inverse transfer of mass from the fluctuations to the soliton-like structure. Thet → ∞ limit corresponds
to the coherent structure containingall the mass of the system while the excess energy is distributed over an infinite num
modes of zero amplitude!

One may have argued that the prediction of the equipartition of the energy among the modes surrounding acondensate
structure was obvious since some sort of thermal equilibrium was assumed. In fact, it is noteworthy to observe that the
of (1) reaches in fact a self-thermalized state through the dependence of the temperature with the numbern of available modes
The singular limitn→ ∞ can then be interpreted as a semi-classical example of the Rayleigh–Jeans paradox [12].

3. Wave turbulence in BEC

We outline here the conclusions of the previous section for a model of BEC. For sake of simplicity and to allo
numerical simulations we will again restrict our study to one spatial dimension. In dimensionless units, the dynamics o
trapped in a harmonic potential can be written [18]:

i∂tψ =
(

−1

2
	+ Vext(x)+ |ψ |2

)
ψ, (23)

where the additional harmonic potentialVext(x) = 1
2Ω

2x2 describes the external potential used to confine the particles
atomic trap. The usual defocusing nonlinearity corresponding to repulsive particle interactions is used. The integrabil
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1D NLS equation is broken here due to the presence of the external potentialVext. The structure of the equation is clear
equivalent to the general NLS system. The number of particles:

N =
∫

|ψ |2 dx

is conserved as well as the Hamiltonian

H = 1

2

∫ (|∇ψ |2 +Ω2x2|ψ |2 + |ψ |4)
dx. (24)

To the kinetic energy|∇ψ |2 and the nonlinear potential term|ψ |4 is added the contribution of the external poten
Ω2x2|ψ |2. The solitary solutionsφ(x)e−ıµt which minimize the Hamiltonian for a given number of particlesN are solutions
of:

µφ = −1

2
φxx + 1

2
Ω2x2φ + φ3 = 0. (25)

Such solutions can be obtained numerically and are well described for large enoughN by the so-called Thomas–Ferm
approximation. Neglecting the kinetic term the Thomas–Fermi solutionφTF only balances the nonlinearity and the exter
potential:

φTF(x)=
√
µ− 1

2
Ω2x2

for |x| �
√

2µ/Ω andφTF(x)= 0 elsewhere. By a straightforward integration the chemical potentialµTF satisfies:

µTF = 1

2

(
3NΩ

2

)2/3
,

whereN is the total particle number. The radiusRTF of the condensate in the Thomas–Fermi approximation is fo
RTF = (3N/(2Ω2))1/3. Fig. 5 shows solitary solutions of Eq. (25) for different values ofN together with the correspondin
Thomas–Fermi solution. We observe that the Thomas–Fermi approximation is very good except in a small boundary l
x = RTF. The potentialµ is also found numerically very close toµTF. The solutions were calculated on the periodic b
x ∈ [−64,64] of lengthL= 128 unit length, withΩ = 0.1, that we will keep constant throughout, later on.

Fig. 5. Solutionsφ(x) of Eq. (25) forΩ = 0.1 and different particle numbersN = 11.5, 45, 180 and 720 (as expected, the smallerN the smaller
φ in the figure). For each solution the dashed line show the Thomas–Fermi approximationφTF.
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Perturbations around this ground state are studied to determine the eigenfrequencies of the fluctuation modes.
Bogoliubov approach, we are seeking solutions for the weak perturbation regime:

ψ(x, t)= (
φ(x)+ u(x)e−iωt + v(x)eiωt )e−iµt .

At first order in the complex functionsu andv, we obtain from (23) the coupled equations:

ωu(x)=
(

−1

2
∂xx + 1

2
Ω2x2 −µ+ 2φ(x)2

)
u(x)+ φ(x)2v(x), (26)

−ωv(x)=
(

−1

2
∂xx + 1

2
Ω2x2 −µ+ 2φ(x)2

)
v(x)+ φ(x)2u(x). (27)

This linear system can be solved numerically to determine the excitation spectrum [25]. However, as for the NLS
described above, high frequency modes are well approximated by plane wavesu(x), v(x) ∝ eikx for small wavelengths suc
thatk2 � µ� µTF. We retrieve then the well-known Bogoliubov relation for high wavenumber dispersive waves

ω= 1

2
k2.

A priori, the statistical approach developed above applies to this specific NLS system (23). Thus, starting from an
condition, we should observe the formation of a coherent structure solution of (25) containing almost all the particle
of the system, in the midst of wave fluctuations. For large enough time, one should observe also the statistical equipa

(a) (b)

(c) (d)

Fig. 6. Particle number density|ψ(x, t)|2 for different times: (a) initial Gaussian profile att = 0, (b)t = 4000, (c)t = 34 000 and (d)t = 250 000
units time. The coherent structures containing all the particles is shown as dashed lines on figure (d).
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the excess energy between all the available modes for a finite-n grid point calculation. In particular, we should observe ag
a 1/k2 particle number spectrum for large wavenumbers. To illustrate this dynamics, we initiate the dynamics with the
state of a condensate of noninteracting bosons forN = 180. When the nonlinear term is neglected, the ground state of the
Schrödinger equation is described by a Gaussian distribution of the particle around the trap center:

ψi(x, t)=
√
N

(
Ω

π

) 1
4

e−(Ωx2)/2 e−ıµt .

The Gaussian widthσ = 1/
√
Ω defining the typical radius of the noninteracting gas. Numerical simulations are typ

made on a regular grid of 512 or 1024 points, using a Yoshida pseudospectral splitting scheme [27] which is 4th orde
Mass and energy are conserved to within 10−10 and 10−5 relative errors respectively. Att = 0 we start the dynamics of Eq. (23
with:

ψ(x,0)=ψi(x,0)+ η(x),
whereη(x) is a white noise of very small amplitude (10−5), taken to break thex→ −x symetry of the system. Fig. 6 show
snapshots of the solution for different times.

We observe roughly the expected dynamics where the coherent structure emerges from fluctuations. However
notice that the fluctuation amplitudes are much higher here than for the simulations shown in the previous section, s
comparison between the solution at large times and the coherent structure (Fig. 6(d)) is only partially satisfied. This h
of fluctuations is due to the large difference of energy between the initial condition (H = 564.25) and the coherent structu
φ(x) minimizing the Hamiltonian (H ∗ = 486.15). Moreover, since the initial Gaussian width (σ = 3.16) is smaller than the
Thomas–Fermi radius (RTF = 30) of the coherent structure, we observe in the numerics numerous large radius osci
aroundRTF before the solution stabilizes. Such radius oscilations can be noticed between Figs. 6(a–c).

These oscillations and their ‘effective’ damping are even better seen on Fig. 7 where the different (kinetic, external
and nonlinear) contributions to the total energy are shown after a short time. Recall that the sum of these three con
is constant throughout the dynamics. The amplitude of these oscillations are rapidly decreasing after few thousand t
Thereafter, only small oscillations are observed around slowly varying energy contributions. This slow dynamics is s
Fig. 8 where again kinetic (bottom curve), and the sum of the external and the potential energies (top curve) are dr
much larger time scale. After the short transient, where fluctuations are important, we observe a quasistatic dynamics

Fig. 7. Different contributions to the total constant energy as functions of time for short times. Kinetic energy (black curve), external
contribution (red curve) and nonlinear one (blue curve) have been also vertically translated for vizualisation. The calculation is m
n= 512 discretization points.
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of time.

le.

d by our
Fig. 8. Kinetic energy (bottom black curve), sum of the external potential and of the nonlinear contribution (top red curve) as function
The calculations are made here withn= 1024 discretization points.

Fig. 9. Particle number spectral density of the fluctuations around the solutionφ(x)e−iµt at different stage of the dynamics on a log–log sca
From bottom to top at high wave number, we have the spectrum of the initial conditiont = 0 (black curve), the spectrum att = 16900 time
units (red curve) and att = 422000 (blue curve). The dashed line represents the spectral density for large wavenumber as predicte
theory. The number of grid points for calculation isn= 1024 here.



C. Josserand / C. R. Physique 5 (2004) 77–90 89

ve) at

reases,
stem the

are shown

m. One
d
n
n was
d
ing NLS of

ed, while
igher level
structure
de of
numerical
shown at

close to

EC [28–
system
dy-like
ularization
namics.
l field.

fluids and
has been
consider
Fig. 10. Particle density|ψ(x, t)|2 (solid line) of the solution of the dynamics (23) and the density of the fluctuation field (dashed cur
t = 422000.

of small rapid fluctuations around a slow variation of the energy contribution. As expected, the kinetic contribution inc
while obviously the other contributions decrease. This slow dynamics indicates as for the previous focusing NLS sy
transfer of energy towards smaller and smaller scales as time goes on.

The cascade-like transfer can also be seen on Fig. 9 where the particle number spectral density of the fluctuations
at different instants of the dynamics. This spectral density is obtained by substracting the coherent structureφ e−iµt from the
solutionψ(x, t). The spectra are obtained by time averaging over one unit of time, except for the initial condition spectru
can see the evolution of the spectrum from the initial Gaussian distribution to the predicted spectrum att = 422000. The dashe
line represents the quantitative prediction〈|ψj |2〉 = (H0 −H ∗

n )/(nk
2
j
), based onH ∗

n calculated with the soliton-like solutio
containing all the particles (N = 180). Such a stationary spectrum corresponding to the statistical equilibrium distributio
actually mostly attained sincet = 200000 time units. The curve att = 16 900 indicates that the 1/k2 spectrum is fist reache
at long wavelengths and invades smaller and smaller lengthscales as time goes on, as already observed for the focus
the previous section.

A difference between the predicted spectrum amplitude at high wave numbers and the numerical results is observ
the agreement for the focusing NLS in the previous section was much better. We understand such discrepancy by a h
of fluctuations in the BEC system. The energy difference between the initial condition and the ground state coherent
containing all the particles is	H = 78 here while it was only a few units for the focusing NLS case. Thus the amplitu
the fluctuations are the same order as the coherent structure, as observed in Fig. 10 where, both the density of the
simulations and the density of the fluctuation field deduced after subtraction of the expected coherent structures are
t = 422000. Here we are close to the limitation of our approach since the particle number of the fluctuations field is
the total particle number as discussed previously.

This finite mode self-thermalization of the NLS-like equations has been used recently to model finite temperature B
30]. Distributing fluctuation energy equally among the Bogoliubov modes, the authors ‘mimic’ numerically a thermal
at equilibrium with only the Gross–Pitaevskii equation. Although the cutoff at high wavenumbers of the black-bo
catastrophe is needed, we want to emphasize here that this approach is inconsistent since no convergence of this reg
in the continuum limit is proposed. A consistent regularization would have to integrate a quantum description of the dy
Our work here, without solving this crucial question, can be seen as an attempt to describe the dynamics of a classica

4. Conclusion

We have presented here the asymptotic dynamics of different nonlinear differential equations used to model super
BEC. The description of the statistical properties of the solution for large times when a quasi-static regime is reached
developped for a finite number of modes truncation. Seeking a stationary probability density function we were led to
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the maximum entropy density where all the mass is contained in the coherent structure minimizing the Hamiltonia
continuum limit. Thus, the large scale solutions of the dynamics for a finite number of modes are found by this app
behave like this coherent structure immerged in a sea of energy equipartitioned fluctuations. Long-time numerical sim
show then very good agreement with the predictions both for a weakly focusing NLS equation and for a 1D version of
model. The road towards these statistically stationary states gives a consistent scenario of the continuum limit of the d
It corresponds to a quasistatic dynamics where the number of fluctuation modes at equilibrium increase with time. The
of the advance towards smaller and smaller scales has been studied for a particular case of NLS dynamics and rem
fully explored in general.
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