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Abstract The key concepts of gauge invariance and spontaneous symmetry breaking that helped
build the Standard Model of particle physics are introduced. A short description of radiative
corrections that have made the model pass all precision tests, in particular those from LEP,
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Le Modèle Standard de la physique des particules : une introduction
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Résumé Les concepts importants d’invariance de jauge et de la brisure spontanée de symétrie qui
ont permis la construction du modèle standard sont exposés. Une description des corrections
radiatives qui sont essentielles pour tenir compte des mesures de précision, surtout celles
effectuées au LEP, est présentée.Pour citer cet article : F. Boudjema, D. Zeppenfeld, C. R.
Physique 3 (2002) 1097–1106.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
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1. The gauge symmetry principle

The central result of 20th century particle physics is the successful description of electromagnetic,
weak and strong interactions as gauge field theories, resulting from an underlying symmetry called gauge
invariance. Postulated some thirty years ago for the weak [1–13] and strong interactions [14–17], the
perturbative predictions of this ‘Standard Model’ (SM) of particle physics have been tested and confirmed
with amazing accuracy at LEP.
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1.1. Electromagnetism as a prototype

One manifestation of the gauge invariance principle is the fact that in electrostatics the electric field, and
hence the electrostatic force, depends only on thedifference of potential. The gauge field idea is best known
in the quantised version of Maxwell’s equations. The quantum field creating and annihilating photons is the
vector potentialAµ(x), which is related to the electromagnetic field strength byFµν = ∂µAν − ∂νAµ. The
field strength, and thereby Maxwell’s equations, are invariant under gauge transformations,

Aµ(x)→Aµ(x)+ ∂µ	(x). (1)

Gauge invariance is also familiar from the quantum mechanics description of a charged particle interacting
with an electromagnetic field. Schrodinger’s equation for a free particle of massm, (1/2m)(−i

−→∇ )2ψ =
i∂ψ/∂t , is invariant under aglobal phase transformationψ → exp(iλ)ψ . If one insists that the equation
remains valid under alocal phase transformation, in other words that the transformation can be different
at different points in space-time,λ→ q	(x = (t,−→x )), one is then led to introduce acompensating vector
field which transforms exactly like Eq. (1). This prescription gives the familiar Schrodinger’s equation of a
particle of chargeq with the electromagnetic fieldAµ = (V ,

−→
A ),

1

2m

(−i
−→∇ + q

−→
A

)2
ψ =

(
i∂

∂t
+ qV

)
ψ. (2)

This principle is carried over to the relativistic quantum case by requiring that all derivatives∂µ be replaced
by covariant derivatives Dµ = ∂µ − iqAµ, in analogy with Eq. (2) which clearly displays the combination
of the space-time derivatives and the vector potential components. An important consequence of this, is that
all charged particles couple exactly the same way to the electromagnetic field, thecoupling is universal.
The essential point is that charged fields and covariant derivatives of charged fields have identical local
transformations,

ψ(x)→U(x)ψ(x), Dµψ(x)→U(x)Dµψ(x), U(x)= eiq	(x). (3)

The group of transformations,U(x), in Eq. (3), is an AbelianU(1) group since it does not matter in which
order we apply successive transformations of the formU(x).

Electromagnetism is a long range force where the messenger of the force, the photon, is massless. As
a consequence, electromagnetic fields have only two transverse independent polarisations (the massless
photon has only 2 helicity states), despite the fact that the photon is a spin-1 described by a vectorAµ. In
fact all these properties, the derivation of Maxwell’s equations thatunify the electric and magnetic fields
are embodied in the simple Lagrangian describing (free) photons

Lem= −1

4
FµνF

µν ≡ 1

4

((−→
E + i

−→
B

)2 + (−→
E − i

−→
B

)2)
. (4)

(
−→
E ± i

−→
B ) displays the two helicity states of the photon, or polarisation of the field. A mass term for the

photon would be represented bym2AµA
µ which breaks gauge invariance as it is not invariant under Eq. (1).

QED which is the gauge theory describing the interaction of electrons with photons has been tremendously
successful.

1.2. Weak interactions and non-Abelian gauge theories

Considering how elegant and powerful the gauge invariance principle is and how it dictates the form of
the interaction, it was natural to extend it to weak interactions. So much so, since processes as different
asβ-decay (n→ p + e− + ν̄e), muon decay (µ− → e− + ν̄e + νµ) or muon capture (µ− + p → n+ νµ)
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seemed to be of the same nature and have the same strength, pointing to universality. There are, however,
some important differences with QED.

These processes are charged current processes representinge− ↔ νe or n ↔ p transitions and thus
contrary to QED, they involve a change in the identity of the matter, spin-1/2 field. Moreover, observation
of maximal parity violation implies a structure of the weak current in which only left-handed fields are
involved. Chirality (left-handed and right-handed states) of a fermion corresponds, at high-energy, to the
helicity state of the fermion. An electron field can be decomposed then ase = eL + eR . Electromagnetism
treats these two components on a equal footing, preserving symmetry under parity. Indeed the gauge
coupling of electrons to photons givesēγ µAµe = ēLγ

µAµeL + ēRγ
µAµeR . γ µ are a set of matrices

which may be thought of as a relativistic generalisation of the Pauli spin matrices. Note in passing that
the gauge interaction does not mix these two states. In contrast, the charged current to which one would
like to associate a charged gauge boson,W±, is of the form,ēLγ µW+

µ νe(L). To make this resemble the
electromagnetic current, one can write it asELγ

µW+
µ τ

+EL. The entityEL = (
νe
eL

)
should be considered

as a doublet (one speaks of an isospin doublet) andτ± are the raising and lowering Pauli matrices.
This two-level transition is also very familiar to us from quantum mechanics as is the use of the Pauli

matricesτ . The smallest group of gauge transformation acting on the doubletEL (andn,p) generalising
Eq. (3), is the non-AbelianSU(2)L group, which besidesτ± has also ‘a neutral’ generatorτ3. There
will therefore be 3 compensatinggauge fields: W±

µ , W
3
µ. SU(2)L symmetry predicts the coupling ofW3:

ELγµW
3
µτ

3EL = ν̄eγµW
3
µνe − ēLγµW

3
µeL. Unfortunately this neutral current does not correspond to the

electromagnetic current. For a start it involves neutral particles. On the other hand, it only includes part
(left-handed) of the electromagnetic current. Therefore we do have a partial unification or at least a unified
description of the weak and electromagnetic interaction. To fully reconstruct the electromagnetic current
from the neutral isospin current, one must postulate the existence of at least another neutral current. In
the standard model this is introduced via aU(1)Y neutral current, associated with the hyperchargeY and
a gauge fieldBµ. The latter couples to both the left-handed doublet and right-handed (e.g.,eR) isospin
singlet. The photon and theZ then appear as a superposition of the fieldsBµ andW3

µ.
It is also appropriate to say, at this stage, that the neutron and the proton are made up of quarks,u andd ,

that form a doublet underSU(2) and which are bound by the strong force. Each quark carries a set of
three colours. The messenger of the colour force, strong interaction, is the gluon. The gauge group here is
SU(3) which means in fact that we have eight types of gluons, corresponding to the eight generators of the
fundamental representation ofSU(3) represented by the 8 Gell-Mann matricesT a . e, νe, u, d form the first
generation of matter particles of the SM model. One has discovered three such families. These fermions are
listed in Table 1 which gives their respective charge under the three gauge groupsSU(2)L, U(1)Y , SU(3)c.

The gauge coupling constants of these three fundamental interactions, which help define the generalisa-
tion of the gauge transformations (Eq. (3)) and the covariant derivative are, respectively,g,g′ andgs . The
gauge transformations and the covariant derivative are then

ψ(x)→U(x)ψ(x)= eiθa3 (x)T
a

eiθj2 (x)τ
j/2 eiθ1(x)Yψ(x),

Dµ = ∂µ − igsT
aAa

µ − ig
τ i

2
Wi

µ − ig′YBµ. (5)

The covariant derivatives completely specify the interactions of all known fermions and gauge bosons
and encode the universality of the gauge couplings (see the contribution by Rougé and Tanaka [19] for
experimental tests) via the matter Lagrangian

Lmatter=
∑

j=Q,uR,dR,L,eR,νR

ψj iγ µDµψj . (6)
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Table 1. Quantum numbers of the first generation of quarks and leptons within the SM. The
rows give the irreducible representations under colourSU(3) and weakSU(2), and the

hyper-charges for the various multiplets. The electric charge (in units ofe) is given in the
last column. The assignments for the quarks and leptons of the second and third generations

((c, s, νµ,µ) and(t, b, ντ , τ )) are identical to the ones for the first generation. For the
experimental determination of the number of neutrinos (and light generations) see the

contribution by Blondel [18].I3 is the third component of weak isospin andY the weak
hypercharge of the considered particle.

SU(3) SU(2)L U(1)Y Q= I3 + Y

Q= (uL,dL) 3 2 1/6 (2/3,−1/3)

uR 3 1 2/3 2/3

dR 3 1 −1/3 −1/3

L= (νL, eL) 1 2 −1/2 (0,−1)

eR 1 1 −1 −1

νR 1 1 0 0

An important observation concerning non-Abelian gauge theories is that the gauge fields are self-
interacting. Not only the matter fields carry charge but also the gauge fields (isospin forW1,2,3, colour
for the gluons). This is imposed by the non-Abelian gauge transformations. For example the generalisation
of the field strength,Fµν for SU(2) is

Wi
µν = ∂µW

i
ν − ∂µW

i
ν + gεijkWj

µW
k
ν . (7)

The first two terms enter the kinetic term as in the Abelian case, whereas the last term describes the self-
interaction. The gauge Lagrangian is constructed as in Eq. (4) using the appropriate fields strengths for
SU(2),U(1) andSU(3). The gauge Lagrangian uniquely fixes theW+W−Z andW+W−γ triple gauge
vertices (TGV) which have been measured at LEP (see the contribution by Buchmüller et al. [20]), as well
as the quartic couplings such asW+W−Zγ in terms of a single parameter, the gauge couplingg. One
important property is that the non-Abelian gauge symmetry predicts the gyromagnetic moment of theW±
to be 2, like that of the charged elementary fermions.

2. Spontaneous symmetry breaking and mass generation

The main blow to the construct so far is that the weak interactions describe a short range force, in other
words theW± and theZ are massive. As pointed out above for QED, a mass term introduced by hand
destroys the gauge invariance of the theory. This major hurdle was solved by borrowing and adapting
an idea that is encountered in many solid-state physics phenomena. In such systems, the Hamiltonian is
invariant under a symmetry but theground state of the system breaks this symmetry. Such is the case with
a ferromagnet below the Curie temperature. In this case, rotational symmetry is broken by the ground state
(all spins of the atoms aligned in the same direction) despite the fact that the dynamics (the Heisenberg
spin–spin Hamiltonian) does not select any preferred direction. This spontaneous symmetry breaking is
also at work in superconductivity where, with the Meissner effect, the fact that the magnetic field enters the
solid over a very short range could be associated with a massive photon.

2.1. The Higgs mechanism and mass generation for the gauge bosons

One usually thinks about (and most often defines) the vacuum as a state where all fields have zero
expectation value. However it may happen, as is depicted in Fig. 1, that the state with zero energy is not
the most stable. The system will choose stability or minimum energy (bottom of the well) rather than the
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Figure 1. Scalar potentials. The first panel shows a symmetric potential, under rotation around the vertical axis, with a
stable minimum where the ball is resting. In this situation〈0|φ|0〉 = 0. The second panel, resembling a Mexican hat,
illustrates spontaneous symmetry breaking. The symmetric configuration at the top of the hat is unstable. The system
will pick up any stable configuration along the brim with〈0|φ|0〉 �= 0. The Goldstone mode therefore represents this

azimuthal direction whereas the radial component is the Higgs field.

state with maximum symmetry (top of the mountain). Such potentials are provided by scalar fields, with a
potential of the formV = λ(|φ|2 − v2/2)2 (λ > 0), wherev is the vacuum expectation value (v.e.v.) of the
scalar field〈0|φ|0〉 = v/

√
2. This scale is the origin of the mass of the gauge bosons and also the fermions.

It is as if some of the charged fermions and gauge bosons moving in such vacuua feel a resistance and
behave as if they have mass. To see how this works, it is most simple to take QED as an example [4,5] to
illustrate how a mass for the photon can be introduced in agauge invariant way.

One needs to take a charged scalar fieldφ. The latter can be represented by a complex fieldφ =
(φ1+ iφ2)/

√
2. For our purposes it is best to rewrite this in polar coordinate asφ = (h+v)eiθ/v/

√
2, where

bothh andθ have zero v.e.v.θ characterises the rotational symmetry of the potential. The interaction of this
scalar field with the electromagnetic field is described by a fully gauge invariant Lagrangian constructed
through the use of the covariant derivative, Eq. (3). Upon expansion of this Lagrangian we find

L= −1

4
FµνF

µν + 1

2
v2

(
eAµ + 1

v
∂µθ

)2

+ 1

2
∂µh∂

µh− λ

4

(
h2 + 2vh

)2

+ 1

2

(
eAµ + 1

v
∂µθ

)(
h2 + 2vh

)
. (8)

One sees clearly that the gauge field has acquired a mass,mγ = ev (second term in Eq. (8):
+e2v2AµA

µ/2). Because of gauge invariance we can always make a (local) phase transformation on the
field φ = (h+ v)eiθ/v/

√
2 such that the ‘phase’θ/v is set to zero. This gauge whereθ → 0 in Eq. (8) is

theunitary gauge where only thephysical states h,Aµ are left. Counting the number of degrees of freedom
before and after symmetry breaking, we find the same number of course. Before, one had two scalars and
one massless spin-1 which has only two (transverse) states of polarisation. After symmetry breaking, one
of the scalars,θ , transmutes into the longitudinal polarisation of the ‘heavy photon’. In fact it would be
more appropriate to say that the gauge symmetry is hidden, once we choose a particular gauge, since the
gauge symmetry is present in the dynamics. Theθ field is a Goldstone boson, it corresponds, as seen in
Eq. (8), to a massless pseudo-scalar.h is the Higgs scalar field whose mass is given by

√
2λv2. There is

also a couplinghAA which is proportional to the mass of the gauge boson.

1101



F. Boudjema, D. Zeppenfeld / C. R. Physique 3 (2002) 1097–1106

A very similar approach is applied to the weak interaction. Since we need three massive gauge bosons, the
three longitudinal states will be provided by three Goldstone bosons. This is most simply and economically
provided by a Higgs doublet,5, with quantum numbers such that the vacuum is left invariant under
electromagnetic gauge transformations, so that the photon remains massless. ThusY5 = −1/2,

5=
(

0
1√
2
(v +H)

)
eiωj τ j /(2v), LHiggs= (

Dµ5
)†
(Dµ5)− V

(
5†5

)
, with

V
(
5†5

) = λ

(
5†5− v2

2

)2

, (9)

whereH is the physical Higgs field of the electroweak theory,ω1,2,3 the Goldstone bosons andv the
vacuum expectation value.

2.2. Fermion masses

We already stressed the fact that QED treated both electron chiralities on the same footing, in particular
botheL andeR have the same electric charge. Therefore the electron mass termme(ēReL + ēLeR) is gauge
invariant in QED. According to Table 1 the SM has no left and right-handed multiplets with identicalSU(2)
andU(1)Y charge, hence, a fermion mass term introduced by hand would break the symmetry of the SM.
Once again, however, mass terms are possible via the Higgs mechanism. Let us consider the masses for the
charged leptons. The left doubletL, right-handed singletlR and the Higgs field5 combine so that they
form a neutral symmetric object underSU(2)×U(1). The masses are introduced via Yukawa couplingsyl
as

−Ll
m =

∑
i=e,µ,τ

yil
(
L̄i5lR,i + l̄R,i5

†Li

) −→ unitary gauge−→
∑

i=e,µ,τ

yil v√
2

(
1+ H

v

)
l̄i li ,

yil v√
2

=mi
l .

(10)
This exhibits a common important feature that applies also to quarks, namely that the couplings of the Higgs
to fermions is proportional to the fermion mass. Because in the quark sector one is generating masses for
both the up and down quark, one also induces mixing between the three-families in the charged current [21,
22] (but not in the neutral currents [23]). This is also the source of CP-violation in the model. It is important
to stress that although masses and mixing are introduced in a gauge invariant way, one nonetheless needs
to introduce a large number of ad-hoc Yukawa couplings, contrary to the gauge boson masses that are
expressed through the universal gauge coupling.

3. Salient features of the model

Within the SM the scale of all particle masses is set by the Higgs v.e.v.,v. For the gauge bosons, the mass
term is produced by the kinetic energy term of the Higgs doublet field,LHiggs in Eq. (9). The latter reveals
several key predictions of the SM which can be tested at LEP.
1. The Higgs Lagrangian generates mass terms for the chargedW± and forZ fields.W3

µ andBµ combine
to give the massless photon and theZ,

Zµ = cosθWW3
µ − sinθWBµ = 1√

g2 + g′2
(
gW3

µ − g′Bµ

)
,

Aµ = sinθWW3
µ + cosθWBµ. (11)

These relations define the weak mixing angleθW .
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2. TheW andZ masses are given by

MW = gv

2
and MZ =

√
g2 + g′2v

2
= MW

cosθW
. (12)

The mass relationM2
W = ρM2

Z cos2 θW with ρ = 1 is a consequence of the breaking the electroweak
symmetry by a scalar doublet Higgs field.

3. The mass terms for theW andZ are directly related toHWW andHZZ couplings, of strength 2M2
W/v

and 2M2
Z/v, respectively. This coupling of a single scalar to two gauge bosons requires the existence of

a v.e.v. for the Higgs doublet field. Normally, gauge bosons couple to pairs of scalars only.
4. The Higgs boson mass is given byM2

H = 2λv2. Since the quartic couplingλ is a free parameter, there
is no intrinsic prediction forMH within the SM. Searches for the Higgs boson are reviewed in the
contribution by Janot and Kado [24].

5. The same Higgs mechanism is responsible for the mass of the fermions. The coupling of the Higgs
being proportional to the mass of the fermion, an intermediate mass Higgs,MH < 2MW , would decay
predominantly tob-quarks.
It is important to stress that the model gives a very nice unified description of the weak and

electromagnetic interactions. However the model does not fully unify these interactions, since we still
havetwo (independent) gauge couplingsg, g′. Viewed another way the model does notpredict sinθW .
Nonetheless the gauge principle automatically leads to the universality of the gauge coupling. Most
importantly for LEP1, the neutral interaction Lagrangian derived from Eq. (6), summarises the main
properties and parameters ofZ physics:

LNC
matter= e

∑
i

Qiψiγ
µψiAµ + e

2sWcW

∑
i

ψiγ
µ(vi − aiγ5)ψiZµ, (13)

with the vector and axial-vector couplings given by (sW = sinθW , cW = cosθW )

vi = I3(i)− 2Qis
2
W , ai = I3(i) and g = e

sW
, g′ = e

cW
. (14)

4. The need for radiative corrections

Leaving aside fermion masses, with the assignment of the quantum numbers given in Table 1, the
fermion and gauge field Lagrangians considered above are completely determined in terms of just five
free parameters. These can be taken as the gauge couplingsgs, g, g

′, the Higgs v.e.v.,v, and the quartic
Higgs coupling,λ. In particular the three weak parametersg, g′, v alone allow one to determine all the
properties of the gauge weak bosons (masses and self-couplings) as well as their interaction to matter. This
is the power and beauty of gauge invariance that, with a limited number of parameters, one can describe
a large number of processes and observables. For example at theZ peak, at LEP1 and SLC, the mixing
anglesW = sinθW can be extracted from the ratio of a number of cross sections that measure the coupling
g
f
V /g

f
A . From the observables with leptons in the final states, the latest LEP measurement ofs2

W from
leptonic observables, which we will identify ass2

eff,l , gives an average value

s2
W = s2

eff,l = 0.23159± 0.00018 (i.e., 0.08% precision). (15)

We have also seen that this angle also describes the ratioM2
W/M2

Z and therefore could be extracted from
a combination of entirely different measurements (LEP1 and LEP2). The latest data [25] give

MZ = 91.1875± 0.0021 GeV
(
@MZ/MZ ∼ 2× 10−5) and

MW = 80.451± 0.033 GeV

(
@MW

MW

∼ 5× 10−4
)
,
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leading to

s2
M = 0.22162± 0.00067(i.e., 0.3% precision). (16)

Not only do we get a much better precision on the effective mixing angle extracted from theZ

observables, but more telling is that this value is about 14σ away from that extracted from the mass ratio,
M2

W/M
2
Z . The Born approximation which has been discussed so far, is insufficient to explain the LEP

measurements which are described in the contribution by Olchevski and Winter [26].
Improving on the Born approximation necessitates the inclusion of radiative corrections which are

contributions from the quantum fluctuations of the vacuum. They are represented by loops. A selection
of radiative corrections to fermion pair production ine+e− is shown below, Fig. 2.

Computing some of the closed loops naively can lead to infinite and inconsistent results, whereas they are
supposed (considering the small electroweak coupling expansion parameter) to be small corrections! The
infinities appear because one is summing over all possible states with all possible energies. Mathematically
within the loops one is integrating over all possible momenta,k, with integrals of the form

∫
d4k/(k2+m2)n

with n = 1,2,3, . . . that diverge for smalln at high momenta. This problem had occurred in QED but was
side-stepped with the realisation that as long as these infinities do not show up in measurable quantities
expressed in terms of physical parameters, they had no disastrous effect. Take for instance the vacuum
polarisation of the photon, first figure in the self-energy diagrams. This is calculated following some simple
set of rules derived from the QED Lagrangian. The divergence can be eliminated by invoking that the
parametere appearing in the Lagrangian is an unphysical quantity which is also infinite and can absorb
the corresponding divergence of the loop. Differences in the value ofe at different energies are on the
other hand finite. Thus by choosing a reference value, and therefore defining the parametere as aphysical
parameter extracted from some observable, all subsequent observables will be finite. In a renormalisable
theory, like QED, once the fundamental parameters of the theory have been properly defined in terms of a
few physical observables, all other observables are precisely determined.

Before the advent of spontaneous symmetry breaking this program could not be achieved for the weak
interactions. Infinities appeared all over the place and required more than just a rescaling of the fundamental
parameters of the model. Lacking gauge invariance in the dynamics of the system meant that many infinities
seemed to be uncorrelated. Gauge invariance, through the Higgs mechanism, was essential for proving the
renormalisability of the standard model. In fact it was only when this proof was achieved that the model
received all its recognition and popularity. Technically, for the standard model, one also had to devise a new
regularisation method (dimensional regularisation) [13] to mathematically handle the divergencies and to
keep the symmetries of the model at the quantum level. The model is then highly predictive and is amenable
to high precision measurements. One can say that with the advent of LEP/SLC and some other low-energy
precision measurements the model has been crowned and elevated to the status of a theory since it has been
verified at better than 0.1%.

Renormalisation helps not only get finite results and highly improves the tree-level approximation, but
the radiative corrections can give access, as we see in Fig. 2, to new particles (like the Higgs, the top,. . .)

Figure 2. Some the diagrams representing the quantum loop corrections tof f̄ production ate+e−. One can
indirectly access virtual particles. The first tree diagrams are self-energy diagrams. Diagram (d) is a vertex correction

involving virtual top particles which contribute tobb̄ production.
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that are too heavy to be produced directly at LEP. Combining precision measurements, one can weigh the
effects of these new states and literally get a bound or a measure on the masses of these particles. In this light
it is not difficult also to understand that some equalities or natural relations (like the different definitions of
sinθW ) at the tree-level will be corrected. This is the case for the different manifestations ofs2

W in Section 3.
The most precisely measured quantities of the standard model are the QED fine structure constant,

α = e2/4π , the mass of theZ, MZ andGµ the Fermi constant derived from muon decay (which at tree-
level isGµ/

√
2 = g2/8M2

W ). Using these parameters, in lieu of the three fundamental parametersg, g′
andv of the original Lagrangian (this is just a trade-off), one finds that

s2
M � s2

Z

(
1+ c2

W

c2
W − s2

W

@r̂

)
; @r̂ � −c2

W

s2
W

ε1 + c2
W − s2

W

s2
W

ε2 + 2ε3,

s2
eff,l � s2

Z

(
1+ c2

W

c2
W − s2

W

@κ

)
; @κ =�

(
−ε1 + ε3

c2
W

)
,

s2
Z = 1

2

(
1−

√
1− 4πα(M2

Z)√
2GµM

2
Z

)
; α(M2

Z)= α

1−@α(M2
Z)
. (17)

The most important corrections for LEP physics are encoded in the new quantum functions@α(M2
Z)

andε1,2,3 [27]; for another, equally popular, parametrisation see [28].@α(M2
Z) is a correction representing

the screening of the electric charge. It contains no New Physics (NP) parameters and it is given solely in
terms of known physics below theZ scale, corresponding to the effective electric charge at theZ mass.
s2
Z constitutes a QED-only improved mixing angle which nonetheless takes into account a rather large

correction of about 6%.ε are genuine electroweak corrections that are sensitive to the top mass and the
Higgs mass of the SM, they are also the most likely probe of a contribution beyond the SM. For example,

ε1 = 3GµM
2
Z

8π2
√

2

{(
m2
t

M2
Z

− 1

)
− 2s2

M ln

(
MH

MZ

)}
+ · · · + εNP

1 . (18)

A good introduction to radiative corrections applied for LEP physics can be found in [29]; see also [30].

5. Conclusions

The confrontation of the precision tests with theory beyond the tree-level has not only allowed us to
extract the mass of the top-quark soon after LEP1 started operation, but has also put strong constraints on
the Higgs mass. Most models without a light Higgs are now strongly disfavoured. This has added impetus
to supersymmetric models which predicts a light Higgs, see elsewhere in this issue. Another argument for
supersymmetric grand unification derives from the very precise measurement ofs2

eff,l together withαs(M2
Z)

(see the contributions by Davier and Höcker [31] and Duchesneau et al. [32]): they suggest that the three
gauge couplingsg, g′, gs unify at some high scale with supersymmetric particles at or below the TeV
scale. Apart from the still missing Higgs particle, the Standard Model has passed all stringent tests with
flying colours. It is essential that one discovers the Higgs to confirm that the pattern of symmetry breaking
and mass generation is indeed as described by the model or else that the model is in need of more symmetry
(like supersymmetry) or new underlying dynamics.
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