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Abstract

We analyze the information-capacity limitations of the optical communication channel, as determined by noise accumulation
from optical amplification and nonlinear wave-mixing. We review the concepts of signal-to-noise ratio and entropy for binary-
coded and continuous communications, leading to a definition of ultimate capacity for the optically-amplified channel. A unified
guantum model, describing both amplification and nonlinearity limitations, makes possible to determine the power transmission
window within which the channel capacity can be maximiZBacite thisarticle: E. Desurvire, C. R. Physique 4 (2003).
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Résumé

Nous analysons les limites en capacité d'information des communications par canal optique, telles que déterminées par
I'accumulation du bruit d’amplification optique et de mélange a quatre-ondes non-linéaire. Nous revoyons les notions de
rapport signal-a-bruit et d’entropie concernant les communications & codage binaire ou continu, lesquelles conduisent & la
capacité ultime d'un canal optiquement amplifi€. Un modéle quantique unifié, décrivant les limitations dues a I'amplification
et a la non-linéarité, permet de déterminer la fenétre de puissance signal a I'intérieur de laquelle la capacité du canal peut étre
maximiséePour citer cet article: E. Desurvire, C. R. Physique 4 (2003).
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1. Introduction

At this current and very advanced stage of optical communications, a relevant issue is the identification of ultimate system
performance limits, as defined lyndamental physics principlendinformation theoryconsiderations. In this paper, we review
both aspects and their combined conclusions. The underlying concept igptieatl communication chanriglOCC), which
must be revisited in order to take into account the combined effecisaritum noisgas coming from optical amplification)
andnonlinearity (as coming from the transmission fiber). As described here, the new OCC concept departs from the original
one described in 1948 by C.E. Shannon, the ‘noisy communication channel’, which consisted in a linear channel perturbed
by additive noise [1]. In fact, both quantum and nonlinearity noisenareadditive since their magnitudes are functions of
transmitted signal power. The power being too low, quantum noise sets the OCC limit. The power being too high, nonlinearity
noise sets the OCC limit. Given quantum and nonlinearity noise constraints, the two limits thus define a power window for
the OCC [2—4]. The analysis must take into account the interplay between system nonlinearity and dispersion. The highest
transmission bandwidth (in terms of capacitydistance) is achieved through a careful trade-off between the nonlinearity and
the dispersion, within other limits caused by cumulated amplifier-noise [5,6], and data-encoding performance associated with
error-correction coding (ECC) capabilities [7]. It is noteworthy that in this trade-off regime OCC signals are neither purely-linear
pulses nor exact nonlinear ‘solitons’, representing as many possible solutions for the savaaliedar Schrédinger equation
(NLSE) [8,9]. To complete this inventory of new OCC features, one must finally corslideptical in-line regeneratiorj4,10,

11]. As the name indicates, signals can be periodically ‘regenerated’ as they propagate through the line. Interestingly from the
physics viewpoint, optical regeneration makes possiblermvequantum and nonlinearity noises from the channel, allowing
‘infinite’ OCC transmission distances without any degradation of signal quality, and in some conditions, even with signal
quality improvement. This approach should not be confused with perapda:electroniaegeneration for which OCC noise is
cumulative.

The above inventory illustrates how different is the current OCC from its original and classical formulation of a purely linear
channel with additive noise. In this paper, we present the state of the art in the analysis of OCC limitations due to quantum
(amplification) noise and nonlinearity noise. The analysis is based upon a unified quantum model [3] which encapsulates the
two concepts through the same noise-source formalism. The paper is divided into seven sections (including this introduction).

In Section 2, we first recall the definitions sifjnal-to-noise ratidSNR), bit-error-rate (BER), as applying to the linear and
nonlinear systems. We discuss the different strategies which have been used so far to minimize nonlinearity. We then introduce
(in a tutorial-like way) the concept antropyfor discrete channels. This background leads to the definitidnfofmation
capacity(or information spectral densitySD) for noisy OCCs. As an illustration, we present an original result which links
channel capacity and BER in the case of ON-OFF binary OCCs. Considering continuous channels, we then introduce the
Shannon—-Hartley theore($HT), relating the ISD to SNR.

In Section 3, we briefly recall the quantum description for amplifier noise, showing that it originates from two independent
vacuum-field couplings, consistent with the model of a imperfectly-inverted laser system. We show that amplifiers can also be
modeled by a Langevin-like thermal noise source, as a conceptual derivation of the first model. This description allows one
to obtain exact definitions for photon-number mean and variance, leading to a formulation of SNR and BER in periodically-
amplified OCC. The effect of amplifier spacing is taken into account, leading to an original definition of the ultimate channel
capacity for ideal distributed-amplification systems.

In Section 4, we consider limitations introduced by nonlinearity, in the case of multi-channel (WDM) transmission. We
first recall the origin of nonlinear wave-mixing in a tutorial-like way, leading to the definition of the NLSE. We then recall the
results obtained in [2] from the NLSE leading to an analytical definition of WDM nonlinearity noise linking all relevant system
parameters (nonlinear coefficient, dispersion, loss, signal poser, channel spacing, hif)raté then describe a quantum
model [3] where nonlinearity noise is generated by a Langevin-like chaotic source. This allows one to model simultaneously
amplifier and nonlinearity noises. The approach leads to a re-formulation of the SHT, talking into account both noises types.

In Section 5, we use the previous results to assess the ultimate OCC capacity, as limited by amplification and nonlinearity.
Finally, we discuss in Section 6 the implications of all-optical regeneration to overcome the OCC limits in the case of binary
systems. We show that optical regeneration is equivalent to intratkeg=gtive entropyn the OCC. The conclusion is provided
in Section 7.

2. The noisy optical-communication channel

The field of information theory [1] views a ‘communication channel’ as comprising the following elements (Fig. 1):

— an information source (messages to be transmitted);
— atransmitter (means to encode messagessintbolsdy modulating a carrier source;



E. Desurvire / C. R. Physique 4 (2003) 11-28 13

&L

channel medium U

transmitter . T receiver

noise source

0 e 1-py
P
Po
1 1

¢ 1-p,

-
o

Fig. 1. Elements involved in a communication channel (top), and diagram showing different possible events associated with the transmission of
two symbols ‘0’ and ‘1’ (successful or failed reception).

a channel medium (spanning some finite transmission distance);
— areceiver (decoding and reconstructing the original message);
a corrective signal-processing device (improving signal quality);
a destination entity (receiving the message).

The channel may be polluted by an internal noise source (noisy channel), which introdgeesintyin the reception of
symbols. This noise is generally assumed stationary, meaning that the uncertainty does not depend upon the system'’s history
and transmitted symbol sequences, as referred taw@mnaory-lesghannel. In the classic view, the noise is assuamdtitive
meaning that the channel output is the linear superposition of the signal with a noise background. Here, we focus on an optical
communication channel (OCC), where the transmission medium is an optical fiber, the symbols are light pulses, and the first
noise source iguantum noisgenerated by line optical amplifiers. In the following subsections, we considénéae and the
nonlinear (dispersive) cases.

2.1. Linear case

Considering binary, intensity-modulated light signals (referred to as ON-OFF keying), the two possible symbols are ‘0’
(no pulse) and ‘1’ (pulse). Assuming that thglOsymbols are not perfectly transmitted, there is a finite probability that the
receiver (including posterior correction) outputs a ‘1’ when a ‘0’ was emitted/transmitted and the reverse. The associated
error probabilities arepg = p(1/0) and p; = p(0|1) respectively. Correct 0/1 symbol receptions have the probabilities
p(0|0) = 1— pgandp(1]|1) = 1— p1, respectively, as illustrated by the diagram in Fig. 1. If the 0/1 symbols have the probability
of emission,p(0) and p(1), the BER can be expressed as:

1
BER=p(0)p10) + p(HpOID) = 7 [P(110) + p(0ID)]. @

The approximation in Eg. (1) assumes equal symbol probabiljtigd,= p(1) = 1/2, as is the case with actual long coding
sequences. It can be shown that, assuming Gaussian noise, the minimal BER is obtained by an optimal ‘symbol decision’ for
which the conditional probabilities, are equal, i;2(1/0) ~ p(0]1). Alow BER (e.g., 102, or one error out of a billion received
bits) corresponds to high transmission quality. By use of powerful error-correcting codes (ECC), as based upon redundancy-bit
algorithms, it is actually possible to restore BERs as high ag200~3 to low values of 1012-109 [2,7].

In the above picture, the channel is assunfiedar. This implies that sending multiple channels at different carrier
wavelengths (and power levels) in the OCC leaves symbol uncertainty unchanged, as modeled by a single common/external
noise source. Considering separate carrier-wavelength sub-channels or a single global OCC lead to the same analysis.
However, two OCC impairments are the medium dispersion (group-velocity dependence in carrier wavelength) and the medium
transmission loss. Dispersion causes symbol pulses to spread in the time domain. In order to recover the original 0/1 pulse
shapes, dispersion can be compensated by use of dispersive elements @isperaton-compensating fibess DCF) with
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opposite effect periodically inserted in the signal path [5,6,12]. The medium transmission loss causes the pulse energy to
vanish, bringing the ‘1’ signals closer to the receiver noise background an increasing the propalk#ipy0|1). Loss can be
exactly compensated by optical in-line amplifiers (suckrd@éum-doped fiber amplifierer EDFA [4,13,14]).

If one then overlooks receiver noise, the only limitation of the OCC is that imposed by the common noise source, namely
the quantum noisegenerated by optical amplification. Note that the term ‘quantum noise’ used here points to its vacuum-
field fluctuations origin, as described in Section 3, which is unexplained through classical theory (in spite of semi-classical
assumptions). The word ‘quantum’ is also consistent with microwave engineering practice, i.e., at optical carriers for which
hv/kgT > 1, ‘quantum noise’ dominates over ‘thermal noise’ in wave amplifiers [4,14]. On the other hand, this quantum
feature applies to signals having relatively large photon numbers, which conceptually distinguish this field from true ‘quantum
communications’ [15].

Since amplified systems contain several amplifiers in cascade so as to form a transparent line, the amplifier noise accumulates
along the signal path, causing the SNR to decrease with distance. In turn, the SNR decay causes thexp&feiially
increase according to the following definition [4,14]:

1 Q2>
BER= ———exp| —— 2
oV "Nz @
with the Q-factor being defined by
SNR
Q=2vV2—— ~/2SNR 3)

v1++/144SNR

The above SNR definition corresponds to the ratio of mean/time-averaged signal power to un-polarized amplifier noise
power, as is customary in optical fiber communications. The high-SNR limit in Eq. (3) together with Eq. (2) shows that the
BER exponentially decays as
exp( SNR. @

SNR/4r
For a given per-wavelength signal power launched into the OCC, the maximum transmission distance (at required BER) and
minimum BER (at required distance) are thus intrinsically limited by SNR decay due to quantum noise (see analytical definition

in Section 3). Note that in this case, all wavelength carriers experience the same limitations and have therefore identical BER
performance.

BER~

2.2. Nonlinear case

Assume next that the channel mediumnanlinear This means that the symbol probabilities must also be functions of
the signal power in each wavelength carrier. Fig. 2 shows that nonlinearity causes the carriers to act both as self-imposed
and mutually-imposed noises sources within the OCC. Such a diversification and cross-coupling of noise sources comes from
several factors:

intra-carrier noise source
(self-nonlinearity)

carrier |
1 1
- |_| inter-carrier 4}
N carriers I—=7 noise sources J=1

v (cross-nonlinearity) I_I

carrier J

intra-carrier noise source
(self-nonlinearity)

common external quantum-noise source
(optical amplification)

Fig. 2. Representation of the nonlinear optical communication channel with multiple input wavelength carriers, showing a common
external quantum-noise source (optical amplification), and the variety of nonlinearity-noise sources, as being self-imposed (intra-carrier) or
mutually-imposed (inter-carrier).
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— symbol values 0/1 are random, causing random nonlinear interference events betweeN filaezarrier and pulseg
of another carrier (namely 0-0, 0-1, 1-0 and 1-1);

— wavelength carriers propagate at different group velocities (dispersion), causing the strength of the nonlinear interaction to
randomly depend upon relative velocity difference (interaction being the strongest for small velocity differences);

— nonlinear interactions between carriers depend upon their mutual polarization states, but initial carrier polarizations are
arbitrary and are then randomly scrambled during fiber propagation, which randomizes the interaction strength;

— tens to hundreds of wavelength carriers can be mutually interacting at any time and medium location, according to the
above random conditions.

Unlike the linear OCC case, it no longer possible to exactly compensate the combined effect of nonlinearity and dispersion,
since its history is the sum of random or unpredictable intra- and inter-wavelength-carrier occurrences. Reducing signal power
under the nonlinearity threshold can suppress the associated noise. But this reduces the SNR, and hence increases the BER.
The only way out from this dilemma is to make the OCC operate as closely as possible to linear, keep the local dispersion high
(see below) while maximizing the carrier power and minimizing the resulting BER. From such a picture, it is clehe that
nonlinear-dispersive/nois@ CC obeys to far more complex laws and optimization principles thaméar-dispersive/noisy
counterpart previously described. The BER is still defined as in Egs. (2) and (3), except that the evaluation and optimization
of the Q-factor must rely upon sophisticated and intensive numerical computations. As mentioned in the introduction, such
computations are modeled by the NLSE, in fact as many NLSEs as there are wavelength-carriers (with two polarization states),
forming a highly complex nonlinear coupled-equation set (see Section 4).

The above limitations of the nonlinear-dispersive OCC led investigators to develop a variety of performance-optimization
strategies. These can be listed as follows:

reduce the signahtensity(power/surface) by increasing the guided-mode effective area [12];
locally increase dispersion with periodically-opposite signs (dispersion management) [5,6,12];
— improve BER by error-correction-coding (ECC) algorithms [7];

constructively exploit dispersion and nonlinearity through soliton-like effects [8,9].

use in-line optical regeneration to restore signal integrity inside channel (Section 6, [11]).

The above strategies, which are all mutually compatible, have been investigated since only a decade. Only the first three
are being exploited in terabit/s systems currently deployed. Pure soliton transmission (referr8ghcddinger solitorjshas
not been up to expectations, because of additional (soliton/soliton and soliton/amplifier-noise) impairments and relatively lower
performance in multi-wavelength implementation. However, dispersion management introduced new soliton-like effects, which
in some cases come up very close to pure linear transmission [9]. When all the above resources have been exhausted, only the
last solution of periodic in-line optical regeneration, is capable to lock the transmission quality (BER) near some asymptotic
level, regardless of channel distance, as further discussed in Section 6.

2.3. Channel information capacity

In order to model the channigifformation capacityas expressed in terms of ‘number of successfully transmitted symbols per
channel use’, the concept efitropywas developed. It is beyond the scope of this paper to recall the theoretical grounds of [1],
even as a brief introduction [4]. Here, we shall only use the entropy concepts which are necessary for this paper’s purposes. In
the process, we present an original expression linking channel capacity and BER in binary ON-OFF communications.

Entropy is a measure dfincertainty contained in the signal information. The higher this uncertainty, the higher the
information contained in the communication. If one knows for sure the result of a communication, one does not ‘learn’ anything
from it, no information is conveyed. It would be like a channel where all symbols received are identical (called the useless
channel). The uncertainty in the choice of symbols made by the source is therefore a true characterization of the information
to be transmitted (source entropy). If the channel was noiseless, the same uncertainty would characterize the signal received
(receiver entropy). In case of a noisy channel, more uncertainty is introduced by the noise, but it carries no information. Here,
we shall briefly introduce the definition of entropy, which leads to (maximum) channel capacity.

Assume that the source uses a disciéteymbol alphabeX (x1,...,xg). There is no reason for the receiver to use the
same alphabet with a one-to-one correspondence or even not to use a continuous-symbol alphabet. For simplicity, assume that
the receiver alphabét is also discrete withv symbols(y1, ..., ygx). The simple cas& = 2 thus corresponds to the usual
binary-symbol transmission. Each symhpk= x; (coded by the source) gor (obtained at the receiver) is characterized by a
finite probability p(z;). By definition, the associated source/recemetropyis

H(Z)==Y " p(z)log[p@)], ©)
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where the logarithm is in base two. The entropy is thus defined as the statistical mean of the futagm(z; )], which is

the concept introduced by L. Boltzmann in statistical mechanics. For the source, the entropy is the measure of the information
conveyed. If only one symbol is used (i.e., all probabilities being zero, but one), it is easy to see from Eq. (5) that the entropy
is identical to zero. It can also be easily established that if all source symbols have identical probabilitiescfi.e-,1/K),

the entropy is maximum, i.eH = log K. The unit of entropy is ‘symbol per channel use’. For binary sigii&ls= 2) there

is only one bit per1/0) symbol, soH = log, 2 = 1 bit-per-channel-use. If the channel is used at a Bateits/s or s'1 or

Hz) the channel capacity § = H B = B bit/s and per unit bandwidtt” = C/B = 1 bit/s/Hz. Thus, noiseless channels with
ON-OFF binary sources can theoretically convey no more than 1 bit of information per cycle of carrier frequency.sf ki bit

figure should be referred to as tidormation spectral densitflSD), sometimes wrongly called spectral efficiency (since not
bounded to unity in the general case).

Consider next the case of noisy channels. The received entropy is defined according to Eq. (§)=SingAs previously
mentioned, this entropy should reflect extra uncertainty introduced by the channel noise, which is not information-related. Since
there is no way to establish a one-to-one correspondence between transmitted/received symbols and the original source ones, we
can only resort to a probabilistic approach and separate in the received entropy what is real information from what is introduced
by the channel noise. To do this, one can conceive of an experiment in which the same syisklichnsmitted a sufficient
number of times, with corresponding receiver measurem@ants ., yx . Repeated for all source symbols, all this information
provides us with the conditional-probability matix; = p(y;|x;). Define then theonditional entropy

H(Y|X)==Y"> " pt)p(yjlx)log[p(yjlxi)] (6)
j i

which is also referred to asquivocation Although its definition looks complicated, it immediately appears that equivocation

is the full measure of the information-less uncertainty introduced by channel noise. This is because it measures all possible
received symbol uncertainty for any source symbol knowingly input to the channel. The minimum equivocation is zero,
corresponding tgp(y;|x;) = §;; for any source symbat;. The above notions having been introduced, it is clear that the
noisy-channetapacityC (in units of ‘number of symbols successfully transmitted by channel use’) is given by the difference
between received entropy and equivocation, i.e.:

Cc={H(®Y) —H(Y|X)}max{x’y}. )

In the above definition the subscript nj&x Y} refers to a maximization problem which takes into account the fact that one
should find a choice of alphabeXs Y that also maximize the received/equivocation entropies difference, and hence the channel
capacity.

Itis interesting to apply this result to a binary communication channel. As stated in Section 2.1, the minimal BER is given by
setting the receiver decision threshold such {h@i0) ~ p(0|1), or after Eq. (1),(1]0) = p(0|1) = BER Using the property
p(0) = p(1) =1/2, itis a simple exercise to obtain the equivocation from Eq. (6):

H(Y|X)=—(1— BERIlog(1— BER — BERIog(BER ~ BER1 — BER ~ BERe BER (8)

where the last two approximations assuBER<« 1. From Eq. (5), using(y = 0) = p(y = 1) = 1/2, the received entropy
is H(Y) = 1. Thus, according to these results and Eq. (7), also using the fact that no further optimization is possible, the
noisy/binary channel capacity at given BER is:

C=H()— H(Y|X)=1+ (1— BERIlog(1— BER + BERIog(BER ~ 1 — BER~ exp(—BER 9)

thus providing a direct relation between binary-channel capacity and BER (to the best of our knowledge, this simple result was
never reported in the literature, nor is found in textbooks). The result shows that at low BERs, the maximum noisy-channel
capacity is very close to the noiseless case, €es 1 bit per channel use, d8D = 1 bit/s/Hz. Even for BERs as high as

BER= 103 (the limit of ECC possibilities to restore signal integrity), the loss of channel capacity is gh80Q or 0.1%.

What happens in the limiting case where the BER is maximumBER=5 x 10~ 1 = 1/2? This corresponds to the ‘useless’
channel situation where the uncertainty in received Aits is maximum and equal tg2, meaning that the same result can be
obtained by turning off the receiver and flipping a coin! Repla@&R= 1/2 in Eq. (9), without approximation, quite nicely
yields C = 0, meaning that the channel has indeed zero capacity, consistently with the assumptions.

The above description was meant to introduce one of the most important results of information theory, which leads to
expressing the maximum channel capacity through the well-kr&ivamnon—Hartley theore(BHT). Consider now that symbol
alphabets can be made continuous, using an infinity of signal levels for each symbol. The input/output symbol probabilities,
as well as that associated with channel noise are also continuous. In [1], it is shown through a Lagrange-optimization method
(see also [4]) that if the channel additive noise is Gaussian with variﬂnceyczh, and under an input signal power constraint
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S = (ri%, the optimum symbol-probability distribution is also Gaussian. The total output noise power containing both symbol

information and additive channel noise is thefy, = o2 +3,. The received entropy and equivocation are given by the integrals

1
H(Y)=— / p(ylog[p(y)]dy = > log(27 eo ) (10)
and
1
H(Y|X)=— / / px)p(ylx)log[ p(y|x)] dx dy = > log(27 e03,) (11)

respectively. The maximum channel-capacity-use per second is given by subtracting the above results and multipB/ing by 2
(Nyquist sampling rat@4]), which yields:

S
Cbit(/channelusa/s = B[H(Y) — H(Y|X)] = B Iog<l+ N) = Blog(1+ SNR (12)
or
Chi
Coitjs/Hz = — /S _ log(1+ SNR. (13)
z

The result in Eq. (13), known as SHT, elegantly relates the maximum achievable channel capacity (ISD) to the SNR (ratio
of source signal powe§ over channel noise powe¥). This fundamental result will be used later, with refinements introduced
by a proper definition of ‘signal’ and ‘noise’ powers in the case of quantum noise for periodically-amplified OCCs (Section 3),
and in the case of OCCs having both quantum and nonlinearity noises (Section 4).

The only conclusion one can draw at this point is that, according the SHT, the OCC capacity could apparently be increased to
any arbitrary level by two methods: (i) reduce channel naisand (ii) increase signal powst The first method is intrinsically
limited by the fact that after all reduction possibilities (system design, ideal source and receiver, coding, coherent detection, error
correction, ..) the noise has a lower bound that is ultimately defined by quantum laws. If optical amplifiers are used to increase
the OCC distance, the minimum noise also increases (Section 3). The other approach is to increase the signal power. However,
nonlinearity introduces noise above some threshold (Section 4). Thus the SNR is bounded between minimum channel noise and
maximum allowed channel power, which represents a fundamental design concept. This issue is further analyzed in Section 5.

3. Quantum noise in optically-amplified OCC

Optical amplifier noise can be accurately described only through quantum-physics principles, i.e., assgugintizad
electromagnetic field represented by photon creation/annihilation operators and interacting atamantiftedenergy levels.
Even in the ‘classical limit' of large photon numbers, where the electromagnetic field is truly a classical wave, the noise
associated with electric-field amplification has a quantum-origin signature, as described in this section. The term ‘quantum’,
however, should not be interpreted as describing effects specific to low photon-number physics [15], even if the theory developed
here also applies to this regime. We considseramplifiers (such asrbium-doped fiber amplifie EDFAS), but the quantum
theory also applies t®kaman fiber amplifiergRFA) [5,13], semiconductor optical amplifier€SOA) andnon-degenerate
parametric amplifiersalso used in optical telecommunications.

3.1. Quantum beam-splitter model for linear amplifiers

From the quantum perspective, it is a well-known feature that passive attenuators (field transkiiBsiof) and ideal
amplifiers (field gain/G > 1, full medium inversion) are four-port beam-splitter devices, which couple the vacuum-field into a
second input port [4,15]. The vacuum-field interference is responsible for uncertainty in the output field and associated photon
number. In the case of passive attenuators, this uncertainty reflects the fact that photons cannot be split between the two paths
corresponding to absorption or survival. With ideal amplifiers, the uncertainty comes from the fact that photons cannot be
‘exactly’ multiplied by a numbelG, even if G is an integer, because it would violate Heisenberg’s uncertainty principle [14].
Photon multiplication by stimulated emission is thus a random process (of whishthe mean result), whose details are
analyzed in [16]. Another contribution to uncertainty in the amplifier's output pasp@taneous emissipne., the fact that
photons can be spontaneously ‘created’ inside the beamsplitter. As shown ibdftégffects of spontaneous and stimulated
emission are responsible for amplifier noise, when noise is considered not only as mean power but actual photon-number
uncertainty (variance), see further below.

For the attenuator, the output photon-number expectation value (or meaém) 4s T (ng), and for the amplifier it is
(n) = G(ng) + N. In these expressiongg) is the mean input signal photon humber a¥id= G — 1 the mean number of
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Fig. 3. Concatenation of two quantum-field beamsplitters, modelling non-ideal amplifiers with powér gagiT': a passive attenuator (power
transmissiorl” < 1) vacuum-field coupling, is followed by an ideal amplifier (power gain> 1) with vacuum-field coupling/;.

photons spontaneously produced by the amplifier in a single polarization mode, alscaogtiéfied spontaneous emission
ASE.

We consider the general casenain-idealamplifiers, in which medium inversion is incomplete. In [17,18], we showed that
any non-ideal amplifier (with net gaiG = gT') can be described by the concatenation of a passive attenuator (transmission
T < 1) followed by an ideal amplifier (of gaip > 1), as shown in Fig. 3. The system is equivalent thrae-dimensional
quantum beamsplittef3D-QBS), as shown in Fig. 4. In the following, we derive theanandvarianceof the output photon
number through this 3D-QBS model.

Let @ and A be the input and output photon-annihilation operators, respectively;/@nyzgr the vacuum-field operators
associated with the passive attenuator and the ideal amplifier and, respectively. Their input/output relation can be put under the
form [4,17]:

A:ﬁa-{—«/ﬁy;-f-\/ﬁyl, (14)

where the relatiol® = N — (G — 1) makes possible fod to satisfy to the boson commutation rule, ifet, AT] =[a,at]=1.
Using Eq. (14), it is then possible to calculate the expectation valjes (AT A), (n%) = (AT AAT A) and the corresponding
photon noise variance? = (n2) — (n). The details of the calculation are found in [4,17]. We find:

(n)=G(no) + N (15)
and
0% =G[o§ — (no)] + Ging) + N +2G(ng)N + N2, (16)

whereog is the input signal variance.

The results contained in Egs. (15) and (16) are of great significance. Indeed, consider first the case of an ideal amplifier,
which corresponds t@ = 0 in Eq. (14). The boson commutation rule then imposes that G — 1. Looking at Eq. (15),
we observe tha is the mean number of photons generated by the amplifier, also referred to as ASE. Thus, ideal amplifiers
produce a minimum output ASE @f — 1 photons in average.

In the case of non-ideal amplifiers, we haRe= N — (G — 1) > 0 or N > (G — 1). One can writeN = ngp(G — 1) with
nsp> 1 being a ‘spontaneous emission factor'. Thus, non-ideal amplifiers produce more ASE than in the ideal case, which is
measured by the parametgyp. It can be easily shown [14] that for amplifiers with uniform (coordinate-independent) population
inversionN, — N1, we havensp= Np/(Np — N1), which reduces tasp = 1 in the case of the ideal, fully-inverted amplifier
(N1 =0). In the general case (such as with EDFAs), there is no analytical definitionsfpand the ASE is defined by an
integral over the amplifier length. Most generally, one can write the ASE &G — 1+ nexG, wherenex = f[oz(z)/G(z)] dz
is an ‘excess noise factor’ reflecting the effect of internal absorpti@hin the amplifier [2,14].

Consider next the noise variance definition in Eg. (16), which shows several noise contributions. In the case of coherent
input signals (Poisson statistics), we ha\ge: (no) and the firsexcess noisterm,G[ag — (no)], vanishes. The second group
of terms,G (ng) + N, correspond to the shot noise of the amplified signal and of the ASE, respectively. The rest of the terms are
referred to as ‘signal-ASE’ and ‘ASE—ASE beat noises’, respectively [4,14]. The fact that these terms exist on top of the shot
noise is an indication that amplified signal has lost some of its initial coherence, as is a well-known feature. It can be shown that
contrary to common belief (from classical analysis), the signal-ASE beat noise is not an interference effect with ASE (unlike
the ASE-ASE term), but is rather attributable to thermal fluctuations in stimulated emission [4,16].

The above decomposition of non-ideal amplifiers into two quantum-beamsplitter stages (loss followed by ideal gain) with
independent vacuum-field couplings makes physical sense as it models the simultaneous effect of ground-level absorption
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and stimulated emission by the atomic system. The order of these two operations (loss followed by ideal gain) is however
fundamental [4,17]. The reverse order (ideal gain followed by loss) cannot explain non-ideal amplifiers. This is intuitive, since

it is not possible to reduce an ideal amplifier (with minimal ASE) to a non-ideal device (with excess ASE) by placing a passive
attenuator (which does not generate ASE) at the output. One should note that the loss/ideal-gain decomposition is not unique.
Non-ideal amplifiers can also be decomposed into a discrete chain of 3D-QBS with an arbitrary number of elements, except
infinity [4,18].

3.2. Langevin-operator model for linear amplifiers

The above showed that two vacuum-field couplings are required to describe non-ideal amplifiers. However, it is possible to
express the amplifier input/output field relation under the alternate form [3,4]:

A=+Ga+F, 17)

whereF is aLangevinlike quantum operator commuting with In this model, that is not a Boson operatof4, AT]=1

imposes thatF, FT]=1— G = 1) and must obey the following properties: (§ F) = N and (i) ((F1)2(F)2) = 2IN. The

first condition sets the amplifier ASE to the correct vaNiewhich is not predictable by the model. The second corresponds to

a property of thermal/chaotic light sources. As shown in [3,4], the output mean and variance resulting from the computation of
(n) = (AT A) and<n2) = (AT AAT A) are strictly identical to that obtained in Egs. (15) and (16). In fact, the correspondence
between the previous 3D-QBS model is easily established by sdttingiy, + vy2+, which yields the same coefficients as

in the quantum-field decomposition of Eq. (14), i,e.= +/P andv = +/N. Since the 3D-QBS model only involves Boson
operators, makes minimal assumptions, and self-predicts the ASE, it can be considered more fundamental than the Langevin-
operator model, even if the results for noise are strictly equivalent. In Section 4, the Langevin-operator model is applied to
describe WDM nonlinearity noise, this choice being justified by the need of a formalism more concise than in the 3D-QBS
model.

3.3. The linear amplified optical-communications channel

Long-haul optical communications systems are based upon the principle of fiber loss compensation by in-line amplification.
For a fiber span of lengtlh = Ltot/k (with Lot = total system lengthk = number of amplified spans), the transmission is
= exp(—a L) Where is the fiber attenuation coefficient (typicalty,= 0.20 dB/km or « = 0.046 kni"1). Each amplifier
is set to a gairg = 1/¢ so that each span (hence the whole system) is made ‘transpareng; ke(gr)* = 1. Overlooking
nonlinearity, such a system configuration corresponds to a linear, noisy/amplified OCC picture. It is easily shown [14] that a
k-span amplifier chain is physically equivalent to an simyde-idealamplifier having a net gaiy = 1 and an output ASE
N’ =kt N (if amplification precedes loss, configuration A)8f = kN (if amplification follows loss, configuration B), where
N =ngp(G — 1) is the output ASE of a single amplifier. After Egs. (15) and (16), the mean output signal and variance of the
OCC (e.g., configuration A) are then:

(n) = (ng) + ktN (18)
and
02 =[0Z — (n0)] + (n0o) +kt N + 2(ng)kt N + (ki N)?. (19)

The above results show that the cumulated ASE grows linearly with the number of amplified sgan$18), and that the
noise variance includes both linear and quadratic contributions. The quadratic contrilkitiéd?, is usually small since in
most telecom applications the signal power dominates the cumulated ASE, sugipthat k N, making the signal/ASE beat
noise, 2nq)kt N, the dominant contribution.

3.4. Signal-to-noise-ratio and channel capacity of linear amplified OCC
From the results in previous subsection, we can express the OCC output SNR as follows:
2 2
k _ {no) (no)
SNF%)ut = =

02 (ng) +ktN + 2(ng)kt N + (ki N)?

_ (no) N~ (no) (no) (20)
14 2ktN+ktN(L+ktN)/(ng)  1+2ktN 1+ 2kngp(l—e oL)’




20 E. Desurvire / C. R. Physique 4 (2003) 11-28

In Eqg. (20), it is assumed that the OCC input signal is coher@(ﬁt:( (ng)) and that any thermal noise from the receiver
(at% = 4kgT/R) is negligible compared to the amplifier beat noise. The last two terms correspond to the high-signal

approximation{ng) > k. Consistently, the SNR at input 8\R, = SNI%%)t: (ng), which is the minimal (shot-noise-limited)
value for coherent (classical-light) signals.

It is seen from Eq. (20) that the output SNR asymptotically decays with the number of spaosording to a factor
1/(14 Bk) wheref = 2ngp(1— exp—@L). For long amplification spand.(s>> 1/«), and long system lengthé & Liot/L > 10),
the decay factor becomeg (Bknsp) = L/(2nspLtot). This result suggests that for a given OCC distaficgt) and amplifier
inversion (ngp) it is possible to compensate the SNR decay by boosting the input signal power by the inverse factor (i.e.,
2nspLiot/L). However, such power compensation could be impractical and prohibitive, for both considerations of amplifier
saturation and system nonlinearities. A correct design approach consists in keeping the average signal power between two
amplifiers under some threshold value. The path-average power is given by (configuration A):

L —aL

1 oz l1-¢€ 1-1/G G-1
= — “dz = —_—= = . 21
(lpath = 7 / Glng) &% b = Glng) o = Gilno) o £ = o) o 21)
0
With this new definition, we can rewrite the definition of output SNR in Eq. (20) under the form:
) (n)pathlog G (n)pathG 109G _ {n)patnG ( logG \?
SNRAL~ = 5= : (22)
(G —D2knsp(1—-1/G)  2knsp(G —1)? 20Ltotnsp\ G —1

The generic result obtained in Eq. (22), shows that for amplified-OCCs with given |eébgih, amplifier/loss parameters
(nsp, @) and power constraint{npath), the SNR is bound to the gain-dependent figure of mg() = GllogG/(G — 112
[19]. This figure is minimal f = 1) for G — 1, corresponding tdistributed amplificationIn practice, optical amplifiers and
related components introduce excess loss, and the ideal case of distributed amplification can only be approached.

In the following, we shall derive an original expression for channel capacity in ideal systems.

According to the above, the minimal SNR is given Py= nsp= 1 (ideal distributed amplification), i.eSNRnin =
(n)path/ (20 Ltot) = SNRy/(2aLtot), where we use the fact that, in distributed amplificatiomypath = (no). Thus, the
minimum SNR decay (or penalty) experienced by signals is 1/(2« Ltot). For an OCC withLtot = 1000 to 10 000 km
(or & = 0.046 kn™1) we haven = 1.0 x 102 to 1.0 x 103 (or —20 dB to—30 dB).

Let briefly analyze the consequence of the above SNR limit on the OCC capacity. Consider first binary ON—OFF signals.
In Section 2.1, the SNR definition corresponds to the ratio of mean 1/0 bit power to un-polarized ASE, whilthie talue
defined bySNRyin. However, with this alternate SNR definition, the decay factor is the same. We can thus express from Eq. (3):

O = 2SNR _ Oin (23)
M0 20nspLiot  /2anspliot’

where Qin, is the Q-factor of the OCC source signal. @i, is chosen high enough so th@tin, falls in the rangeQ min = 3-6
(BER= 1073-1079, after Eq. (2)), then the impact on OCC capacity¥ 1 — BER Eq. (9)) is fully negligible.

The case of continuous-channel for linear OCC capacity is given by the SHT in Eqg. (13), together with the general result in
Eq. (22), i.e.,

(n)path/ (G) ]
Chi =log,(1+ SN ~logy|1+ —|. 24
bit/s/Hz = 1002( Roub 92[ 2 Liotisp (24)
In the ideal casé¢f (G) =nsp=1), we have
. (no) )
Chi ideal) ~ log,( 1+ . 25
bit/s/Hz(ideal gz( et (25)

Taking OCC lengths oLot = 1000—10 000 km as representative examples for terrestrial and undersea systems, we have
n=1/(2xLtot) = 1072-10°3, corresponding to minimum capacities Gf = log,({ng)/100) to C = log,((ng)/1000. To
provide a practical example, assume that OCC nonlinearity limits the path-average powgr+al0° photons (corresponding
to 1.3 mW in 10 GHz bandwidth at 1.55 um wavelength). The corresponding capacities, as13.2 bit/s/Hz and
Cy =9.9 bit/s/Hz, respectively. Taking the EDFA bandwidth as being approxima@ely32 nm, or 4 THz (1 nm= 125 GHz),
the number of wavelength channels would be 4 THzGHz= 400, and the corresponding system bit-rates woult 6¢ = 53
Thit/s (Ltot = 1000 km) andBC2 = 40 Thit/s (Ltot = 10000 km). For both capacity and bit-rates, these figures are between
one or two orders of magnitude above those already achieved experimentally with ON—OFF binary keying [5,6]. Channel
nonlinearity has, however, been overlooked in the analysis, and moreover the amplified-OCC characteristics have been assumed
ideal. Finally, we note that one would be allowed a ten-fold signal power incréase-£ 107 or 13 mW) this would only result
in a ‘marginal’ capacity improvement of lg¢L0) = 3.3 additional bifs/Hz, i.e.,C1 = 16.5 bit/s/Hz andCy = 13.2 bit/s/Hz.
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4. The nonlinear (amplified) OCC

The previous section concerned the analysis of a linear OCC where channel noise is exclusively due to in-line optical
amplification. In this section, we consider the case nbalinear OCC, where nonlinearity is a cause of channel noise. Since
nonlinear transmission systems generally include in-line optical amplification, it is sensible to directly analyze the combination
of both noise types, i.e., of amplifier (quantum) origin and of nonlinearity origin, rather than first considering a nonlinear OCC
without loss, or with loss but without amplification. These last two academic cases are however analyzed in detail in [3].

The most general OCC picture is that shown in Fig. 2: we assume a common ‘external’ noise source, due to in-line
amplification, and a multiplicity of ‘internal’ noise sources, due to intra- and inter-channel WDM nonlinearity. In the following
subsection, we shall first review the origin of such a nonlinearity, then proceed with the model, first as a classical description,
then as a unified quantum description.

4.1. Origin of OCC nonlinearity

It is worth recalling the physical origin of nonlinearity, in particular in WDM optical transmission systems. As a well-
known feature, the electric field associated with a light wave induces a vector polarizatioin the dielectric medium,
which is proportional to the field intensity, i.eB = xDE. In turn, this linear polarization acts as a field source which
slows down the wave propagation (the refractive index being defined=ag/1+ 47 x D > 1, unity standing for vacuum).
Under high electric-field magnitudes, as is the case in optical fibers, the medium polarization becomes nonlinear, following
a complex vector expansion of the forth= xVE + @ E: E+ x®E:E: E+--., where colons (;) indicates multiple-
order tensorial products. Unless specially prepared, the usual glass fibers do not have preferential symmetry, which causes
second-order effects to vanish (.2 (? E : E ~ 0). Thus, nonlinear polarization in fibers are of third-order, i.e., of the form
PNL = O E . E: E. Assume next that the electric fieltlis a superposition of different fields; (k =1, ..., N), each having
optical carrier frequencies, i.e£, =Y Ex(wg), as in a WDM system. Each carrier field can be expressed under the real form
Ey =uy dP 4 uy e 1Pk, whereu;, is the spatial (longitudinal and transverse) amplitude @pe= wyt + ¢ the phase. If one
reduces the analysis to a polarization mode, the nonlinear polarization takes the general scalar form:

NL _ 3 3) d®j id; P —i® iP —id
P = Z)((w] wkwl)EjEkEl <)Zx(w, wkwl) ’+u e J)(uke "+uze k)(ulel l+u7e [)

X(3) Z (uj d?; +u§ e7'¢-f)(uk P« +uj e7'¢k)(ul d +uj e7i¢1)
il

= 4® Z u; ukule Pl +u; uku*e' Ml uju ule' JK 4y uku*eiQ)-f—k—’ +cc), (26)
jik,l

where®y 4, = &) + ®; £ &, and ‘cc’ means the complex conjugate of all previous terms. For simplicity, it is assumed
that the third-order susceptibility,(®, is independent of the frequency combinations and exhibits no associated resonances.
The above equation illustrates how complex third-order nonlinearity is, even in this simplified scalar case. Each of the terms
u; u]i*)ul(*) represenfield-mixing productsvith associate phase mismataehg,;,,, and corresponding oscillating frequencies
Wk41+m = w0k £ w; £ wy. Considering only two interacting fields:(= 1, 2 with j, k, I = m) here exists as many as 32 mixing
products in the above development. Wihfields, the number of mixing products isv4, representing for instance about®10
terms for 64 WDM channels. Fortunately, most of the terms are either oscillating outside the frequency bandwidth of interest
(e.g., third harmonics;, w3, wz and frequency sumey; k. woyi, wpr4 ;) and/orphase-mismatchedneaning that the
nonlinear polarization is oscillating too rapidly for any substantial effect to build up and coherently interfere with any signal.
Three categories of mixing products of interest remain. The first two are of theutMpn;|2 and uj|uk\2 k # j),
which oscillate at frequency ;. They correspond to the effects glf-phase modulatio(SPM) andcross-phase modulation
(XPM), respectively. For the carrier ai;, SPM and XPM correspond to nonlinear refractive-index changes of the form
n=ng+nalu; |2. The third category of mixing products is of the typgu juj; (or cc), which oscillates at frequencp2 — wy
(or 2wy — w;). If the carriers are equally spaced, i@y, = w; + Aw (and so on), it is simple to establish that the resulting
frequencies match those of the interacting carriers. If the channel spacing is narrow, the dispersion does not significantly vary
over the frequency interval, amghase-matchingccurs, corresponding to constructive/destructive interference and nonlinear
energy transfer between channels. Thus, two interacting channels, (@) generate mixing products in the two adjacent ones
(atw1 — Aw, w2 + Aw), which is a source of nonlinear noise for all four channel involved (nonlinear logs; fas,, nonlinear
gain forw; — Aw, w2 + Aw, or the reverse, depending upon phase-matching conditions). This nonlinear effect is known as
four-wave mixing FWM).
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The starting point for analyzing FWM in WDM transmission systems isibrdinear Schrédinger equatiofNLSE) [8,9,
14]. Considering lossless, dispersive media, the most famous analytical solution of the NLSSdhribdinger solitona light
pulse for which nonlinearity (pulse chrip due to SPM) and positive dispersion (pulse broadening) exactly balance each other,
hence generating a stationary, particle-like pulse, with all types of periodic behaviors [9]. In general, the NLSE is the most
comprehensive propagation equation for any type of nonlinear/dispersive medium.

For a given carrier ab;, the field-amplitude evolution over time and longitudinal coordinajés(a solution of the general
NLSE:

du duj i 0%u; i{

9z Tor 2 912

luj1? + 2y \uk\z}uj +i{u;’f > ule92%-i 4 u? > up ei¢2-f—k} + fluj). (27)
y y y

In Eq. (27), the left-hand side models pulse propagation in a linear/dispersive medium (first-order dispgrsiorder
a slowly-varying envelope approximation. The RHS include different perturbative terms. These correspond to the effects of
SPM and XPM (first braces), then of FWM (second braces), then of periodic amplification/attenuation (fufietjone.g.,
fuj)=1g(2)/2—a/2lu;, g = gain coefficient), respectively. The above forms a generic background from which a classical
analysis of nonlinear noise in WDM systems was developed, as described next.

4.2. Classical analysis of nonlinear OCC

The previous subsection was sufficient to illustrate that, under conditions of high channel power, low dispersion and long
interaction lengths, FWM acts as a source of nonlinearity noise in the OCC (SPM, XPM, dispersion, periodic amplification and
channel coding contributing to further randomization, as discussed in Section 2.2). To model FWM noise, the analysis in [2]
assumes that the output carrier field is of the form:

M?Ut:uj -‘rﬂZhjkuk-i-sj, (28)
k
where ;i is a scattering matrixg is a nonlinear strength coefficient ané a random-noise field associated with amplification.
Other assumptions aré: i) = (e;) = 0, (hjjhy) = 8;j6x1/q, and (g;ej) = §;;N/q where q is the number of WDM
carriers andN is the total ASE power. Using these assumptions, it is straightforward to obtain the output power variance

02 o= " = (w9"2), which can be written:
B2S+ N
sz,outzluj‘z_F T, (29)

with §=3" \uk|2 being the total WDM power. Summing Eq. (29) over all the channglgields the total OCC output noise

%2ut =S+ 25 + N. In this result, the extra contributigd?S and N correspond to FWM and ASE noises, respectively. Since

B2S corresponds to the power scattered by nonlinearity, power conservation requires that we reformulate the output OCC noise
asol 1= S(1— B2 + %S + N, where the actual information-carrying signal powedfgﬁtsignal: S(1—B2).

The nonlinear OCC capacity can now be defined according to the SHT, i.e., following Eq. (13):

S@—ﬂ%)

N + 28 (30)

Chit/s/Hz = |09<1 +
The second step of the analysis consists in relating the nonlinear st@htttactual WDM system parameters. The reader
can refer to [2—4] for the essential aspects of this complex derivation, of which we shall directly provide the result.
Because increased signal power means increased scattering and signal loss, it is sengiblectiadgo power-dependent,
and rapidly converge to unity. The information pows(l — B2) would thus vanish forS — oo, and so would the channel
capacity in Eq. (30). Therefore, we define:

2 2
P P
=) oo () ] 2
Pty Pty
where Py is the OCC signal power angy, its nonlinearity threshold. In customary telecom units, the threshold is defined by

[2—4]:

Py = 10-15 | _BeHz PlpynmimAinm (32)
‘ - 2 ff .
2V 11K Ly 1109(4/2)




E. Desurvire / C. R. Physique 4 (2003) 11-28 23

In this definition, B is the OCC signal bandwidth (in GHZ)P| is the local absolute dispersion (in/osn/km), A is the
WDM carrier-wavelength spacing (in nmy, the nonlinear index coefficent (in W/km),  is the number of amplification
spans,Leff = 1/« the effective nonlinear length ard> 2 is the number of WDM channels. Replacing definition in Eq. (31)
into that in Eq. (30) yields:

pge(Ps/Pn)? )
Pn(1+ (Ps/PN)[1— e~ (Ps/Pn?)) )’

where Py is the cumulated ASE noise power in OCC bandwisithSince the capacity is finite at low powerBy(<« Pin) but
vanishes at high powels — o0), it must pass through a maximum at some optimum signal pmg?gtr. Such an optimum
is easily found by approximating the exponentials in Eq. (33), which yields (as closely approximate values):

Py P2y 1/3
t N
pEPI_ <_2 th) (34)

corresponding to the maximum capacity:

Chit/s/Hz = |09<1 + (33)

2 2 P
Cgi]t%/Hz oF log, (% P_i/]) (35)
Note that since all powers involved in the definitions of Eqgs. (33)—(35) are expressed as dimensionlesy f#jip®or
Pg/ Py, One can also ugeer-carrier powers in bandwidtiB. = B/q, including this change also in definition of Eq. (32).
We illustrate the above results through a practical system example. Consider for instance a an O wifhx 100 km
(k = 5) with ¢ = 100 channels at = 1.55 um, B, = 10 GHz,|D| = 1 ps/nm/km, Ax = 0.2 nm,y = 1 W1/km, andL&f =
20 km, which from Eq. (32) yield®, = 1.6 mW. The cumulated ASE noise is assumed t®Re= 2knsp(G — 1)hivB’ =5 pW
(B’ =0.2 nm125 GHz/nm= 25 GHz,G = 100,nsp= 1.6). The optimum signal power is the’?fpt: 0.185 mW (=7 dBm),
corresponding to a peak capacity@hax= 4.6 bit/s/Hz. Fig. 5 shows plots of the amplified/nonlinear OCC as function of the
signal power (in dBm or decibel-mW, as defined by the decimal log scale MB@‘W/l mW]). The other curves are obtained
in the same conditions, except that the local dispersion is increased by powers pbtwod—4-8 pgnm/km), corresponding
to power thresholds ofy, = 3.2-4.8-6.4 mW, respectively. The straight lines correspond to the purely lineafBgse o)
and the purely nonlinear cag®y — 0), respectively. It is seen that a capacity maximum (as predicted) is defined near the
cross-point of the purely linear or nonlinear regimes. It increases as the power threshold is increased, but only logarithmically,
according to Eqg. (35). A doubling of the threshold only provides a Aspiiz channel capacity improvement.
The classical theory of amplified/nonlinear OCC thus determirmsager windowthrough which maximum OCC capacity
can be achieved. The peak channel capacity performance is determined by a variety of key WDM system parameters (local
dispersion, bandwidth, carrier-wavelength spacing, nonlinear coefficient, amplifier spacing, humber of spans, and number of
channels), all of which being nicely contained in a closed-form definition of nonlinear threshold power (Eq. (32)).

4.3. Unified quantum model for amplified/nonlinear OCC

As we have seen the noise characteristics, and hence the capacity of the nonlinear/amplified OCC can be fully described by
the combination of two models: a quantum-field operator model for in-line amplification (Section 3) and a classical-field model
for nonlinear wave-mixing (previous subsection). The second model also introduces linear amplifier noise in a semi-classical
way, i.e., by assuming ASE as an ad-hoc parameter. A main assumption consists in introducing ASE noise in the total OCC
noise variance only under the form of mean poweias seen in Eq. (29), which is equivalent to a shot noise effect. As described
in Section 3, the noise in amplified light signals is dominated by the signal-ASE beat component, which is not additive and
is proportional to the signal power. Another issue is the effect of signal-ASE and ASE-ASE wave-mixing, overlooked in the
previous analysis. It is sensible therefore to refine the analysis in order to obtain a noise expression where these different effects
appear. It also makes sense to unify the two analysis of amplification and nonlinearity into a single quantum model. This does
not imply that the effect of nonlinear FWM must be of quantum origin or could be only satisfactorily explained by quantum
principles. Rather, it is the matter of modeling FWM noise through quantum formalism so that it is fully compatible with the
guantum model for amplifiers. In the following, we briefly describe the background assumptions and results the unified quantum
model for amplification and nonlinearity, originally developed in [3].

Consider nonlinear transmission without amplification in a short, lossless OCC, meaning that the channel transparent in
the linear/low-power regime. An assumption central to the model, is that the OCC can be characterized by the same evolution
equation as in Eq. (17), i.e.,

A=na+H, (36)
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wheren < 1 is the nonlinear transmission atfl a Langevin-like field operator associated with nonlinearity, with properties
being identical to that of (Eq. (17)), and with mean noise powgi ™ H) = P (this termP not to be confused with that used
in Section 3.1). The same formal developments as in Section 3.2 lead to the definition of mean signal output power:

(n) = n(no) + P. (37)
Since there is no external power source, energy conservation requires from Eg. (37) that
P = (1= 1%)(no) = x (no), (38)

wherey is defined as a ‘nonlinear scattering’ or NLS coefficient. Thus, the action of the nonlinear segment is convert a fraction
of input signal energy into output noise energy. Following the same approach as in Section 3.1, we can decompose the noise
operatorH into:

H=puy1+vy, (39)

whereyq, y» are boson fields from two independent or uncorrelated noise sources, with zero(pﬁw@f: 0. According to
the same commutation and bracketing conditions as usef &rd A in the amplifier model, one obtains:

u:\/l—nz—l—P:\/)dl—i—(no)), v=ﬁ:\/x(n0>. (40)
Substituting the results of Egs. (39) and (40) into Eq. (36) we get:

A={1—ya+/x(1+ no))y1+xno)vy (41)

which fully defines the quantum-operator properties of the nonlinear lossless OCC. Thus, the nonlinear/lossless OCC can be
modeled by a 3D-QBS (Fig. 4), which couples two vacuum-fields to the transmitted signal, similarly to the amplification case.
Because two vacuum fields are necessary to model the nonlinear transmission, the effect is not equivalent to passive attenuation,
which requires only one vacuum field (Section 3.1).

One then notices that the input/output relation in Eq. (41) has the same functional form as that of the amplifier in Eq. (14),
according to the substitution:

G—>1—y, N — x(ng). (42)

Therefore, there is no need to carry out again the tedious derivation leading to the output m@nént) and associated
variances 2. Indeed, suffices it to make the substitution defined in Eq. (42) into the result of Eq. (16), which yields:

o2 ={1-0)%(o§ — (n0)) } + (no) + X (2= x)(no)? (43)
signal out
A
10
= 9
2 g
(0]
o 7
g N 6
[$]
Y 3 é 5
- cQ 4
9
‘g 3 \ %
z 5
g 1
. . v 0
signal in / -20 -15 -10 -5 0 5 10
a /, f Y1 X

Signal power (dBm)

Fig. 4. Three-dimensional quantum beam-splitter model for non-ideklg. 5. Amplified/nonlinear optical communication channel capacity

amplifiers, equivalent to that of Fig. 3 (see text for coupling-coefficienfinformation spectral density) as function of total signal power,

definitions). corresponding to the example of ax5100 km WDM transmission
system: (a) linear amplified case, (b) nonlinear case with no amplifier,
(c) general case, in full line. The system dispersion is increased
from left to right by powers of two from an initial value of
D =1 pg/nm-km. See text for other parameters. After [4], © Wiley,
2002.



E. Desurvire / C. R. Physique 4 (2003) 11-28 25

or for coherent input signa(:arg = (ng)):

o2 =(no) + x(2— x)(no)?. (44)

In the result of Eq. (44), the first term in the RHS is identified as a combined shot noise contribution from both signal
(1 — x){ng)) and NLS(x (ng)) sources. The second term corresponds to the sum of two beat noises, namely signal-NLS
(2x (1= x)(ng)?) and NLS—-NLS(x2(ng)?) beat noises, respectively.

Since nonlinearity can be modeled with this new Langevin sofifcese can now proceed to combine it with the effects of
loss and amplification. This can be done for instance by considering the concatenation of an amplifier with a lossy nonlinear
segment, with the gain compensating the segment loss, as described in [3]. While the resulting derivation is tedious, it leads to
a result that can be directly obtained by assuming at once the following input/output field relation:

A=+Via+F+H. (45)

In this relation, the two Langevin-like operato#s for the amplifier andd for the nonlinearity are characterized as follows:

— (F), &P, FP1and (@ FD) are all zero (parenthesis in exponent indicating optional Hermitian conjugation), and
(FTF)=N, ((Ft)2(F)2) = 2N?2 (property of thermal/chaotic sources) afid F F+)(+)) = 0, whereN is the ASE;

— H is assumed to have the same propertiesFagxcept for a mean power given b§ = (HT H) = x (ng), where
(ng) = (ata) is the mean throughput signal power agpda nonlinear scattering parameter which will be specified
later. Thus we have(F1)2(F)2) = 2x2(ng)2, meaning that nonlinarity noise is thermal/chaotic, corresponding to
maximum randomness. Since the ASE and NLS processes are independent, the quafitities (1], (1) F(H),
(HOFDOFDy and(FEH HE HD)y are all identical to zero.

The mean output signal power, as calculated from Eq. (45) and applying the above properties, takes the form:

(n)=(A*TA) = (Vrat + FT + HYY(Vaa+ F+ H))=raTa) + (FYF) + (HT H)
= Ano) + N+ P (46)

which is the expected result. An important condition is tHatlso describes a boson field, i.4, AT] = [a,aT] = 1.
Calculation from Eq. (45) yield§F, FT] + [H, Ht] = 1 — A, which is useful in the computation of the second moment
((AT A)2). Using Eq. (45) we obtain first:

((ATA) = ((Aatay AT a)) = (Vrat + FF + Y Vra+ F+ H)Wrat + FT + HYH(Vaa+F+H))  (47)

which decomposes into no less than 81 bracket terms! It is then a patient exercise to identify the non-vanishing brackets and
regrouping them, then to apply the above commuting rules and properties [3,14]. However, such a task is rewarded by a nicely
tractable result:

02 =22(0¢ — (ng)) + Mno)[1+2(N + P)] + (N + P)[1+ (N + P)]. (48)

The first term in the RHS of Eq. (48) is the usual excess noise, which vanishes for coherent input signals. The other terms
in the RHS exactly correspond to those of Eq. (16) with the substitiies N + P, which serves as a calculation proof. One
can also group the noise terms from Eq. (48) as follows:

o? :Uaszp'f' aﬁL, (49)
0amp=Mno)(L+2N) + N(N + 1), (50)
o4 = A(ng)2P + P(L+2N + P). (51)

One recognizes in Eqg. (50) the noise from optical amplification (shot and beat noises) in single ASE polarization
(generalization to two polarizations can be done by doubling the last terf(M + 1), but this is not necessary as this
contribution remains negligible compared to the other beat-noises). The second noise source, Eq. (51) decomposes into four
terms. The first(2x(ng) P), is related to an effect afignal-NLS beat nois@he remaining one&P, 2PN and P2) correspond
to NLS shot noiseNLS—-ASEandNLS—NLS beat noiseespectively. Classically, these four noise terms make physical sense if
one conceives NLS as an internal OCC source generating an electric field incoherent with both ASE and amplified signal.
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5. Nonlinear/amplified OCC capacity according to unified quantum model

Having obtained the expression for the nonlinear/amplified OCC mean and variance, we can define the SNR:

122
SNR= % (52)
oampt oL
Replacing into this SNR the definitions in Egs. (50) and (51) yields:
SNR= *{no) . (53)
142N + N(N +1)/(A(no)) + 2P + P((1 + 2N)/(A(ng)) + P/(A(no)))
Using the high-signal approximatiaitng) > 1, N, N2) and substituting? = x (ng):
1-—
SNR~ (L— 0 (no) (54)

TN+ x(A+1/A = x) (o)

Finally, we can express the OCC capaciiy:= log(1 + SNR, introducing the notation&:g) = S, x = B2, which gives:
S(1- 82 ]

142N+ B2SQA+1/1—82) ]

Comparison with result from the classical theory (Section 4.2, Eq. (30)) shows that the new capacity definition in Eq. (55)
is very similar. There are only three differences in the SNR denominator:

Chit/s/Hz = |09[1 + (55)

— the term ‘1’, which traces back to signal shot noise as a non-vanishing contribution when amplification and nonlinearity
are turned ofi(N = 0, 82 = 0);

— the term 2V, which traces back to signal-ASE beat noise, thus introducing a factor of ‘2’ penalty with respect to the
classical model (where only appears);

— the extra term A1 — B2), which traces back to the effects of signal-NLS and NLS—-NLS beating effects, not taken into
count in the classical model.

The impact of these three corrective terms turns out to be small. Indeed, the maximum SNR ‘penalty’ introduced by the
definition involved in Eq. (55), with respect to that involved in Eq. (30) corresponds to only 20% or 1 dB [20]. The maximum
SNR/capacity is also independent of nonlinearity threshold and noise powers. This can be showed by considering the coordinates
of the new optimum point (easily obtained from Eq. (55), after substituting the definitiéf iof Eq. (31)):

Py P2N\1/3
opt N Tth
P () (56)
2( Ppn 2/3
Chitjs/Hz ™ 'ng[g(sz,) (57)

with Py» = (1 + 2N)hvB (or Py = (1 + 2kt N)hv B for cumulated ASE in configuration A). Note that for consistency, the
comparison between the two SNR models [20] must assume thdis@arenoise Py, i.e., making the substitutioAy — Py

in Eq. (33). It is easily checked that the OCC capacity predicted by the unified quantum model (Eq. (57)) corresponds to
0.33 bit/s/Hz (or a ‘maximum SNR’ penalty of 20%) with respect to the classical model (Eq. (35)). The unified quantum
model for the amplified/nonlinear OCC thus introduces a relatively small correction in both SNR and capacity.

6. All-optical regeneration

Several strategies are possible to optimize the performance of amplified/nonlinear OCCs, as discussed in previous
Section 2.6. These include system-design optimization (use of special transmission fibers, dispersion management, reduction
of amplifier span, power pre-emphasis), and the use of optimized/robust modulation formats with error correction
coding/decoding (see [5-7]). When all these approaches have exhausted their potential to either increase the transmission
distance (at fixed bit-rate), or increase the bit-rate (at fixed transmission distance), a final recourse is to regenerate the signals
by use of opto-electronic (OE) transceivers. Such transceivers perform the three functions sésigmnplification re-shaping
andre-timing hence the name ‘3R’. The transmission distance can then be expanded by concatenating several OCCs to form
a chain, each stage requiring OE regeneration followed by electro-optic (EO) re-conversion (referr@&® generation
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For WDM systems, such OEO regeneration requires a complex and expensive per-carrier-wavelength implementation. An
alternative approach, iall-optical in-line regeneration which consists in by-passing the electronic-processing stage and
performing 3R signal processing through all-optical or hybrid EO modulation. As shown by recent reviews [4,10,11], there
exists a wealth of different techniques for implementing all-optical 3R regeneration, includisgrthkaneous processiraf

WDM channels.

From the academic standpoint, one of the most interesting features of all-optical regeneration is that the OCC transmission
distance can be made ‘infinite’, without any SNR/BER degradation. The transmission distance is indefinitely increased because
the SNR (hence the BER) asymptotically stabilizes itself to some level, as regeneration periodically removes, in a converging
mode, the noise cumulated in the line. Here, ‘infinite transmission’ means in practice that optical signals could be made to
re-circulate in a fiber loop with a regenerator, while keeping their information integpliiyfinitum This could not be the case
with OEO regeneration, where the BER is cumulative. This is because each OEO stage involves a finite probability of symbol
decision error. In contrast, all-optical processing does not ‘decide’ on the symbol information contents (‘0" or ‘1’ bit), but only
removes the associated noise. Furthermore, we have also shown that, under certain conditions, the ShRpcavedéy
in-line optical regeneration (not just asymptotically stabilized), corresponding to an effege-a€-openingvithout symbol
error [21]. The effect of eye re-opening can be compareahtplitude squeezindput only by analogy since the signal electric
field is classical. However, squeezing-like effects in both amplitude and phase are produced by all-optical regeneration [22],
which remains to be further studied for ultimate limits and potential coherent-transmission/regeneration applications.

The above observations point to new directions in the physics of noise and associated information theory for noisy channels,
as restricted so far to binary, ON—OFF signaling. The stabilization of SNR or its improvement through all-optical regeneration
means that the intrinsic channetjuivocation entropyan be kept under control, regardless of noise origin (amplification,
nonlinearity) and their cumulative distance, or even removed in certain cases. In this paper, we have shown (Eg. (8)) that the
channel equivocation takes the fofi(Y | X) ~ BERexp(—BER), which asymptotically becomes linear with BER. We have also
shown that the BER is asymptotically of the foBER~ exp(—SNR/+/47 SNR Eq. (4). Assume that in the regenerated OCC
the SNR is finally stabilized at a val@\R, corresponding to a constant equivocatidii(Y | X) ~ BER* exp(—BER"), where
BER* ~ exp(—SNR')/+~/47 SNR:. It is then possible to define the difference between the regenerated and non-regenerated OCC
entropies according to:

AH = H*(X|Y) — H(X|Y) = BER e BER _ BgRe~BER (58)

which (by convention) corresponds to negative entropy. To provide an example, assume typical vaBER =103
(regeneration OFF) anBER= 10~% (regeneration ON). From Eq. (58), we gatd = —0.9980 x 10~3 bit/channel use

(or —0.9980 bit/s at 1 KHz channel-use rate). One can interpret the result in terms of an increase of channel capacity of
1 bit/s at 1 KHz user rate. This means that the loss of 1 bit per thousand is removed. Since BERs are usually much smaller
than unity, the ‘negative entropy’ introduced by optical regeneration is only of academic interest in this case. However, the
realistic implementation of optically-regenerated systems concerns ‘useless’ channels, i.eBER&re.5. As discussed in

Section 2.3, the (binary) channel capacity vanishes in this case. Assuming that the regenerated BER is much smaller than unity,
BER" « 1, and using the exact definition in Eq. (8), we obtain for the negative entropy:

AH ~—H(X|Y) = (1 - BER logy(1— BER + BERlog,(BER = log,[BERPER(1 — BER1~BER] (59)

which reaches a maximuA H = —1) when BER= 0.5 (full channel capacity restoration). The interest of the ‘negative
entropy’ concept is therefore to qualify the improvement introduced by optical regeneration in ‘useless' binary channels, on a
[—1; 0] measurement scale.

7. Conclusion

In this paper, we have reviewed the key concepts associated with information capacity in the optical communications
channel. First, we have recalled the definitions of signal-to-noise ratio, entropy and channel capacity (Shannon—Harley theorem)
concerning both binary and continuously-coded channels. An original expression linking equivocation entropy and bit-error-
rate in binary channels was derived. Next, we have considered the limitations caused by optical amplification noise and its
accumulation with distance, as based upon a quantum-field operator model. The model shows that two independent vacuum-
field couplings are necessary to describe non-ideal amplification. However, its also shown that an equivalent and more concise
description of non-ideal amplifiers can be made through a Langevin-operator formalism. Based upon this analysis, the case
of linear channels with discrete and distributed in-line amplification was then analyzed, which lead to an original definition
of ultimate channel capacity for ideal systems. Then we have considered the nonlinear optical communication channel. First
we recalled the origin of nonlinearity due to wave-mixing between wavelength carriers and how it is modeled through the
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nonlinear Schrédinger equation. A recent classical model for noise accumulation in nonlinear communication channels was
then described, leading to a reformulation of the SHT which takes into account both amplifier and nonlinearity limitations. In
particular, this classical model shows that it is possible to define a power transmission window where the amplified/nonlinear
channel capacity is maximized. We presented then a unified quantum model for both amplification and nonlinearity, as based
upon Langevin-operator formalism. The model is shown to predict small corrections from the classical approach, which leads to
a mode detailed and accurate definition of the SHT. Finally, we have considered the case of all-optically regenerated channels,
which makes possible to realize infinite-distance transmission and even eye re-opening by stabilization or improvement of
the signal-to-noise ratio. It was shown that all-optical regeneration is in fact equivalent to introduce negative entropy in the
communication channel, which corresponds to the channel equivocation entropy. For binary channels, this negative entropy is
measured on g-1; 0] scale, which determines the transition from useless- to error-free channel operation.

In these times where technologies for broadband and global networking have reached a very high degree of maturity,
analyzing ultimate capacity limits in the optical-communication channel has become a most relevant task. Such limits are
not only determined by innovation engineering and technology evolutions, but also by fundamental principles from quantum
physics and information theory. With continued improvements in our understanding of channel noise and coding limitations,
much progress can be anticipated in this field.
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