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Abstract

Rupturing fluid membrane vesicles with a steady ramp of micropipette suction yields a tension distribution that images the
kinetic process of membrane failure. When plotted on a log scale of tension loading rate, the distribution peaks (membrane
strengths) define dynamic tension spectrum with distinct regimes that reflect passage of prominent energy barriers along
the pathway to rupture. Demonstrated here by tests on giant PC lipid vesicles over loading rates from 0.06w@8, tig
stochastic process of rupture can be modelled as a causal sequence of two thermally-activated transitions where each transition
governs membrane strength on separate scales of loading rate. Under fast ramps of tension, a steep linear regime appears
in each spectrum at high strengths which implies that failure requires nucleation of a rare nanoscale defect. The slope and
projected intercept yield defect size and spontaneous production rate respectively. However, under slow ramps of loading, the
spectrum crosses over to a shallow-curved regime at lower strength, which is consistent with the kinetic impedance to opening
an unstable hole in a fluid film. The dependence of rupture tension on rate reveals hole edge energy and frequency scale for
thermal fluctuations in siz80 citethisarticle: E. Evans, V. Heinrich, C. R. Physique 4 (2003).
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Résumé

La rupture de vésicules membranaires fluides sous différentes rampes de succion appliquées a I'aide de micropipettes génére
des distributions de tension qui révelent un processus cinétique de rupture membranaire. Le spectre dynamique exprimant
la tension de rupture en fonction de la vitesse de succidaux de charge) en échelle logarithmique met en évidence les
barriéres d’énergie qui empéchent la rupture et limitent la perméation spontanée. Les expériences réalisées sur des vésicules
lipidiqgues géantes pour des taux de charge de 0,06—60myd&montrent que la résistance de la membrane est gouvernée par
deux transitions thermiquement activées. Pour les résistances les plus élevées sous des vitesses de succion rapides, un régim
linéaire dans le spectre est dominé par une nucléation initiale de défauts a une échelle nanoscopique. La pente et I'intersection
avec l'axe des abscisses permettent de déduire respectivement de la taille du défaut et de la vitesse spontanée. A de plus
faibles tensions de rupture sous de faibles taux de charge, un régime de faible courbure dans le spectre est dominé par le
processus mésoscopique d'ouverture d’'un pore pour lequel I'échelle des tensions révele une énergieRberigiter. cet
article: E. Evans, V. Heinrich, C. R. Physique 4 (2003).
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1. Introduction

Unstressed, a fluid membrane in the form of a closed vesicle or solid supported film can survive for a very long period of time.
However, under lateral stress, membrane tension will reach a level where a nanoscale hole opens and grows rapidly to rupture
the membrane. The question is: what governs the level of tension needed for failure and thus determines membrane strength?
Held together by hydrophobic interactions, one might naively expect fluid lipid bilayers to rupture at tensions comparable to
hydrocarbon-water surface tensian,fw ~ 40 mN/m) by analogy to when surface pressure vanishes in a lipid monolayer
spread at an oil/water boundary. However, biomembranes rupture at much lower tensions in a rang&-f25hmN'm and
exhibit a prominent dependence on lipid composition [1-6]. Although commonly considered as ntatetiits, we will
show that rupture strengths of fluid membranes are dynamical properties and depend on the time frame for breakage.

Many clever experiments have been designed to observe transient permeation and opening of membrane holes. In the
majority of experiments, holes in membranes have been produced in planar films under constant lateral tension using
transmembrane voltages often sufficient to cause capacitive breakdown [7—13]. More recently, holes in vesicle membranes
have been opened by adhesion-driven tension and slowed through viscous thickening of the aqueous environment to enable
observation by video microscopy [14,15]. Complementary to these techniques, but linked in a more direct way to the
determinants of mechanical strength, we will show that rupturing vesicle or cell membranes under ramps of tension in time
(0 = Nyt) provides a simple mechanical method to explore the kinetic process of hole nucleation and dynamics of membrane
failure. If performed over a sufficient span in loading ratg, measurements of rupture tension versugfgg can reveal
the dominant nano-to-mesoscale energy barriers traversed along the tension-driven pathway to membrane failure. Here, we
demonstrate the approach with results from tests on giant phosphatidyl choline PC vesicles loaded at rates over nearly four
orders of magnitude in tension/time. The dependence of breakage tension on rate implies a kinetic process that begins with
nucleation of a nanoscale defect which then either vanishes or evolves to an unstable hole. Correlation of the measured statistics
of failure to distributions predicted by the theory yields the size and frequency of formation for the initial defect plus the attempt
rate and hole edge energy that govern passage of the final barrier to catastrophic failure.

2. Materialsand methods
2.1. Lipidsand vesicle preparation

Fluid membrane vesicles were made frams unsaturated 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (C18:0/1)-
SOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine (diC18:1) DOPC, and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (diC18:2)
DLNOPC. These synthetic species of diacyl PC lipids were purchased from Avanti Polar Lipids (Alabaster, AL) in chloroform
and used without further purification. The solutions were stored in amber glass screw cap vials with Teflon-lined silicone septa,
wrapped in aluminum foil, and kept at20°C under argon. To create giant bilayer vesicles (15-40 um diameter), lipid films
were first dried from chloroform:methanol (2:1) onto the surface of a roughened Teflon disk [16]. After deposition of the lipid
film and evaporation of the organic solvent in vacuo, the Teflon disk was covered with a film of wafi@)(8iécrose solution
(200 mM) and allowed to pre-hydrate before swelling in excess buffer. The final aliquot of giant vesicles was produced by
many-fold dilution of the hydrated lipid multilayers in an equi-osmolar glucose or salt buffer. The difference in inner and outer
solutes creates both a refractive index and density gradient, which enhance optical discrimination of the vesicle contour (cf.
Fig. 1) and sediment vesicles to the floor of the microscope chamber.

2.2. Measurement of rupture strength

Micropipet pressurization was used to increase membrane tension and lyse single vesicles. To increase tension at a
steady rate, a ramp of pipet suctié(s) = cpr was produced with a motorized ground-glass syringe pump connected to the
micropipet assembly. Tension was calculated from the pressure using the well-known relation for a fluid membrane vesicle [17],
o(t) = P(t)Rp/2(1 — Rp/Rs). In addition to the pre-measured value of inner pipet radipgsthe radiusRs of the vesicle
exterior to the pipet was monitored continuously throughout each test. The loading,ratas determined directly from the
slopes of tension versus time. High speed video-image analysis was used to track vesicle boundaries along the axis of symmetry
at a framing rate o100 s™1. Samples of intensity profiles prior to —and just after — rupture are shown in Fig. 1. Vesicle rupture
led to disappearance of the vesicle within 1-2 image frames and accurately defined rupture tensionQ&tin(®N/m).

Optical measurement of pipette radius contributed a random uncertaintyt€§% to the magnitude of tension and tension
loading rate.
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Fig. 1. Left: video image of a giant PC bilayer vesicle aspirated into a micropipette; right: intensity scans along the axis of symmetry before
(solid curve) and after vesicle rupture (dotted curve).
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Fig. 2. Membrane tension as function of time for two vesicles made from diC18:2 PC and loaded at slow and fast loading rates up to rupture
(stars).

2.3. Experimental results

Fig. 2 shows tension histories for two vesicles tested under a slow and fast loading rate. Made with the same type of lipid,
the major increase in rupture tension at the fast rate compared to the slow rate demonstrates the underlying dependence of
membrane rupture on kinetics. Performed at 6 loading rates in the range from 0.06-46ty syNistograms of rupture tensions
were collected from lysis of 70—-100 vesicles at each rate. The evolution in statistics of rupture events from the slowest to fastest
loading rates are demonstrated by the sample histograms for each type of lipid in Fig. 3. Superposed on the histograms are
probability densities for failure predicted by the kinetic theory for rupture, which will be developed in the following section.
Readily apparent in Fig. 3, the positions of histograms shift to higher tensions as loading rate increases. Secondly, the shapes
of distributions begin narrow at slow rates and broaden asymmetrically on approach to fast rates. Also, the spreads in rupture
tension are significantly greater than that contributed by experimental error at all loading rates. From the viewpoint of material
properties, the level of membrane rupture strength is seen to diminish with increased lipid unsaturation at a fixed chain length.
As we will show next, the parameters needed to predict the rupture statistics at any loading rate are readily obtained from
analysis of the dynamic spectra of most frequent rupture tensions (distribution peaks) as functions of log(loading rate), which
are plotted in Fig. 4.
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Fig. 3. Histograms of rupture tensions collected at slow and fast loading rates for each type of lipid. Superposed are probability density
distributions predicted by the kinetic theory for membrane rupture with the parameters listed in Table 1.

3. Theory and analysis

Reduction in the likelihood of membrane survival with time under stress was appreciated almost a half century ago by
Deryagin and Gutop [18]. Extending Zeldovich’s [19] classical nucleation theory for cavitation in 3-D liquids, they theorized
that the random — but limited — lifetimes of thin fluid films stems from thermally activated nucleation of an unstable hole.

In their mesoscopic theory, Deryagin and Gutop used the mechanics of opening a hole in a 2-D continuum to describe the
energy landscape governing cavitation. Here, the energy of cohesion is defined by the product of a material edge energy
(energylength) and the hole perimeter 2. Under mechanical tensiaen the total energy (r) is lowered through the potential

for mechanical work of expansioi; (r) ~ (2xr)e — (nr?)a, which becomes the dominant term at large radii. A maximum

in energy occurs at eritical radius, rc = ¢/o, where the height of theavitation barrier is found to beEc = me2/o. Both

height and radial position of the cavitation barrier diminish under tension in the course to rupture. Thus, the thermally-activated
frequency for opening an unstable hole (i.e., passage of the cavitation barrier) is expected to rise rapidly under increasing tension
over a scale defined and boundeddgy= nez/kBT.

Subsequently, observations of electrical conductance and transient permeation through solvent-spread membranes [7-11]
have revealed that a more complex energy landscape governs dynamics of membrane permeation. In particular, fluctuations
of voltage-dependent conductance showed that molecular-scale defects open and close spontaneously in membranes. Initially,
these transient structures were imagined to be very small hydrophobic pores that quickly round into hydrophilic structures lined
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Fig. 4. Dynamic spectra of most frequent rupture tensions Fig. 5. Schematic illustration of the energy landscape in hole radius
(distribution peaks) measured over three orders of magnitude space used to model the kinetic process of membrane permeation and
in loading rate. The continuous curves are predictions of rupture. A precursor barrieEp at radiusrs limits creation/annihilation
the kinetic theory for membrane rupture with the parameters of a molecular-scale defect, which may then pass the classical cavitation
listed in Table 1. barrier to failure. Beginning from the metastable state at enérgythe
energy landscape rises to the cavitation barrier set bydulgeenergy ¢
and mechanical tensian, i.e., Ec — Ex = 7162/6.

with lipid headgroups. Consistent with elastic concepts described earlier by Helfrich [20], continuity of the inner and outer
monolayers is expected to diminish the large perimeter energy associated with exposure of hydrocarbon to water and lower the
cavitation energy barrier. But perhaps most significant, it was found recently from careful study of transient bursts in membrane
conductance that the spikes in conductance represented sequences of nanopore states originating within the lifetime of a closed
metastable defect [21]. Moreover, labeled as a pre-pore state, the results implied that no more than one metastable defect was
likely to exist in the membrane at any time [21]. Although the molecular-scale structures of such defects and open holes in
membranes remain unknown, the electrical conductance measurements have shown clearly that some type of precursor state
must be introduced into the classical theory of cavitation. Hence, in the idealized concept of configurations defined by radius
space, the energy landscape for open holes would commence from an intermediate state that follows the defect nucleation
barrier as schematized in Fig. 5.

3.1. Kineticsof membrane failure

Implicit in the energy landscape sketched in Fig. 5 is the assumption that an unstable hole is linked causally to a particular
defect, which is supported by studies of fluctuations in membrane conductance [21]. Thus, although a defect may arise anywhere
on the membrane, they remain rare-isolated events that quickly vanish or occasionally evolve to an unstable hole. Easily
understood, membrane rupture is most likely to occur when tension rises above the level where the time needed for passage
of the cavitation barrier falls to within the lifetime of a defect. Formulated into a hierarchy of master equations that simulates
the stochastic process of failure, the model requires analytical prescriptions for each kinetic rate of barrier passage. Beginning
with defect formation, we assume that the energy rises steeply from the bound state and is capgedpby-eurved barrier
at an energy level ofp defined initially asEs in the unstressed state. For a sharp barrier, the h&ghtill diminish under
tension in proportion to the effective area of the defect, (o) ~ Es — (ﬂrgz)a. Thus, for a thermally-activated rate of
transition~exp(—Ep/kgT), the frequency of defect formatiap_, , will grow exponentially on a scale of tension defined by,

0§ = kBT/JTrb\Z, ie.,

g
V0—x = V05 exp(g_(S)s )
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where the rate prefactogs scales as exp-Es/kgT). Given a sharp defect barrier, the enefgyof the metastable state that
follows will drop from its initial level Eq by effectively the same amount under tension, iEB.~ Eg — (7rr52)<7. Hence, the
rate of defect annihilationg._, would remain approximately constant as expressed by

V0« ~ V0§ exp(%) . (2
Finally, rising from the defect state at enerds, the energy landscape is modelled by the mesoscopic mechanics of
opening a hole in a continuous material as described above and sketched in Fig. 5. Beyoautatien barrier defined

by, Ec = E, + m&2/a, an unstable hole opens to cause catastrophic failure of the membrane. Scaling barrier height by thermal
energy defines the characteristic tensiof—= nsz/kBT, for thermal activation, i.e., rate exp(—oc/o). Because the outer

barrier is inversely proportional to tension in this mesoscopic model, we see that a defect cannot become an unstable hole
at zero tension and that some level of tension is needed to rupture the membrane. As found by Deryagin and Gutop (albeit
expressed in a much less organized relation than given here), the frequency of opening an unstajle,grlés predicted to

increase dramatically with application of tension up to the level definet by

1/2
o o
V0—hole= V(Sc(o_c) exp(—f) {o < oc}. 3

The origin (via Zeldovich) of Eq. (3) comes from Kramers’ Brownian-dynamics theory [22,23] for thermally-activated escape
from a deeply-bound state. Deceptively simple, Kramers’ result in the overdamped limit can be summarized by a generic
expression for transition (escape) rate, e, = (D/lgls) exd—Ep/kgT]. Clearly, the major factor is the exponential
dependence on height of the barrigg, which for cavitation in 2-D is ex@-oc/o). The Browniangdiffusive dynamics are
embodied in an attempt frequendy, lglts, Which is governed by a coefficiegt(=kg T /D) for damping and the product of
two length scalegylts. The lengthg is defined by the thermal spread in bound state local to the minimum. In the context of hole
dynamics, fluctuations in bound state are confined by the perimeter-edge energy and thus the thermal spread is approximated
by, o ~ kgT/(2re). The lengthlts is the energy-weighted width of the transition state. Governed by the fall in energy away
from the top of the cavitation barrierz (r — re)20, the thermal barrier width is estimated by the Gaussian approximation,
lis~ (kBT/o)l/Z. As a consequence of the variable thermal width, the attempt frequency in Eq. (3) is modulated by a weak
tension-dependent functiqn/ac)l/z. Taken together, these approximations predict that the attempt frequency prefactor
should depend on the ratio of the tension scale to damping fagtor; 27 1/20¢/¢.

Continuing with the perspective of Kramers’ theory, it follows that the frequengyfor spontaneous nucleation of
defects should vary asgs ~ [kBT/((raz)] exp(—Es/kpT), if rs2 is used to approximate the produgiis. As above, the
ratio of tension scale to damping factor sets the scale for attempt frequency and we obtain the useful expggssion,
(mrog/t)exp(—Eg/kgT). Thus, if a common factor characterizes damping of Brownian fluctuations over the entire energy
landscape, the attempt frequenegy. for passage of the cavitation barrier would be directly related to the spontaneous
frequencyvgs of defect formation through the height of the defect barrier, i.g/vos &~ (oc/os) eXp(Es/kgT). Although
hypothetical, the assumption of a nearly-constant damping factor is not unreasonable given the very small area compressibility
of biomembranes [24]. As such, area changes contributed by defect creation/annihilation and fluctuations in hole size would
produce in-plane collective flows at constant surface density. For pure radial flow, membrane surface-shear wigcosity
determines the damping of circular fluctuations (ies 47 nm). Completely obscure in this type of mesoscopic model, the
frequency scalesps andvge could involve an area-dependent prefactor often ascribed to the number oNgifes defect
formation in a macroscopic membrane. However, as noted above, careful study of fluctuations in membrane conductance
indicate that only a single defect state is likely to exist in the membrane at any time [21]. So we neglect the putative factor
Ns which, in any case, merely remains a hidden-homogeneous constant that arbitrarily scales time.

3.2. Dynamic regimes of membrane strength
The hypothesis is that membrane rupture arises from one unstable hole and that this hole must evolve during the lifetime of

a particular defect. Hence, with the frequencies defined by Egs. (1)—(3), the following hierarchy of statistical (Markov) master
equations can be used to predict the causal sequence of defect formation and annihilation or evolution to an unstable hole:

dSo (1)
(;)[ = —V0+50(t) + Vo Sk (1),
ds,(t
dt( - —[Vo—x + Vasholel Sx (1) + V0 S0 (1), @
dShole(?
LE() = V*aholes*(t)’

dr
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So(1), S« (1), and Shole(?) are the probabilities of being in the defect-frgmund state, metastable state, and ruptured state
respectively. The probability density for rupture events in a window of time ¢t + Ar is defined by the last equation,
prup(t) = dShole(t)/ds. Under a ramp of tensioa (1) = Ry ¢, the distribution of rupture times is transformed by loading rate
No (=do/dr) into the distribution of rupture tensions, i.@mup(0) = Ve holeSx[o (1)]/No.

Simple inspection of the energy landscape (Fig. 5) shows that the outer cavitation barrier falls below the defect barrier when
tension rises above a level such thaf — Eq)/kgT > oc/o. As a consequence, the model predicts two distinct regimes in the
spectrum of rupture tension as a function of loading rate. First, a high strength regime at fast loading rates arises when rupture
is limited by creation of a defect. Second, a low strength regime at slow loading rates arises when rupture is limited by hole
opening (i.e., passage of the cavitation barrier). In each regime, the statistics of transitions can be approximated by solution to
a single Markov equation using one of the following expressions for the limiting transition[kate)], i.e.,

g
defect-limited: v(o) ~vgsexpl — |,
03
1/2 ®)
s . o oc
cavitation-limited: v(o) ~ v3c<—) exp(——) {o < ocl.
ac o

When dominated by passage of a single barrier, the distribution of rupture events in time becomes,

P(t):v(t)exp{— / v(t’)dr’},

00—t

and again transformation with the loading raig specifies the distribution of rupture tensions,
v(o)

1
plo) = —= exp{— - / v(o') do/}.
To No

O—o

The peak in a tension distribution (most frequent rupture) defineauitare strength ¢ at the particular loading raté, . The
dependence of strengshon loading rate is easily derived from the distribution maximipyioo = 0, which yields the result,

v(o) = Ns{dlog(v)/do}s=¢. With this expression and the transition rates in Egs. (5), the regimes of strength dominated by
each barrier are predicted as functions of loading rate:

o %
defect-limited: %Loge< 2 )
o5

V0505 ©)
5/2 9
cavitation-limited: — S + Logg CILONEN IS Loge( —Z ).
o 1+ 0'/20'(; V§coc

The defect-limited regime is a simple straight line with slege which extrapolates to a loading rate intercept given by,

RO = vgs0s. By comparison, the cavitation-limited regime is a shallow-nonlinear curve that rises very slowly as rate increases
over many orders of magnitude. The distinctly different shapes of the two limiting regimes result in a prominent crossover

in membrane strength when the loading rate is fast enough to rapidly suppress the outer cavitation barrier leaving the defect
barrier as the dominant impedance to rupture. As shown next, good estimates of the parameters governing strength can usually
be obtained by matching Egs. (6) to the appropriate portions of an experimental spectrum. However, match of the full solution
of the Markov process (Egs. (4)) to all distributions provides the best quantification of the kinetic parameters and is also needed
to place a bound on the metastable state eng&gy

3.3. Correlation of theory to experiment

Analysis of the membrane rupture experiments begins with matching the strength regimes in Egs. (6) to the segments of
the experimental spectrum that exhibit a shallow-upward curve in strength followed by a linear-like rise over significant spans
in loading rate. As shown with the SOPC spectrum in Fig. 6(a), the first step is to match a straight line to the high strength
(expected rupture tension) data at fast loading rat&® mN/m/s. Consistent with the first of Egs. (6), the outcome is the
spontaneous rate for formation of defeetg (~0.18 s~1) and the tension scale; = kBT/r(S2 (~4 pN) set by defect size.

The next step is to match the second of Egs. (6) for the cavitation-limited regime to the lower values of rupture tension at
slow loading rates. As seen in Fig. 6(b), fit of the cavitation-limited regime is much less sensitive to the choice of parameters
defined by the edge energy (tension seaje= w&2/kgT) and attempt ratesc. When only required to fit the rupture strength
at one value, a mere two-fold change of tension scale in a cavitation-limited regime is usually accompanied by many orders
of magnitude change in the rate scale (eug,~ 103-10' 571 for o¢ ~ 80200 mNm). However, extending the fit to cover
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Fig. 6. Left: correlation of thedefect-limited regime with the dynamic tension spectrum of SOPC vesicles. Right: correlation of the
cavitation-limited regime with the SOPC spectrum. The solid curve is the full spectrum predicted by solution of the Markov sequence (Egs. (4)).

Table 1
Material parameters that govern strength of PC membranes

vos 95 rs vsc oc €

s (mN/m)  (hm) sh (mN/m)  (pym)
DLnOPC 20 3.5 0.61 ~1x 10° 30 63
DOPC 022 4.0 0.57 ~3.3x 10° 102 115
SOPC 018 4.0 0.57 ~5 x 10° 130 13

a large span in loading rate (e.g., 0.07-3 mis) significantly narrows the range of acceptable values €ieey 120-140
mN/m or e ~ 13+ 0.5 pJ/m andvse ~ 106-107 s71).

Using parameters obtained by the procedure illustrated in Fig. 6 and the Markov equations (4), the final step in data analysis
is to refine the values by matching the probability densities for failure to all of the histograms at different loading rates. Examples
of tension distributions that result from this procedure are superposed on the histograms in Fig. 3 and the continuous spectra of
rupture strength are plotted with the data for most frequent rupture tension in Fig. 4. Here, fits to tension distributions measured
in the crossover region from the cavitation-limited to defect-limited regime are particularly useful for restricting the model
parameters in difficult cases. The reason is that in the crossover region, the distribution is narrow and rises steeply on the low
tension side of the peak but is broadened significantly and falls more gradually on the high tension side. The asymmetry stems
from a major difference in kinetic impedance between the two cavitation and defect barriers under tension.

In the final step of fitting probability densities to the measured histograms of tension, the metastable stat&gnergy
becomes an additional parameter. Because of the enormous difference in time scales tetiateon-limited and defect-
limited kinetics, dependence on the metastable state ergygyas found to be very weak. For instance, in matching all of the
distributions for the five lipids, the only clear requirement for optimal fit was that the valugg li¢ between (0-3)g 7T above
the defect-freground state, which was accompanied by a commensurate 10-fold span in the attempt freggerdgnce, the
rate of defect annihilation was found to be comparable to the rate of formationgi.e,,~ vg_ ). In Table 1, the parameter
values are given for the lower bound Bf) ~ 0kgT'; at the other bound ofq ~ 3kg T, the only change is that values of;
shift upward by an order of magnitude.

4. Conclusionsand discussion

For fluid membranes made from diacyl PCs, we find two distinct regimes of rupture strength as a function of dynamic
loading. Under very slow ramps of tension, a low strength regime appears where rupture tension increases weakly with ramp
rate (i.e., only~1-2 mN/m over at least two orders of magnitude in rate) and the tension distributions are very narrow. Next, a
high strength regime emerges under fast ramps of tension where rupture tension rises dramatically (as much iesf@0anN
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order of magnitude increase) and the tension distributions are significantly broadened. Both distribution shape and the functional
form of each DTS regime follow directly from a simple kinetic model of the rupture process that begins with nucleation of a
nanoscale defect which then either disappears or evolves to an unstable-mesoscopic hole. The model involves five material-
dependent parameters. First, defect formation is described by a frequencygctde spontaneous appearance. Next, the
defect energyEy in the metastable state sets the frequency scale for annihilation as definggesy(Eq/kgT). The defect

transition is coupled to tension through the area created by a defect, which is described by the apparent defgcHiadilys

the mesoscale dynamics of hole opening under tension are described by an attempt freguemtynembranedge energy e,

which governs the height of the cavitation barrier relative to the defect state.

As emphasized, somewhat similar concepts arose from the early studies on electrical conductance, transient permeation,
and breakdown of solvent-spread membranes where tension remains constant [7,9-11]. However, the most direct evidence for
the stochastic events postulated in our model comes from the recent detailed study of fluctuations in membrane conductance
under low voltages [21]. In particular, it was found that bursts of transidnbhm holes open and close within the lifetime of a
‘pre-pore’ defect state [21]. Moreover, it was concluded that the ‘pre-pore’ defect must be a local-isolated nonconductive state
distinct from the closed ground state. Significantly, our DTS experiments imply that nucleation begins with a defecinof
cross section and that the defect lifetime ranges fradril—10 s, which is similar to the survival of the ‘pre-pore’ state deduced
from bursts in electrical activity [21]. Furthermore, the edge energies derived from our experiments (cf. Table 1) are consistent
with values of~10 pJm and 20 pJm from the earlier experiments using natural lecithins [9,10,12] as weltEHs pJm
from vesicle electroporation experiments [13] using synthetic C18:0/1 PC. Considering the added complexity of electric fields
plus the presence of organic solvent in the case of the BLM experiments, the consistency between parameters obtained from
electrical permeation and our mechanical DTS experiments (Table 1) strongly supports the efficacy of the simple kinetic model.

In addition to consistencies with electrical conductance and permeation experiments, correlations of the parameters in
Table 1 to other properties of the membranes provide insights into the key determinants of strength. First, although results are
only shown here for only three PCs, the edge energies are found to correlate closely with the elastic bending moduli [24], i.e.,
DLNOPC ¢~ 0.44 x 10719 J), DOPC f¢ ~ 0.85 x 10719 J), and SOPCi¢ ~ 0.9 x 10719 J). Increase of edge energy with
bending stiffness seems obvious for rounded-hydrophilic edges lined with lipid headgroups. However, much more subtle, the
correlation yields a characteristic lendiye ~ 7 nm much larger than the monolayer thickness-8fnm, which would define
the curvature of a circular edge. The large valuekigte seems to imply that the edge shape is flatter than a circular contour.

This would require the acyl chains to deviate significantly from the surface normal as if sheared. Moreover, the edge region
would include many lipid molecules. Also important but much less precise, the apparent heights of the defect barriers are found
to correlate with the membrane-hydrocarbon thicknesses obtained from X-ray diffraction [24]. Estimates of defect barrier height
can be calculated from the products of ratios for tension and frequency scales in Tablede/vg.% (oc/os) eXXEs/kT),

again based on the assumption that a common damping coefficient characterizes both defect and hole dynamics. This analysis
gives defect barrier energies 6fL1kgT for DLNOPC (ich2 = 2.5 nm), ~13kgT for DOPC (ich2 = 2.5 nm), and~14kgT

for SOPC fich2 = 3.1 nm), which roughly increase at4.6kg7 nm~1 of hydrocarbon thickness [24]. This energy per length

is an order of magnitude less than expected for exposure of the acyl chains to water which seems to imply that the defect
structure is also bordered by lipid headgroups. Finally, as a corollary to the barrier heights, thegatjef tension scale

to attempt frequency in Table 1 provide the effective scale for damping of Brownian excitations in lipid membranes given by
¢ ~1x10~* mN-s/m.
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