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Abstract

Rupturing fluid membrane vesicles with a steady ramp of micropipette suction yields a tension distribution that ima
kinetic process of membrane failure. When plotted on a log scale of tension loading rate, the distribution peaks (m
strengths) define adynamic tension spectrum with distinct regimes that reflect passage of prominent energy barriers
the pathway to rupture. Demonstrated here by tests on giant PC lipid vesicles over loading rates from 0.06–60 mN/m/s, the
stochastic process of rupture can be modelled as a causal sequence of two thermally-activated transitions where eac
governs membrane strength on separate scales of loading rate. Under fast ramps of tension, a steep linear regim
in each spectrum at high strengths which implies that failure requires nucleation of a rare nanoscale defect. The
projected intercept yield defect size and spontaneous production rate respectively. However, under slow ramps of lo
spectrum crosses over to a shallow-curved regime at lower strength, which is consistent with the kinetic impedance to
an unstable hole in a fluid film. The dependence of rupture tension on rate reveals hole edge energy and frequency
thermal fluctuations in size.To cite this article: E. Evans, V. Heinrich, C. R. Physique 4 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

La rupture de vésicules membranaires fluides sous différentes rampes de succion appliquées à l’aide de micropipe
des distributions de tension qui révèlent un processus cinétique de rupture membranaire. Le spectre dynamique
la tension de rupture en fonction de la vitesse de succion (taux de charge) en échelle logarithmique met en évidence
barrières d’énergie qui empêchent la rupture et limitent la perméation spontanée. Les expériences réalisées sur de
lipidiques géantes pour des taux de charge de 0,06–60 mN/m/s montrent que la résistance de la membrane est gouverné
deux transitions thermiquement activées. Pour les résistances les plus élevées sous des vitesses de succion rapide
linéaire dans le spectre est dominé par une nucléation initiale de défauts à une échelle nanoscopique. La pente et l’in
avec l’axe des abscisses permettent de déduire respectivement de la taille du défaut et de la vitesse spontanée
faibles tensions de rupture sous de faibles taux de charge, un régime de faible courbure dans le spectre est dom
processus mésoscopique d’ouverture d’un pore pour lequel l’échelle des tensions révèle une énergie de ligne.Pour citer cet
article : E. Evans, V. Heinrich, C. R. Physique 4 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
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1. Introduction

Unstressed, a fluid membrane in the form of a closed vesicle or solid supported film can survive for a very long period
However, under lateral stress, membrane tension will reach a level where a nanoscale hole opens and grows rapidly
the membrane. The question is: what governs the level of tension needed for failure and thus determines membrane
Held together by hydrophobic interactions, one might naively expect fluid lipid bilayers to rupture at tensions compa
hydrocarbon-water surface tension (σo/w ∼ 40 mN/m) by analogy to when surface pressure vanishes in a lipid mono
spread at an oil/water boundary. However, biomembranes rupture at much lower tensions in a range from∼1–25 mN/m and
exhibit a prominent dependence on lipid composition [1–6]. Although commonly considered as materialconstants, we will
show that rupture strengths of fluid membranes are dynamical properties and depend on the time frame for breakage

Many clever experiments have been designed to observe transient permeation and opening of membrane ho
majority of experiments, holes in membranes have been produced in planar films under constant lateral tensi
transmembrane voltages often sufficient to cause capacitive breakdown [7–13]. More recently, holes in vesicle me
have been opened by adhesion-driven tension and slowed through viscous thickening of the aqueous environment
observation by video microscopy [14,15]. Complementary to these techniques, but linked in a more direct way
determinants of mechanical strength, we will show that rupturing vesicle or cell membranes under ramps of tension
(σ =�σ t ) provides a simple mechanical method to explore the kinetic process of hole nucleation and dynamics of m
failure. If performed over a sufficient span in loading rate�σ, measurements of rupture tension versus log(�σ ) can reveal
the dominant nano-to-mesoscale energy barriers traversed along the tension-driven pathway to membrane failure.
demonstrate the approach with results from tests on giant phosphatidyl choline PC vesicles loaded at rates over n
orders of magnitude in tension/time. The dependence of breakage tension on rate implies a kinetic process that be
nucleation of a nanoscale defect which then either vanishes or evolves to an unstable hole. Correlation of the measure
of failure to distributions predicted by the theory yields the size and frequency of formation for the initial defect plus the
rate and hole edge energy that govern passage of the final barrier to catastrophic failure.

2. Materials and methods

2.1. Lipids and vesicle preparation

Fluid membrane vesicles were made fromcis unsaturated 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (C18:
SOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine (diC18:1) DOPC, and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (
DLnOPC. These synthetic species of diacyl PC lipids were purchased from Avanti Polar Lipids (Alabaster, AL) in chlo
and used without further purification. The solutions were stored in amber glass screw cap vials with Teflon-lined silicon
wrapped in aluminum foil, and kept at−20◦C under argon. To create giant bilayer vesicles (15–40 µm diameter), lipid
were first dried from chloroform:methanol (2:1) onto the surface of a roughened Teflon disk [16]. After deposition of th
film and evaporation of the organic solvent in vacuo, the Teflon disk was covered with a film of warm (37◦C) sucrose solution
(200 mM) and allowed to pre-hydrate before swelling in excess buffer. The final aliquot of giant vesicles was produ
many-fold dilution of the hydrated lipid multilayers in an equi-osmolar glucose or salt buffer. The difference in inner an
solutes creates both a refractive index and density gradient, which enhance optical discrimination of the vesicle co
Fig. 1) and sediment vesicles to the floor of the microscope chamber.

2.2. Measurement of rupture strength

Micropipet pressurization was used to increase membrane tension and lyse single vesicles. To increase ten
steady rate, a ramp of pipet suctionP(t) = cpt was produced with a motorized ground-glass syringe pump connected
micropipet assembly. Tension was calculated from the pressure using the well-known relation for a fluid membrane ves
σ(t) = P(t)Rp/2(1− Rp/Rs). In addition to the pre-measured value of inner pipet radiusRp, the radiusRs of the vesicle
exterior to the pipet was monitored continuously throughout each test. The loading rate�σ was determined directly from th
slopes of tension versus time. High speed video-image analysis was used to track vesicle boundaries along the axis of
at a framing rate of∼100 s−1. Samples of intensity profiles prior to – and just after – rupture are shown in Fig. 1. Vesicle ru
led to disappearance of the vesicle within 1–2 image frames and accurately defined rupture tension within 0.01�σ (mN/m).
Optical measurement of pipette radius contributed a random uncertainty of∼ ±5% to the magnitude of tension and tensi
loading rate.
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Fig. 1. Left: video image of a giant PC bilayer vesicle aspirated into a micropipette; right: intensity scans along the axis of symmet
(solid curve) and after vesicle rupture (dotted curve).

Fig. 2. Membrane tension as function of time for two vesicles made from diC18:2 PC and loaded at slow and fast loading rates up
(stars).

2.3. Experimental results

Fig. 2 shows tension histories for two vesicles tested under a slow and fast loading rate. Made with the same type
the major increase in rupture tension at the fast rate compared to the slow rate demonstrates the underlying depe
membrane rupture on kinetics. Performed at 6 loading rates in the range from 0.06–60 mN/m/s, histograms of rupture tension
were collected from lysis of 70–100 vesicles at each rate. The evolution in statistics of rupture events from the slowest
loading rates are demonstrated by the sample histograms for each type of lipid in Fig. 3. Superposed on the histo
probability densities for failure predicted by the kinetic theory for rupture, which will be developed in the following se
Readily apparent in Fig. 3, the positions of histograms shift to higher tensions as loading rate increases. Secondly, t
of distributions begin narrow at slow rates and broaden asymmetrically on approach to fast rates. Also, the spreads
tension are significantly greater than that contributed by experimental error at all loading rates. From the viewpoint of
properties, the level of membrane rupture strength is seen to diminish with increased lipid unsaturation at a fixed cha
As we will show next, the parameters needed to predict the rupture statistics at any loading rate are readily obtai
analysis of the dynamic spectra of most frequent rupture tensions (distribution peaks) as functions of log(loading rate
are plotted in Fig. 4.
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Fig. 3. Histograms of rupture tensions collected at slow and fast loading rates for each type of lipid. Superposed are probabilit
distributions predicted by the kinetic theory for membrane rupture with the parameters listed in Table 1.

3. Theory and analysis

Reduction in the likelihood of membrane survival with time under stress was appreciated almost a half century
Deryagin and Gutop [18]. Extending Zeldovich’s [19] classical nucleation theory for cavitation in 3-D liquids, they the
that the random – but limited – lifetimes of thin fluid films stems from thermally activated nucleation of an unstabl
In their mesoscopic theory, Deryagin and Gutop used the mechanics of opening a hole in a 2-D continuum to des
energy landscape governing cavitation. Here, the energy of cohesion is defined by the product of a material edgeε
(energy/length) and the hole perimeter 2πr . Under mechanical tensionσ , the total energyE(r) is lowered through the potentia
for mechanical work of expansion,E(r)≈ (2πr)ε − (πr2)σ , which becomes the dominant term at large radii. A maxim
in energy occurs at acritical radius, rc = ε/σ , where the height of thecavitation barrier is found to be,Ec = πε2/σ . Both
height and radial position of the cavitation barrier diminish under tension in the course to rupture. Thus, the thermally-a
frequency for opening an unstable hole (i.e., passage of the cavitation barrier) is expected to rise rapidly under increasi
over a scale defined and bounded byσc= πε2/kBT .

Subsequently, observations of electrical conductance and transient permeation through solvent-spread membra
have revealed that a more complex energy landscape governs dynamics of membrane permeation. In particular, fl
of voltage-dependent conductance showed that molecular-scale defects open and close spontaneously in membran
these transient structures were imagined to be very small hydrophobic pores that quickly round into hydrophilic structu
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Fig. 4. Dynamic spectra of most frequent rupture tensions
(distribution peaks) measured over three orders of magnitude
in loading rate. The continuous curves are predictions of
the kinetic theory for membrane rupture with the parameters
listed in Table 1.

Fig. 5. Schematic illustration of the energy landscape in hole ra
space used to model the kinetic process of membrane permeation
rupture. A precursor barrierEp at radiusrδ limits creation/annihilation
of a molecular-scale defect, which may then pass the classical cavit
barrier to failure. Beginning from the metastable state at energyE�, the
energy landscape rises to the cavitation barrier set by holeedge energy ε

and mechanical tensionσ , i.e.,Ec−E� = πε2/σ .

with lipid headgroups. Consistent with elastic concepts described earlier by Helfrich [20], continuity of the inner an
monolayers is expected to diminish the large perimeter energy associated with exposure of hydrocarbon to water and
cavitation energy barrier. But perhaps most significant, it was found recently from careful study of transient bursts in m
conductance that the spikes in conductance represented sequences of nanopore states originating within the lifetime
metastable defect [21]. Moreover, labeled as a pre-pore state, the results implied that no more than one metastable
likely to exist in the membrane at any time [21]. Although the molecular-scale structures of such defects and open
membranes remain unknown, the electrical conductance measurements have shown clearly that some type of prec
must be introduced into the classical theory of cavitation. Hence, in the idealized concept of configurations defined b
space, the energy landscape for open holes would commence from an intermediate state that follows the defect
barrier as schematized in Fig. 5.

3.1. Kinetics of membrane failure

Implicit in the energy landscape sketched in Fig. 5 is the assumption that an unstable hole is linked causally to a p
defect, which is supported by studies of fluctuations in membrane conductance [21]. Thus, although a defect may arise
on the membrane, they remain rare-isolated events that quickly vanish or occasionally evolve to an unstable ho
understood, membrane rupture is most likely to occur when tension rises above the level where the time needed fo
of the cavitation barrier falls to within the lifetime of a defect. Formulated into a hierarchy of master equations that si
the stochastic process of failure, the model requires analytical prescriptions for each kinetic rate of barrier passage. B
with defect formation, we assume that the energy rises steeply from the bound state and is capped by asharply-curved barrier
at an energy level ofEp defined initially asEδ in the unstressed state. For a sharp barrier, the heightEp will diminish under
tension in proportion to the effective area of the defect, i.e.,Ep(σ ) ≈ Eδ − (πr2

δ )σ . Thus, for a thermally-activated rate
transition∼exp(−Ep/kBT ), the frequency of defect formationν0→� will grow exponentially on a scale of tension defined
σδ = kBT/πr2

δ , i.e.,

ν0→� = ν0δ exp

(
σ

σ

)
, (1)
δ
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where the rate prefactorν0δ scales as exp(−Eδ/kBT ). Given a sharp defect barrier, the energyE� of the metastable state th
follows will drop from its initial levelE0 by effectively the same amount under tension, i.e.,E� ≈ E0− (πr2

δ )σ . Hence, the
rate of defect annihilationν0←� would remain approximately constant as expressed by

ν0←� ≈ ν0δ exp

(
E0

kBT

)
. (2)

Finally, rising from the defect state at energyE�, the energy landscape is modelled by the mesoscopic mechan
opening a hole in a continuous material as described above and sketched in Fig. 5. Beyond thecavitation barrier defined
by, Ec=E� + πε2/σ , an unstable hole opens to cause catastrophic failure of the membrane. Scaling barrier height by
energy defines the characteristic tension,σc = πε2/kBT , for thermal activation, i.e., rate∼exp(−σc/σ ). Because the oute
barrier is inversely proportional to tension in this mesoscopic model, we see that a defect cannot become an uns
at zero tension and that some level of tension is needed to rupture the membrane. As found by Deryagin and Gut
expressed in a much less organized relation than given here), the frequency of opening an unstable holeν�→hole is predicted to
increase dramatically with application of tension up to the level defined byσc,

ν0→hole= νδc

(
σ

σc

)1/2
exp

(
−σc

σ

)
{σ < σc}. (3)

The origin (via Zeldovich) of Eq. (3) comes from Kramers’ Brownian-dynamics theory [22,23] for thermally-activated e
from a deeply-bound state. Deceptively simple, Kramers’ result in the overdamped limit can be summarized by a
expression for transition (escape) rate, i.e.,ν→ = (D/l0lts)exp[−Eb/kBT ]. Clearly, the major factor is the exponent
dependence on height of the barrierEb, which for cavitation in 2-D is exp(−σc/σ ). The Brownian-diffusive dynamics are
embodied in an attempt frequency,D/l0lts, which is governed by a coefficientζ (≡kBT/D) for damping and the product o
two length scalesl0lts. The lengthl0 is defined by the thermal spread in bound state local to the minimum. In the context o
dynamics, fluctuations in bound state are confined by the perimeter-edge energy and thus the thermal spread is app
by, l0 ≈ kBT/(2πε). The lengthlts is the energy-weighted width of the transition state. Governed by the fall in energy
from the top of the cavitation barrier,−π(r − rc)

2σ , the thermal barrier width is estimated by the Gaussian approxima
lts≈ (kBT/σ )1/2. As a consequence of the variable thermal width, the attempt frequency in Eq. (3) is modulated by
tension-dependent function(σ/σc)

1/2. Taken together, these approximations predict that the attempt frequency prefacνδc
should depend on the ratio of the tension scale to damping factor,νδc≈ 2π1/2σc/ζ .

Continuing with the perspective of Kramers’ theory, it follows that the frequencyν0δ for spontaneous nucleation o
defects should vary as,ν0δ ∼ [kBT/(ζ r2

δ )]exp(−Eδ/kBT ), if r2
δ is used to approximate the productl0lts. As above, the

ratio of tension scale to damping factor sets the scale for attempt frequency and we obtain the useful expressioν0δ ∼
(πσδ/ζ )exp(−Eδ/kBT ). Thus, if a common factorζ characterizes damping of Brownian fluctuations over the entire en
landscape, the attempt frequencyνδc for passage of the cavitation barrier would be directly related to the spontan
frequencyν0δ of defect formation through the height of the defect barrier, i.e.,νδc/ν0δ ≈ (σc/σδ)exp(Eδ/kBT ). Although
hypothetical, the assumption of a nearly-constant damping factor is not unreasonable given the very small area comp
of biomembranes [24]. As such, area changes contributed by defect creation/annihilation and fluctuations in hole si
produce in-plane collective flows at constant surface density. For pure radial flow, membrane surface-shear viscηm
determines the damping of circular fluctuations (i.e.,ζ ≈ 4πηm). Completely obscure in this type of mesoscopic model,
frequency scalesν0δ andνδc could involve an area-dependent prefactor often ascribed to the number of sitesNδ for defect
formation in a macroscopic membrane. However, as noted above, careful study of fluctuations in membrane con
indicate that only a single defect state is likely to exist in the membrane at any time [21]. So we neglect the putativ
Nδ which, in any case, merely remains a hidden-homogeneous constant that arbitrarily scales time.

3.2. Dynamic regimes of membrane strength

The hypothesis is that membrane rupture arises from one unstable hole and that this hole must evolve during the l
a particular defect. Hence, with the frequencies defined by Eqs. (1)–(3), the following hierarchy of statistical (Markov)
equations can be used to predict the causal sequence of defect formation and annihilation or evolution to an unstable

dS0(t)

dt
=−ν0→�S0(t)+ ν0←�S�(t),

dS�(t)

dt
=−[ν0←� + ν�→hole]S�(t)+ ν0→�S0(t), (4)

dShole(t) = ν�→holeS�(t),

dt
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S0(t), S�(t), andShole(t) are the probabilities of being in the defect-freeground state, metastable state, and ruptured st
respectively. The probability density for rupture events in a window of timet → t + �t is defined by the last equation
prup(t)= dShole(t)/dt . Under a ramp of tensionσ(t)= �σ t , the distribution of rupture times is transformed by loading r
�σ (=dσ/dt) into the distribution of rupture tensions, i.e.,prup(σ )= ν�→holeS�[σ(t)]/�σ .

Simple inspection of the energy landscape (Fig. 5) shows that the outer cavitation barrier falls below the defect barr
tension rises above a level such that(Eδ −E0)/kBT > σc/σ . As a consequence, the model predicts two distinct regimes i
spectrum of rupture tension as a function of loading rate. First, a high strength regime at fast loading rates arises whe
is limited by creation of a defect. Second, a low strength regime at slow loading rates arises when rupture is limited
opening (i.e., passage of the cavitation barrier). In each regime, the statistics of transitions can be approximated by s
a single Markov equation using one of the following expressions for the limiting transition rateν[σ(t)], i.e.,

defect-limited: ν(σ )≈ ν0δ exp

(
σ

σδ

)
,

cavitation-limited: ν(σ )≈ νδc

(
σ

σc

)1/2
exp

(
−σc

σ

)
{σ < σc}.

(5)

When dominated by passage of a single barrier, the distribution of rupture events in time becomes,

p(t)= ν(t)exp

{
−

∫
0→t

ν(t ′)dt ′
}

,

and again transformation with the loading rate�σ specifies the distribution of rupture tensions,

p(σ )= ν(σ )

rσ
exp

{
− 1

�σ

∫
0→σ

ν(σ ′)dσ ′
}

.

The peak in a tension distribution (most frequent rupture) defines therupture strength σ at the particular loading rate�σ . The
dependence of strengthσ on loading rate is easily derived from the distribution maximum∂p/∂σ = 0, which yields the result
ν(σ )= �σ {∂ log(ν)/∂σ }σ=σ . With this expression and the transition rates in Eqs. (5), the regimes of strength domina
each barrier are predicted as functions of loading rate:

defect-limited:
σ

σδ
≈ Loge

( �σ

ν0δσδ

)
,

cavitation-limited: −σc

σ
+ Loge

[
(σ/σc)

5/2

1+ σ/2σc

]
≈ Loge

( �σ

νδcσc

)
.

(6)

The defect-limited regime is a simple straight line with slopeσδ , which extrapolates to a loading rate intercept given
�0

σ = ν0δσδ . By comparison, the cavitation-limited regime is a shallow-nonlinear curve that rises very slowly as rate in
over many orders of magnitude. The distinctly different shapes of the two limiting regimes result in a prominent cr
in membrane strength when the loading rate is fast enough to rapidly suppress the outer cavitation barrier leaving t
barrier as the dominant impedance to rupture. As shown next, good estimates of the parameters governing strength c
be obtained by matching Eqs. (6) to the appropriate portions of an experimental spectrum. However, match of the full
of the Markov process (Eqs. (4)) to all distributions provides the best quantification of the kinetic parameters and is als
to place a bound on the metastable state energyE0.

3.3. Correlation of theory to experiment

Analysis of the membrane rupture experiments begins with matching the strength regimes in Eqs. (6) to the seg
the experimental spectrum that exhibit a shallow-upward curve in strength followed by a linear-like rise over significa
in loading rate. As shown with the SOPC spectrum in Fig. 6(a), the first step is to match a straight line to the high
(expected rupture tension) data at fast loading rates>10 mN/m/s. Consistent with the first of Eqs. (6), the outcome is
spontaneous rate for formation of defectsν0δ (≈0.18 s−1) and the tension scaleσδ = kBT/r2

δ (≈4 pN) set by defect size
The next step is to match the second of Eqs. (6) for the cavitation-limited regime to the lower values of rupture te
slow loading rates. As seen in Fig. 6(b), fit of the cavitation-limited regime is much less sensitive to the choice of par
defined by the edge energy (tension scaleσc= πε2/kBT ) and attempt rateνδc. When only required to fit the rupture streng
at one value, a mere two-fold change of tension scale in a cavitation-limited regime is usually accompanied by man
of magnitude change in the rate scale (e.g.,νδc∼ 103–1011 s−1 for σc∼ 80–200 mN/m). However, extending the fit to cove
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Fig. 6. Left: correlation of thedefect-limited regime with the dynamic tension spectrum of SOPC vesicles. Right: correlation o
cavitation-limited regime with the SOPC spectrum. The solid curve is the full spectrum predicted by solution of the Markov sequence (E

Table 1
Material parameters that govern strength of PC membranes

ν0δ σδ rδ νδc σc ε

(s−1) (mN/m) (nm) (s−1) (mN/m) (pJ/m)

DLnOPC 2.0 3.5 0.61 ∼1× 106 30 6.3
DOPC 0.22 4.0 0.57 ∼3.3× 106 102 11.5
SOPC 0.18 4.0 0.57 ∼5× 106 130 13

a large span in loading rate (e.g., 0.07–3 mN/m/s) significantly narrows the range of acceptable values (i.e.,σc ∼ 120–140
mN/m or ε ∼ 13± 0.5 pJ/m andνδc∼ 106–107 s−1).

Using parameters obtained by the procedure illustrated in Fig. 6 and the Markov equations (4), the final step in data
is to refine the values by matching the probability densities for failure to all of the histograms at different loading rates. E
of tension distributions that result from this procedure are superposed on the histograms in Fig. 3 and the continuous
rupture strength are plotted with the data for most frequent rupture tension in Fig. 4. Here, fits to tension distributions m
in the crossover region from the cavitation-limited to defect-limited regime are particularly useful for restricting the
parameters in difficult cases. The reason is that in the crossover region, the distribution is narrow and rises steeply o
tension side of the peak but is broadened significantly and falls more gradually on the high tension side. The asymme
from a major difference in kinetic impedance between the two cavitation and defect barriers under tension.

In the final step of fitting probability densities to the measured histograms of tension, the metastable state enE0
becomes an additional parameter. Because of the enormous difference in time scales betweencavitation-limited anddefect-
limited kinetics, dependence on the metastable state energyE0 was found to be very weak. For instance, in matching all of
distributions for the five lipids, the only clear requirement for optimal fit was that the values ofE0 lie between (0–3)kBT above
the defect-freeground state, which was accompanied by a commensurate 10-fold span in the attempt frequencyνδc. Hence, the
rate of defect annihilation was found to be comparable to the rate of formation (i.e.,ν0←� ∼ ν0→�). In Table 1, the paramete
values are given for the lower bound ofE0 ∼ 0kBT ; at the other bound ofE0 ∼ 3kBT , the only change is that values ofνδc
shift upward by an order of magnitude.

4. Conclusions and discussion

For fluid membranes made from diacyl PCs, we find two distinct regimes of rupture strength as a function of d
loading. Under very slow ramps of tension, a low strength regime appears where rupture tension increases weakly w
rate (i.e., only∼1–2 mN/m over at least two orders of magnitude in rate) and the tension distributions are very narrow.
high strength regime emerges under fast ramps of tension where rupture tension rises dramatically (as much as 10 mN/m for an
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order of magnitude increase) and the tension distributions are significantly broadened. Both distribution shape and the
form of each DTS regime follow directly from a simple kinetic model of the rupture process that begins with nucleati
nanoscale defect which then either disappears or evolves to an unstable-mesoscopic hole. The model involves five
dependent parameters. First, defect formation is described by a frequency scaleν0δ for spontaneous appearance. Next,
defect energyE0 in the metastable state sets the frequency scale for annihilation as defined byν0δ exp(E0/kBT ). The defect
transition is coupled to tension through the area created by a defect, which is described by the apparent defect radiusrδ . Finally,
the mesoscale dynamics of hole opening under tension are described by an attempt frequencyνδc and membraneedge energy ε,
which governs the height of the cavitation barrier relative to the defect state.

As emphasized, somewhat similar concepts arose from the early studies on electrical conductance, transient pe
and breakdown of solvent-spread membranes where tension remains constant [7,9–11]. However, the most direct ev
the stochastic events postulated in our model comes from the recent detailed study of fluctuations in membrane co
under low voltages [21]. In particular, it was found that bursts of transient∼1 nm holes open and close within the lifetime o
‘pre-pore’ defect state [21]. Moreover, it was concluded that the ‘pre-pore’ defect must be a local-isolated nonconduc
distinct from the closed ground state. Significantly, our DTS experiments imply that nucleation begins with a defect of∼1 nm
cross section and that the defect lifetime ranges from∼0.1–10 s, which is similar to the survival of the ‘pre-pore’ state dedu
from bursts in electrical activity [21]. Furthermore, the edge energies derived from our experiments (cf. Table 1) are co
with values of∼10 pJ/m and 20 pJ/m from the earlier experiments using natural lecithins [9,10,12] as well as∼10 pJ/m
from vesicle electroporation experiments [13] using synthetic C18:0/1 PC. Considering the added complexity of elect
plus the presence of organic solvent in the case of the BLM experiments, the consistency between parameters obta
electrical permeation and our mechanical DTS experiments (Table 1) strongly supports the efficacy of the simple kinet

In addition to consistencies with electrical conductance and permeation experiments, correlations of the param
Table 1 to other properties of the membranes provide insights into the key determinants of strength. First, although r
only shown here for only three PCs, the edge energies are found to correlate closely with the elastic bending moduli
DLnOPC (kc≈ 0.44× 10−19 J), DOPC (kc≈ 0.85× 10−19 J), and SOPC (kc≈ 0.9× 10−19 J). Increase of edge energy wi
bending stiffness seems obvious for rounded-hydrophilic edges lined with lipid headgroups. However, much more su
correlation yields a characteristic lengthkc/ε ≈ 7 nm much larger than the monolayer thickness of∼2 nm, which would define
the curvature of a circular edge. The large value forkc/ε seems to imply that the edge shape is flatter than a circular con
This would require the acyl chains to deviate significantly from the surface normal as if sheared. Moreover, the edg
would include many lipid molecules. Also important but much less precise, the apparent heights of the defect barriers a
to correlate with the membrane-hydrocarbon thicknesses obtained from X-ray diffraction [24]. Estimates of defect barri
can be calculated from the products of ratios for tension and frequency scales in Table 1, i.e.,νδc/ν0≈ (σc/σδ)exp(Eδ/kBT ),
again based on the assumption that a common damping coefficient characterizes both defect and hole dynamics. Th
gives defect barrier energies of∼11kBT for DLnOPC (hch2= 2.5 nm),∼13kBT for DOPC (hch2= 2.5 nm), and∼14kBT

for SOPC (hch2= 3.1 nm), which roughly increase at∼4.6kBT nm−1 of hydrocarbon thickness [24]. This energy per len
is an order of magnitude less than expected for exposure of the acyl chains to water which seems to imply that t
structure is also bordered by lipid headgroups. Finally, as a corollary to the barrier heights, the ratiosσc/νδc of tension scale
to attempt frequency in Table 1 provide the effective scale for damping of Brownian excitations in lipid membranes g
ζ ∼ 1× 10−4 mN·s/m.
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