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Glass transition temperature data of ionic liquids (ILs) are analyzed to study the capabil-
ities of artificial neural networks to correlate and predict this property. Molecular de-
scriptors from computational chemistry are considered as independent variables to define
the characteristics of an IL molecule. Several network architectures were considered,
combinations of different descriptors were analyzed, and results were compared with
other values reported in the literature. The independent variables (those that could have
influence on the glass transition temperature) considered for training the artificial neural
networks were (1) mass connectivity index l, (2) cation mass M(þ), (3) anion mass M(�),
(4) surface area SA, (5) van der Waals volume Vw, (6) connectivity index X0, and (7) number
of carbon atoms nC. The mass connectivity index is a parameter previously defined by the
authors and is calculated for each IL, whereas the descriptors SA, Vw, X0, and nC were
determined using the software Dragon7. As a measure of the accuracy of the method, the
average relative deviation and the average relative absolute deviation are evaluated. Re-
sults of this work and others indicate that appropriate selection of data, good combination
of architecture, and variables can lead to acceptable correlation of data but accurate pre-
diction is not yet possible. The lack of a clear definition of the glass transition temperature
and the lack of knowledge on what are the properties that most affect liquidesolid tran-
sition are the main causes of the present incapability for accurately predicting the glass
transition temperature of the IL studied in this work.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

Glass transition is the change that happens from solid
state to amorphous solid and knowing the temperature at
which this change occurs is of interest in various applica-
tions: (1) diffusion coefficient conductivity are related to Tg
[1]; (2) Tg can be used to predict the dependence of vis-
cosity on temperature [2]; (3) Tg also serves as a cohesive
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energy parameter [3]; (4) Tg is one of the main criteria for
the evaluation of the potential options for electrolyte ap-
plications [4]; and (5) Tg is important for phenomena in
polymeric materials, amorphous pharmaceutical solids,
and semiconductors [5].

Data of glass transition temperature for some ionic liq-
uids (ILs) are available in the literature and databases such
as ILs' database of the IUPAC [6], Beilstein database [7],
Dortmund Data Bank [8], or the compilation by Zhang et al.
[9] are available. An estimate from these sources indicates
that there must be around 900 values of Tg for around 800
ILs. The total amount of data is greater than the amount of
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ILs because for some ILs several values, reported by
different researchers, are available.

Glass transition does not occur at a specified fixed
temperature, commonly denoted as Tg, but in a range of
temperature or transition region [10]. However, the assig-
nation of a single value for Tg is the common practice found
in the literature for this property. In differential scanning
calorimetry experiments (DSC), the usual way to determine
this property is that Tg is commonly assigned to the onset
point, intersection of the initial straight line and the tran-
sition region straight line, or to the midpoint of the tran-
sition region (inflection point). In this study, the highest
value provided in the literature for Tg was considered as the
true value. This is because the main uses of ILs are those in
which the phase remains as liquid. Crystal formation or
solidification is to be avoided in most applications of ILs.
Therefore, by selecting or estimating a higher value for Tg
the range of applicability of the IL is reduced but one can
assure that crystal formation or solidification is to be
avoided in most applications of ILs.

Schmelzer et al. [11] present a detailed discussion about
the glass transition phenomenon and the glass transition
temperature, but it is mainly dedicated to the vitreous state
of glasses and not to ILs. However, the phenomenon is
similar and the fundamentals are also analogous. According
to the authors, “the notation glass transformation (or glass
transition) temperature, proposed by Tammann, is to some
extent misleading. Correct with respect to the indicated
mechanism of vitrification is the proposal developed by Simon,
to denote Tg as the freezing-in temperature of the glass”. In
the physics of high polymers, the name temperature of
vitrification is preferred and more precisely corresponds to
the word Glastemperatur used in the German literature. In
the area of IL research the name glass transition temperature
has been preferred.

G�omez et al. [12] present a thorough analysis of the
thermal behavior of pure ILs and define some of the char-
acteristic temperatures that appear during the transition
between liquid and solid (or vice versa) of an IL: melting
temperature (Tm), freezing temperature (Tf), cold crystalli-
zation temperature (Tcc), solidesolid transition (Tss), and
glass transition temperature (Tg). They define the glass
transition temperature Tg “as the midpoint of a small heat
capacity change upon heating from the amorphous glass state
to a liquid state”. However, not all authors use this defini-
tion and different values for the same IL are proposed in the
literature.

The solideliquid transition temperatures of ILs are usu-
ally less than ambient temperature and can go less than
�100 �C, such as in the cases of [C2mim][dca] or [C4mim]
[C2F5BF3] [13]. As mentioned above, the most common and
efficient method for experimentally determining Tg is by
DSC. The thermal behavior of ILs can be relatively complex
and some peculiar and particular characteristics have been
observed when cooling or heating an IL [12e14]: (1) the
cooling from the liquid state may cause glass formation at
low temperatures; (2) solidification kinetics is commonly
slow; (3) on cooling from the liquid, the low-temperature
region is not usually bounded by the phase diagram liquid
line; (4) formation of metastable glasses may occur; (5)
heating from the glassy state yields an exothermic transition
associated with sample crystallization, followed by subse-
quent melting; and (6) multiple solidesolid transitions
(crystalecrystal polymorphism or plastic crystal phases)
may occur. The authors also provided a couple of important
recommendations: (1) thermodynamic data should be
collected in heating mode to obtain reproducible results;
and (2) to obtain reliable transition data, long equilibration
times should be allowed and small samples should be taken,
to permit rapid cooling. In addition, G�omez et al. [12] state
that it is not always possible to correctly identify the
different transitions appearing in a thermogram using DSC
and additional techniques should be included (crossed
polarizing filters, X-ray diffraction, and infrared spectrom-
etry). The authors also state that it is necessary to subject
the IL to different heating and cooling rates to have a better
interpretation of the thermograms and to define charac-
teristic temperatures such as melting or glass transition. It is
not unusual to have ILs with different structures presenting
the same thermal behavior and ILs with similar structures
presenting different behavior.

These facts may explain the great differences found in
reported experimental data of Tg for the same IL. As shown
in Table 1 differences up to 38 �C (20%) are found, such as
the case of 1-butyl-3-methylimidazolium trifluoroacetate.
Other ILs present lower differences but still of importance
for modeling and analysis. For butylammonium formate
the difference is 25 �C (16%) and for 1-ethyl-3-
methylimidazolium-bis[(trifluoromethyl)sulfonyl]imide
the difference is 20 �C (11%).

2. Models for Tg presented in the literature

Despite the differences between Tg data such as those
shown in Table 1, some proposals have been presented in
the literature for correlating and estimating the glass
transition temperature. Mirkhani et al. [16] stud-
iedquantitative structure property relationship (QSPR)
models for the glass transition temperature of different
types of ILs. They claim that a simple predictive model is
obtained. Although the absolute average deviationwas low
(3.8%), deviations more than 10% were found for 10 of the
139 fluids considered in the study. Better results were ob-
tained when the authors considered a specific type of IL
such as ammonium-based ILs. In that case, average abso-
lute deviation was 2% and maximum deviations were less
than 10%.

Gharagheizi et al. [17] presented a group contribution
method to correlate and predict the glass transition tem-
perature of ILs but only for 1,3-dialkylimidazoliumetype
ILs. For the 190 ILs considered in the study, the authors
found an average absolute deviation of 1.9% withmaximum
deviations of 8.2%. Mousavisafavi et al. [4] also studied the
same type of ILs and the same 109 data points using a linear
QSPR method and obtained average absolute deviations on
the order of 2.7% and maximum deviations of 8.8%. The
same group of researchers [18] proposed a nonlinear
approach of the QSPR method for obtaining a model that
gives average absolute deviation of 1.4% and maximum
deviation of 6.7% for the same data set.

Yan et al. [19] also used the QSPR methodology using
topological indexes defined by the authors. The QSPR



Table 1
Selected reported values of Tg showing differences between different literature sources.

N� IL Cation Anion Tg (K) DT (K)

1 1-Butyl-3-methylimidazolium Tetrafluoroborate [C4mim] [BF4] 176.15 0.00
185.77 9.62
188.15 12.00
188.85 12.70
190.15 14.00
192.00 15.85
192.95 16.80
193.55 17.40

2 1-Butyl-3-methylimidazolium Hexafluorophosphate [C4mim] [PF6] 193.15 0.00
196.15 3.00
197.15 4.00
212.00 18.85

3 1-Butyl-3-methylimidazolium Trifluoroacetate [C4mim] [ta] 195.15 0.00
203.60 8.45
233.15 38.00

4 1-Butyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide [C4mim] [bti] 169.15 0.00
184.15 15.00
186.15 17.00
187.15 18.00
187.25 18.10

5 1-Ethyl-3-methylimidazolium Dicyanamide [C2mim] [dca] 169.15 0.00
183.15 14.00

6 1-Ethyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide [C2mim] [bti] 175.15 0.00
181.15 6.00
186.00 10.85
186.28 11.13
195.15 20.00

7 Alanine methyl ester Thiocyanate [AlaC1] [SCN] 215.00 0.00
241.15 26.15

8 N-Octyl-isoquinolinium Bis[(perfluoroethane)sulfonyl]imide [C8isoq] [BEI] 193.75 0.00
218.15 24.40

9 Butylammonium Formate [NHHH4] [HCO2] 153.05 0.00
178.15 25.10

10 Ethylammonium Formate [NHHH2] [HCO2] 145.65 0.00
167.15 21.50

All data are from Zhang et al. [9,15]. The lowest reported value was used as a reference to determine the deviations for the other values.

Table 2
Amount of data of Tg available in the open literature.

Type of IL Total data Final data

Imidazolium 353 248
Ammonium 193 152
Triazolium 48 35
Pyrrolidinium 47 34
Piperidinium 14 11
Pyridinium 60 55
Isoquinolinium 11 9
Sulfonium 9 9
Guanidinium 25 17
Morpholinium 24 23
Oxazolidinium 12 11
Amino acids 25 23
Phosphonium 31 29

Total includes values from different literature sources [6e9,15].
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model was applied to five types of ILs (imidazolium, pyr-
idinium, ammonium, sulfonium, and triazolium). The
average absolute deviationwas 3.3% andmaximum average
deviation was 20%. Mokadem et al. [5] proposed an
enhanced group-interaction contribution method for the
prediction of Tg of ILs. A wide range of ILs (368 data points)
were considered in the study obtaining average absolute
deviation of 3.1% andmaximumdeviations of 29%. Eighteen
of the 368 data points gave deviations greater than 10%.

2.1. Data available

As mentioned in Section 1, data of Tg for ILs have been
presented in the literature and there are some databases,
handbooks, and compilations of data for the glass transi-
tion temperature of ILs [6e9,15]. New data frequently
appear in journals and monographs. However, several of
the reported values of Tg for the same ILs may show great
differences, as also explained above (see Table 1).

As explained in Section 1, of all data available for Tg in the
open literature, the highest value of Tg within a set of data
was considered for study and calculations. For instance
for 1-ethyl-3-methylimidazolium-bis[(trifluoromethyl)sul-
fonyl]imide for which five data are available (number 6 in
Table 1) the value selected as Tg is 195.15 K. Table 2 shows
the available amount of data of Tg for different types of ILs
(second column, total data). The third column shows the
amount of data actually used in this study. In these final data
only one value of Tg for each IL is included. As observed in
Table 2, the imidazolium-type ILs form the group with the
greatest number of data. Not only that, but within this big
group of imidazolium ILs, there are some specific groups
with enough data as to perform more exhaustive analyses.
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A complete study on the application of artificial neural
network (ANNs) for training, testing, and predicting Tg for
ILs requires that following especial aspects are analyzed:
(1) the most appropriate architecture must be defined; (2)
the most adequate variables that have effect of Tg must be
analyzed; (3) the predictive capabilities of the ANN model
must be studied; (4) the effect of cation and anion must be
evaluated; (5) different types of ILs must be included in the
study; and (6) comparison with literature calculations of Tg
must be done.

2.2. Molecular descriptors

Todeschini and Consonni [20] define a molecular
descriptor as “the final result of a logic and mathematical
procedure which transforms chemical information encoded
within a symbolic representation of a molecule into a useful
number or the result of some standardized experiment”. Of
the several possible molecular descriptors that could have
effects on defining a value of the glass transition temper-
ature the following were chosen for the study: (1) mass
connectivity index l and connectivity index of order zero X0
(to account for the type of connections); (2) cation mass
M(þ) and anion mass M(�) to account for the mass of each
part of the molecule; (3) surface area SA and van der Waals
volume Vw to account for the surface and the volume of the
IL; (4) and number of carbon atoms nC to account for the
alternation effect that chain families of IL properties may
present. The mass connectivity index l is a parameter
defined by the authors and is calculated for each IL [21]. The
descriptors SA, Vw, X0, and nC were determined using the
software Dragon7 [22].

3. Artificial neural networks

An ANN is a mathematical tool that relates the values of
a certain dependent function F (for instance the glass
transition temperature) to values of defined independent
variables x1, x2, x3… xn (for instance structural parameters
of the substance). To find a relation between the function F
and the variables xi, the ANN must be trained; this means
that the network is provided with values of F for several
values of xi to find a relation, a pattern, a dependency of the
function F on the variables xi. The form in which the ANN
finds the relation is inspired in the behavior of biological
neurons [23].

Imaginary units that simulate neurons are organized in
layers with a defined number of neurons per layer, forming
what is called the “architecture” of the network. An input
layer receives the information F versus x1, x2, x3… xn and
makes an initial processing of such data. In fact the network
assigns to each variable xi a weight and a base value (bias)
specific for each neuron. With these weight and bias values
the network calculates a value for the exit function F and
compares the result with the known value of F. In calcu-
lating F, this function is related to the independent vari-
ables xi through specific mathematical functions named
activation functions.

If the deviation between the value of the calculated
property F and the experimental value is greater than a
defined value, the weights and biases are reassigned and
the calculations are done again. This method is known as
back propagation, and the new values of the weights and
biases are determined using an optimization method.

The network stores the values of weights and biases that
give the lowest deviation between the calculated values
and the experimental data provided as input. These values
of weights and biases define the ANNmodel. Thus the ANN
is not an explicit analytical model such as the empirical
correlations commonly used in many applications but the
model is a structure of weights and biases provided as
matrices. Taskinen and Yliruusi [24] presented a complete
review on applications of ANNs for the estimation of fluid
properties. Properties of ILs were not included in that
review.

The architecture of an ANN usually used for correlating
and predicting properties of ILs considers a back propaga-
tion network with three or four layers: an input layer, and
output layer, and one or two hidden layers [25e27]. The
optimum number of neurons in each layer is usually found
by trial and error because it is not possible to know in
advance the appropriate number of neurons for a given
application [28]. Also the disadvantages of ANN when they
are used for fluid property correlation and prediction have
been discussed [28e30] being the following the most
important ones: (1) they require a large set of data,
depending on the complexity of the relations between
dependent and independent variables; (2) it is necessary to
knowwhich are the most influential variables x1, x2, x3… xn
on the property F(x1, x2, x3… xn) and; (3) the network may
suffer from overfitting, a situation in which the network
memorizes instead of learning, losing all predictive
capacity.

3.1. Application of ANN to Tg calculation

To develop an accurate model to correlate and predict
the glass transition temperature in the form presented in
this work, the following two files were written:

(1) An Excel file (Tg_data.xlsx) containing all data available
for training and testing the network. The file contains
several sheets including the data of glass transition
temperature and the chosen independent variables,
both for training and testing. For the explanation that
follows, the independent variables are the following
molecular descriptors: l, M(þ), M(�), SA, Vw, X0, and nC.

(2) A Matlab code for the ANNmodel (Tg_ann.m) consisting
of two parts, a training section and a testing section, as
presented in Table 3. In the training section, the pro-
gram reads the input data (from Tg_data.xlsx), defines
the architecture, trains the defined network, generates
the weight and bias matrixes, and stores such data for
testing. Important to notice are lines 10 and 12 in Table
3 in which the dependent and independent data are
read from the Excel file Tg_data.xlsx (sheets Read_-
Tg_Training and Read_Variables_Training, respectively).
Line 35 in Table 3 defines the storing of the correlated
data and line 37 describes the storing of the weight and
bias matrix (file w_Tg.mat).



Table 3
Matlab code Tg_ann.m used for training and testing an ANN with glass
transition temperature data.

1 % Tg_ann.m
2 %************
3 %
4 % This is the Matlab code for training an ANN with glass

transition temperature data, using as independent
5 % Variables (l, Mþ, M�, Vw)
6 %
7 % Training section
8 %*******************
9 % Reading independent variables for training (l, Mþ, M�, Vw)

from Excel file Tg_data.xlsx
10 p ¼ xlsread('Tg_data.xlsx','Read_Variables_Training');p ¼ p';
11 %Reading the dependent variable for training (Tg listed in

the file variables_training'
12 t ¼ xlsread('Tg_data.xlsx','Read_Tg_Training');t ¼ t';
13 %
14 % Normalization of all data (values between �1y þ 1)
15 [pn,minp,maxp,tn,mint,maxt] ¼ premnmx(p,t);
16 % Definition of ANN:(topology, activation functions,

training algorithm)
17 net ¼ newff(minmax(pn),

[4,4,4,1],{'tansig','tansig','tansig','purelin'},'trainlm');
18 % Definition of frequency of visualization of errors during

training
19 net.trainParam.show ¼ 10;
20 % Definition of number of maximum iterations (epochs) and

global error between iterations (goal)
21 net.trainParam.epochs ¼ 1500; net.trainParam.goal ¼ 1e-6;
22 %Network starts: reference random weights and gains
23 w1 ¼ net.IW{1,1}; w2 ¼ net.LW{2,1}; w3 ¼ net.LW{3,2};

w4 ¼ net.LW{4,3};
24 b1 ¼ net.b{1}; b2 ¼ net.b{2}; b3 ¼ net.b{3}; b4 ¼ net.b{4};
25 %First iteration with reference values and correlation coefficient
26 before_training ¼ sim(net,pn);
27 corrbefore_training ¼ corrcoef(before_training,tn);
28 %Training process and results
29 [net,tr]¼train(net,pn,tn);
30 after_training ¼ sim(net,pn);
31 % Back-normalization of results, from values between �1y þ 1

to real values
32 after_training ¼ postmnmx(after_training,mint,maxt);

after_training ¼ after_training';
33 Res ¼ sim(net,pn);
34 % Saving results, correlated glass transition temperature in

an Excel file
35 xlswrite('Tg_data.xlsx',after_training,'Results_Correlation', 'D2');
36 %Saving the network (weights and other files)
37 save w_Tg.mat
38 %
39 %Testing Section
40 %*****************
41 % This is the Matlab code for testing the ANN determined

above for data not used during training
42 %
43 %Reading weight and other characteristics of the trained ANN

saved in the file W
44 load w_Tg.mat
45 % Reading new data not used during training from Excel file

Tg_data.xlsx
46 pnew ¼ xlsread('Tg_data.xlsx','Read_Variables_Testing');

pnew ¼ pnew';
47 % Normalization of all variable (values between �1y þ 1)
48 pnewn ¼ tramnmx(pnew,minp,maxp);
49 anewn ¼ sim(net,pnewn);
50 % Transformation of the normalized exits (between �1y þ 1)

determined by the ANN to real values
51 anew ¼ postmnmx(anewn,mint,maxt); anew ¼ anew';
52 % Saving the predicted glass transition temperature in the

Excel file Tg_data (sheet Results_Testing)
53 xlswrite('Tg_data.xlsx',anew,'Results_Testing', 'D2');
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In the testing section, the program reads the weight and
bias matrixes (line 44) and the Excel sheet Read_Varia-
bles_Testing within the file Tg_data.xlsx, containing the var-
iables for which the glass transition temperature needs to be
tested (line 46). The results are stored in the same Excel file
in the sheet Results_Testing (line 53). The optimum network
is chosen considering the results in both the training and
testing sections. It should also bementioned that the version
of the software used in the calculations is Matlab 2012.

To apply the trained network for estimating the glass
transition temperature the program Tg_prediction.m
including the Excel file Tg_prediction.xlxs and the weight
matrix w_Tg.mat must be used. When the Matlab code is
run, the variables for those cases for which the glass tran-
sition temperature is to be predicted are read from the
sheet Read_Variab_Prediction in the file Tg_prediction.xlxs.
The program reads the weight matrix (line 6 in Table 4) and
calculates the glass transition temperature for the new
variables using the ANN model defined in the matrix
w_Tg.mat. The calculated glass transition temperature is
stored in the file Tg_prediction.xlxs (sheet Result-
s_Prediction). The three files needed for predicting the glass
transition temperature (the Matlab code Tg_prediction.m,
the Excel file Tg_prediction.xlxs, and the weight matrix
w_Tg.mat) are provided as Supporting information.
4. Results and discussion

As mentioned in the preceding sections, the selection of
the best model considered three statistical parameters: the
average relative deviation %DTg, the average relative abso-
lute deviation %jDTgj, and the maximum relative absolute
deviation j%DTgjmax between calculated and literature data.
These parameters are the most significant numbers for
evaluating the accuracy and goodness of a model as dis-
cussed [31]. These deviations are defined as follows:
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Three study cases were designed to analyze different
aspects of the model development: case 1 in which
different architectures are considered to choose the most
appropriate one; case 2 in which different descriptors are
considered to search for the most appropriate variables;
and case 3 in which the predictive capabilities of the ANN
model are analyzed by selecting three different data sets:
one for training, one for testing, and one for prediction.

Following information from the study by Valderrama et
al. [32] around 10% of the data was separated for testing.
Thus, of the 248 data, a group of 223 data was selected for
training and the remaining 25 were left for testing. In the
three study cases, the selection of data for testing was



Table 5
Results for three- and four-layer networks using all descriptors (l, M(þ),
M(�), SA, Vw, X0, and nC) for 248 data, 223 for training and 25 for testing.

Architecture Training Testing

%DTg %jDTgj %jDTgjmax %DTg %jDTgj %jDTgjmax

Case 1 (a): all descriptors (three layers)
1.2.1 1.3 9.1 33.6 2.4 10.9 24.4
2.4.1 0.6 6.1 24.7 �0.5 8.1 18.8
3.6.1 0.4 4.6 21.8 1.0 7.3 18.9
4.8.1 0.2 3.3 21.9 �1.5 7.0 18.7
5.10.1 0.1 2.2 16.3 �2.5 9.0 26.1
6.12.1 0.1 1.9 15.4 �0.5 7.1 19.9
7.14.1 0.0 0.5 13.3 1.3 17.2 49.1
Case 1 (b): all descriptors (four layers)
1.1.1.1 1.3 9.0 33.7 2.4 10.8 24.1
2.2.2.1 0.8 6.6 36.4 0.6 8.6 19.8
3.3.3.1 0.4 4.9 21.1 �0.9 9.3 20.7
4.4.4.1 0.3 3.8 26.2 �0.5 6.5 16.9
5.5.5.1 0.2 2.8 12.2 0.6 8.5 23.0
6.6.6.1 0.1 1.6 11.9 1.3 11.7 31.8
7.7.7.1 0.1 1.4 13.4 �1.5 10.1 36.9

Fig. 1. Maximum relative absolute deviation during testing for three- and
four-layer architecture of the type (n,2n,1) and (n,n,n,1).

Table 4
Matlab code Tg_prediction.m used for predicting the glass transition
temperature for other cases using the trained ANN (w_Tg.mat).

1 % Tg_prediction.m
2 %
3 %This is the Matlab code for predicting Tg using the trained

ANN model (w_Tg.mat)
4 %
5 %Reading weights and other characteristics of the trained ANN

saved in the file w_Tg.mat
6 load w_Tg.mat
7 % Reading Excel file with new independent variables (l, M(þ),

M(�) and Vv) to predict Tg
8 pnew ¼ xlsread('Tg_Prediction.xlsx','Read_Variab_Prediction');

pnew ¼ pnew';
9 % Normalization of all variables (values between �1y þ 1)
10 pnewn ¼ tramnmx(pnew,minp,maxp);
11 % Obtaining the properties for the variables provided by the

Excel file Tg_Prediction.xlsx
12 anewn ¼ sim(net,pnewn);
13 % Transformation of the normalized exits (between �1y þ 1)

determined by the ANN to real values
14 anew ¼ postmnmx(anewn,mint,maxt); anew ¼ anew';
15 % Saving the predicted Tg in the Excel file Tg_prediction.xlsx

(sheet Results_Prediction')
16 xlswrite('Tg_Prediction.xlsx',anew,'Results_Prediction', 'd3');
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randomly done. Random numbers were generated in Excel
and the 25 ILs showing the lowest random numbers were
chosen for testing.

4.1. Case 1: searching for the appropriate architecture

The whole set of data separated in a training set and in a
testing set as explained above was considered for this case
(223 for training and 25 for testing). Also, all descriptors
chosen as explained in the preceding sections were
included in the study (l, M(þ), M(�), SA, Vw, X0, and nC). In
addition, for this study several three- and four-layer ar-
chitectures were considered and analyzed. To simplify the
analysis, the three-layer cases considered followed the
structure (n,2n,1) and the four-layer architectures followed
the structure (n,n,n,1), n being an integer number. The re-
sults for selected cases are presented in Table 5. It should be
noticed that these two architectures have the same number
of total neurons for a given value of n.

A graphical representation of the result is important to
see how the effects of the number of neurons in the hidden
layer affect the accuracy of the model. Several authors have
found that there are an optimum number of neurons that
give the lowest deviation between calculated and experi-
mental data in a given run [25,30,32]. To choose the opti-
mum number of neurons one must decide which of the
statistical parameters must be optimum. Two of these pa-
rameters could be the lowest average absolute deviation
and the lowest maximum deviation. Any of this can be set
during training and testing. Because low deviations during
testing represent in some way the interpolating or even
extrapolating capabilities of the network, we recommend
using the result during testing to decide on the best ar-
chitecture. Also, choosing the lowest value of themaximum
absolute deviation as the target parameter would guar-
antee estimations below that level of error.

Fig. 1 shows the results expressed as the maximum
relative absolute deviation for the three- and four-layer
architectures. In the three-layer case, an architecture
(4,8,1) (that means n¼ 4) gives the lowest deviations in the
average relative absolute deviation and in the maximum
relative absolute deviation. For the four-layer cases, the
best architecture is found to be (4,4,4,1) (that means n ¼ 4,
and the same neurons as in the three-layer case).

4.2. Case 2: searching for the appropriate descriptors

Different descriptors are considered to search for
the most appropriate combination of variables. Three



Table 7
Predicted Tg for 18 imidazolium-type ILs using the four-layer model with
the following descriptors l, M(þ), M(�), and Vw.

Cation Anion Tg
lit. Tg

cal %DTg %jDTgjmax

[C1im] [Br] 213.15 189.0 �11.3 11.3
[C2im] [Cl] 216.15 198.9 �8.0 8.0
[C2mim] [Br] 218.00 201.2 �7.7 7.7
[C2mim] [Cl] 234.00 198.4 �15.2 15.2
[C3CNmim] [Cl] 239.05 225.7 �5.6 5.6
[C4mim] [Br] 223.15 204.1 �8.5 8.5
[C4mim] [Br] 190.15 220.2 15.8 15.8
[moemim] [Cl] 213.15 220.5 3.5 3.5
[C4mim] [Cl] 204.15 212.7 4.2 4.2
[C3CNmmim] [Cl] 254.25 231.0 �9.1 9.1
[C6mim] [Br] 224.00 217.3 �3.0 3.0
[C6mim] [Cl] 198.15 227.0 14.6 14.6
[C3mim] [BF4] 259.25 189.8 �26.8 26.8
[C8mim] [Cl] 210.85 236.8 12.3 12.3
[neo-C5mim] [BF4] 221.00 202.3 �8.4 8.4
[CitronellylC1im] [Br] 216.15 231.3 7.0 7.0
[C4mim] [BF4] 193.55 183.7 �5.1 5.1
[CitronellylC12im] [Br] 203.15 203.0 �0.1 0.1

Average �2.9 9.2
Max e 26.8
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descriptors are fixed: the mass connectivity index, the
cation mass, and the anion mass (l, M(þ), and M(�)). In
other applications found in the literature these three pa-
rameters (l, M(þ), and M(�)) have been used in neural
network applications and in group contribution methods
[25e27]. Others descriptors are added in different combi-
nations to analyze the effect of them in training and testing
the ANN. Table 6 presents some selected results for a series
of combinations of variables using the four-layer architec-
ture (4,4,4,1).

As observed in Table 6 the inclusion of the carbon
number as a parameter (last two lines) does not improve
training and testing results. In the data used, just some few
compounds have odd number of carbons and the alterna-
tion effect occurs for compound with odd and even
numbers of carbons in the alkyl chain [33]. The addition of
the connectivity index X0 (line 7) improves the results but
not in an appreciable form, considering that six descriptors
are used. The inclusion of the whole set of parameters (last
line in Table 6) indicates that it is not necessary to include
all parameters. So to balance simplicity with accuracy four
descriptors are enough to get acceptable results (the three
first cases in Table 6).

4.3. Case 3: analyzing the predictive capabilities of the ANN
model

The set of data originally available for applying neural
networks was divided into three groups: one for training,
one for testing, and one for prediction. The testing and
prediction sets are not directly used during training,
whereas the network learns. However, results obtained
during testing for each run of the ANN program are used for
deciding which model is the best. This means that the
chosen model is that giving low deviations during training
and testing at the same time. The predicting set, however,
was never used for constructing or for selecting the opti-
mum ANN model.

For all of the imidazolium-type ILs analyzed in this
work, the amount of data for each set is as follows: the total
number of data is 248, the data for training are 223, the
data for testing are 25, and the data for prediction are 18.
The results for testing presented in Table 5 and for pre-
diction in Table 7 represent in some way the predictive
capabilities of the chosen network, because in both cases
Table 6
Results for architecture (4,4,4,1) using different types and amount of descriptors

Case Case 2: Architecture: 4,4,4,1, different descriptors

Descriptors used Training

%DTg %jDTgj
1 l, M(þ), M(�), Vw 0.5 4.8
2 l, M(þ), M(�), SA 0.4 4.8
3 l, M(þ), M(�), X0 0.5 5.3
4 l, M(þ), M(�), SA, Vw 0.3 4.1
5 l, M(þ), M(�), Vw, X0 0.4 4.2
6 l, M(þ), M(�), SA, X0 0.5 5.7
7 l, M(þ), M(�), SA, Vw, X0 0.3 3.7
8 l, M(þ), M(�), SA, Vw, nC 0.3 4.0
9 l, M(þ), M(�), SA, Vw, X0, nC 0.3 3.8
the values of Tg for the testing set and the prediction test
were not used during training, but, asmentioned above, the
results of the testing step were used in deciding which was
the best network model. In the case shown in Table 6, the
18 values of Tg were not used in any previous step and
therefore represent the true capability of the network to
predict Tg for an IL of the type studied in this work.

4.4. Case 4: analyzing subfamilies of ILs

The results shown in the preceding sections were found
for all imidazolium-type ILs for which data of Tg were avail-
able.Within this big familyof imidazolium-type ILs, there are
subfamilies such as alkyl-methylimidazolium, alkyl-dime-
thylimidazolium, hydroxyl-alkyl-methylimidazolium, and
benzyl-imidazolium, among others. The largest of these
families are the n-alkyl-3-methylimidazolium for which 105
data are available. Of these data, 95were left for training,five
for testing, and five for prediction. According to previous
studies by the authors who explored the concept of homol-
ogy for the studyand calculation of transitionproperties of IL
families [33] better results should be expected. In fact this
.

Testing

%jDTgjmax %DTg %jDTgj %jDTgjmax

25.1 �0.9 7.9 21.5
19.1 �3.3 8.9 21.2
28.3 �4.8 8.8 27.1
19.6 2.6 9.4 24.6
27.2 0.2 10.5 22.6
19.5 1.2 9.0 24.2
18.9 �1.4 9.5 20.5
17.8 �0.8 6.5 21.1
26.2 �0.5 6.5 16.9



Table 9
Predicted Tg using a four-layer architecture (4,4,4,1) with the following
descriptors l, M(þ), M(�), and Vw.

Cation Anion Tg
lit. Tg

cal %DTg %jDTgj
[C3mim] [BF4] 259.3 195.4 �24.6 24.6
[C4mim] [BF4] 193.6 176.5 �8.8 8.8
[C2mim] [Br] 218 180.7 �17.1 17.1
[C4mim] [Br] 223.2 191.6 �14.1 14.1
[C6mim] [Br] 224 182.4 �18.6 18.6
[C2mim] [Cl] 234 195.5 �16.4 16.4
[C4mim] [Cl] 204.2 179.9 �11.9 11.9
[C6mim] [Cl] 198.2 195.3 �1.4 1.4
[C8mim] [Cl] 210.9 184.4 �12.6 12.6
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was the case for the family of n-alkyl-3-methylimidazolium.
Average deviations are less than 3% with maximum de-
viations less than 10%.

Table 8 presents some results for the 105 n-alkyl-3-
methylimidazoliumetype ILs. It can be observed that, as
expected, simpler architectures are needed to obtain
similar or better accuracy than that in the preceding cases.
Networks with more layers and neurons are not recom-
mended for the amount of data available for training.

Similarly, the predictive capabilities of this reduced
family of n-alkyl-3-methylimidazolium ILs were also
tested. The set of data used for prediction are the nine n-
alkyl-3-methylimidazolium ILs shown in Table 7. In this
case, the results for testing presented in Table 8 and for
prediction in Table 9 also present in some way the pre-
dictive capabilities of the chosen network for this particular
subfamily of n-alky-3-methylimidazolium ILs.

4.5. Extension to other types of ILs

The detailed analysis presented above for imidazolium-
type ILs should be extended to other types of ILs to be able
to draw more complete conclusions about the application
of neural networks for correlating (and probably predict-
ing) Tg for any type of IL. Of the other types of ILs (besides
imidazoliums), the type of ILs with a reasonable amount of
data is the ammonium-type group (152 data points). For
this group, the chosen network (4,4,4,1) can be applied and
a specific model for ammonium can be found. However, for
other groups this type of architecture cannot be applied
because the number of data is not enough to evaluate the
weights and biases. One should notice that for the network
(4,4,4,1) the number of parameters to be determined is 49
(36weights and 13 biases).We established that the number
of data used for training must be at least the double of the
number of parameters.

The chosen architecture (4,4,4,1) was applied for
ammonium-type ILs and results are as expected. This
means that they are similar (and a little higher) than in the
case in which all imidazolium-type ILs were studied (see
Table 7). In the case of imidazolium, the maximum devia-
tion in prediction was 26.8% (70 �C) for [C3mim][BF4],
whereas for ammonium the maximum deviation in pre-
diction was 29%. However, by observing the training and
testing results, there are two acceptable models for these
ammonium ILs (indicated as model 1 and model 2 in table
10, third column). With the first model (model 1) surpris-
ingly high deviations are found (>1000%) showing again
the low predictive capabilities and the erratic behavior of
Table 8
Results for several architectures for ILs of the type n-alkyl-3-methylimidazolium u
M(�), and Vw.

Case Network Training

%DTg %jDTgj %jDTgjmax

1 (2.4.1) (7 Neurons) 0.3 3.9 19.4
2 (2.2.2.1) (7 Neurons) 0.3 4.0 16.6
3 (3.6.1) (10 Neurons) 0.1 2.6 15.0
4 (3.3.3.1) (10 Neurons) 0.2 2.6 18.4
the model. The high number of parameters to be deter-
mined (69) compared to the number of data for training
(122) could be one of the reasons for this behavior. For
other types of ILs results are variable, being difficult to draw
a general positive recommendation on the use of neural
networks.

Table 10 presents selected results for those cases for
which neural networks with simple architecture could be
applied. For each type of IL results for two runs are pre-
sented. The groups with less than 30 data points (piper-
idinium, isoquinolinium, sulfonium, guanidinium,
morpholinium, oxazolidinium, and amino acids) were not
analyzed with the ANN model. This restriction is imposed
because the number of parameters (weights and biases) to
be calculated could be similar or greater than the number
of data, a mathematical inconsistency that provides
unmeaningful results. As expected, when few data are used
the network can still learn and reasonable training can be
obtained. However, the predictive capabilities of the
network are uncertain; one could get a reasonable predic-
tion with 12.5% deviation as the case of triazolium in Table
10 or 1137% deviation as the case of ammonium in the same
Table 10.

4.6. Comparison with literature estimations of Tg

As described in Section 1, some other approaches,
including QSPR models and group contribution methods,
have been presented in the literature. Mousavisafavi et al.
[4,18] correlated and predicted glass transition temperature
of 1,3-dialkylimidazolium ILs, which could be considered as
potential future electrolytes. For this purpose, QSPR
method is used to finally produce satisfactory results
quantified by following several statistical parameters. Yan
et al. [19] also applied a QSPR method based on the general
sing three- and four-layer network with the following descriptors l, M(þ),

Testing Prediction

%DTg %jDTgj %jDTgjmax %DTg %jDTgj %jDTgjmax

0.2 1.0 1.8 6.4 6.4 19.4
1.8 4.2 6.2 6.1 6.1 16.6
0.2 1.5 3.2 2.5 3.1 5.0
1.3 2.6 4.9 4.7 5.6 18.4



Table 10
Results for Tg during training, testing, and prediction for various types of ILs using three- and four-layer networks with the following descriptors l, M(þ),
M(�), and Vw.

Type of IL Network No. of parameters Process No. of data %DTg %jDTgj %jDTgjmax

Ammonium (4,4,4,1) 69 (Model 1) Training 122 1.1 5.8 48.9
Testing 15 �3.2 15.7 54.8
Prediction 15 3.1 8.5 29.2

69 (Model 2) Training 122 0.4 4.3 25.4
Testing 15 0.8 21.2 51.9
Prediction 15 �74.0 89.5 1136.6

Triazolium (2,4,1) 19 (Model 1) Training 30 0.0 1.0 4.6
Testing 3 �2.2 2.2 2.5
Prediction 2 �5.3 7.2 12.5

19 (Model 2) Training 30 0.0 0.6 4.5
Testing 3 1.6 1.6 2.6
Prediction 2 �6.6 10.5 17.1

19 (Model 3) Training 30 0.0 1.2 8.6
Testing 3 2.7 4.3 5.8
Prediction 2 �5.4 8.9 14.3

Pyrrolidinium (2,4,1) 19 (Model 1) Training 28 0.0 1.3 7.5
Testing 3 1.7 7.7 9.0
Prediction 3 �7.5 11.7 28.8

19 (Model 2) Training 28 0.0 0.5 2
Testing 3 �0.1 5.2 7.6
Prediction 3 �24.8 24.8 39.6

Pyridinium (2,4,1) 19 (Model 1) Training 45 0.1 2.7 9.8
Testing 5 �3.4 6.1 19.2
Prediction 5 3.9 8.8 21.4

19 (Model 2) Training 45 0.1 2.1 7.2
Testing 5 1.8 8.0 19.0
Prediction 5 9.1 20.8 70.3
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topological index to predict the glass transition tempera-
tures of ILs. The authors considered five kinds of ILs: imi-
dazolium (Im), pyridinium (Py), ammonium (Am),
sulfonium (Su), and triazolium (Tr). Mokadem et al. [5]
estimated Tg with a group-interaction contribution
method. Several ILs including imidazolium-, pyridinium-,
triazolium-, sulfonium-, pyrrolidinium-, piperidinium-,
phosphonium-, oxazolidinium-, ammonium-, morpholi-
nium-, guanidinium-, amino acid-, and caprolactam-based
ILs were considered in the study. The authors claim that
“this method represents an excellent alternative to previous
approaches for the estimation of the glass transition temper-
ature of diverse ionic liquids from the knowledge of their
molecular structure”. A comparison of results from
Table 11
Comparison of results obtained in this work compared with result of other mod

Model Type of IL

QSPR models Different types of ILs

Group contribution method Different types of ILs

Group contribution method 1,3-Dialkylimidazoliumetype ILs
A Linear QSPR method 1,3-Dialkylimidazoliumetype ILs

Nonlinear approach of the
QSPR method

1,3-Dialkylimidazoliumetype ILs (109)

QSPR methodology using
topological indexes

Five types of ILs (63 imidazolium, 17 pyridiniu
48 ammonium, 7 sulfonium, and 4 triazolium)

ANN with molecular
descriptors

Imidazolium-type ILs (223 training and 25 for
Alkyl-3-methylimidazolium (95 for testing an
Ammonium-type ILs
Triazolium
Pyrrolidinium
the literature and the results of this work is presented in
Table 11.

In addition, Table 12 presents a comparison of predicted
Tg for selected ILs reported in the literature and the values
found in this work. As shown in the table, different varia-
tions of QSPR techniques, different forms of group contri-
bution methods, and neural network have been explored in
the literature, so comparison can be done. Deviations re-
ported in the literature are similar for the different
methods.

Results in Tables 11 and 12 are provided as relative
percentage deviation with respect to literature values, the
form in which most of authors present their results. For
other properties (such as density or heat capacity),
els proposed in the literature.

N %DTg %jDTgjmax Ref.

112 (Training) 1.2 18 [34]
27 (Testing) 4 13.7
396 (Training) 3.6 12 [17]
100 (Testing) 3.7 12
109 1.9 8.6 [17]
88 (Training) 2.4 7.1 [4]
21 (Testing) 3.2 7.6
10 (Validation) 3.4 6.7 [18]

m, 139 3.3 4.2 [19]

testing) 18 (Prediction) 9.2 26.8 This work
d 5 for training 5 (Prediction) 2.5 5 This work

15 (Prediction) 3.1 8.5 This work
3 (Testing) �2.2 2.5 This work
3 (Testing) 1.7 7.7 This work



Table 12
Comparison of predicted Tg for selected ILs.

Ionic Liquids Tg
lit Tg

cal %jDTg jmax Method Type of IL Ref.

[BzimBz] [dca] 227.7 222.4 2.3 GC [1,3-dialkyl][mim] [17]
227.7 221.8 �2.6 ANN Imidazolium This work

[C2OHmim] [bti] 194.2 193.9 0.1 GC [1,3-dialkyl][mim] [17]
194.2 200.7 3.4 ANN Imidazolium This work

[C8mim] [PF6] 191.2 194.8 1.9 GC [1,3-dialkyl][mim] [17]
202.2 196.2 �2.9 ANN Imidazolium This work

[BzimBz] [ta] 236.0 240.2 1.8 GC [1,3-dialkyl][mim] [17]
236.0 235.9 0.0 ANN Imidazolium This work
191.2 197.6 3.4 ANN Imidazolium This work
205.6 200.2 �2.6 ANN Imidazolium This work

[C10mim] [PF6] 202.2 196.2 3.0 GC [1,3-dialkyl][mim] [17]
202.2 193.3 �4.4 ANN Imidazolium This work
189.2 201.0 6.3 ANN Imidazolium This work

[PAMPBim] [PF6] 234.2 234.2 0.0 GC [1,3-dialkyl][mim] [17]
234.2 239.4 2.2 ANN Imidazolium This work

[C8mim] [bti] 189.0 190.2 0.7 GC [1,3-dialkyl][mim] [17]
189.2 197.4 4.4 ANN Imidazolium This work

[BzimBz] [bti] 222.9 228.8 2.7 GC [1,3-dialkyl][mim] [17]
222.9 218.4 �2.0 ANN Imidazolium This work

[C10mim] [Sac] 203.9 203.9 0.0 GC [1,3-dialkyl][mim] [17]
203.9 218.4 7.1 ANN Imidazolium This work

[C9mim] [bti] 190.2 190.9 0.4 GC [1,3-dialkyl][mim] [17]
190.2 195.9 3.0 ANN Imidazolium This work

[DPEHIM [PF6] 204.4 200.3 2.0 GC [1,3-dialkyl][mim] [17]
204.4 204.8 0.2 ANN Imidazolium This work
238.2 243.0 2.1 ANN Imidazolium This work

[acrylateC6mim] [bti] 198.2 202.9 2.4 GC [1,3-dialkyl][mim] [17]
198.2 196.0 �1.1 ANN Imidazolium This work

[DPEOIM [PF6] 200.0 201.6 0.8 GC [1,3-dialkyl][mim] [17]
200.0 198.3 �0.8 ANN Imidazolium This work

[C2im] [BF4] 186.2 208.9 12.2 ANN Any [16]
186.2 189.2 1.6 ANN Imidazolium This work

[C2OHmim] [PF6] 201.2 198.5 1.3 GC [1,3-dialkyl][mim] [17]
201.2 213.8 6.3 ANN Imidazolium This work

[C2Omim] [C2F5BF3] 175.2 175.2 0.0 GC [1,3-dialkyl][mim] [17]
175.2 175.3 0.1 ANN Imidazolium This work

[DPEHIM [BF4] 189.9 198.9 4.8 GC [1,3-dialkyl][mim] [17]
189.9 210.3 10.8 ANN Imidazolium This work

[DPEOIM [BF4] 188.4 200.3 6.3 GC [1,3-dialkyl][mim] [17]
188.4 197.5 4.9 ANN Imidazolium This work

[DPPOIM [BF4] 201.5 201.5 0.0 GC [1,3-dialkyl][mim] [17]
201.5 201.7 0.1 ANN Imidazolium This work
183.2 197.9 8.0 ANN Imidazolium This work

[Em2im] [ba] 207.8 201.3 3.1 ANN Any [16]
207.8 213.0 2.5 ANN Imidazolium This work

[C2im] [ClO4] 192.2 213.9 11.3 ANN Any [16]
192.2 205.3 6.8 ANN Imidazolium This work
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deviations of 10% could be acceptable because the effect of
different properties has different effect in different appli-
cations [35]. However, 10% in a value of Tg could mean
differences of 15e30 �C, a deviation that we find non-
acceptable. Differences of 30 �C considerably reduce the
probable liquidus range of the IL, range in which one wants
to safely work during a process, without the threatening of
crystal formation. We propose here that an acceptable
margin to claim success in modeling the glass transition
temperature (or any transition temperature) must be on
the order of 10 �C as maximum (3%) and average deviations
not greater than 3 �C (1%). Therefore, none of the available
publications, or this work, can claim success yet in pre-
dicting Tg. However, the efforts of researchers such as those
mentioned in this work must continue especially in the
area of standardizing the definition of Tg and its experi-
mental determination.
5. Conclusions

ANNmodels have been used to correlate and predict the
glass transition temperature of ILs. The study and the re-
sults obtained in this work allow drawing the following
main conclusions: (1) simple architectures of three or four
layers with maximum of 13 neurons are sufficient to
correlate the glass transition temperature of ILs; (2) the
descriptors used show to be good representative parame-
ters to distinguish data for the different ILs; (3) better
training, testing, and some good predictive capabilities are
observed when the family of ILs is reduced so the members
of the family have minimal structural differences, such as
the case of the n-alkyl-3-methylimidazolium family; (4) for
reduced families, and if a reasonable amount of data is
available, Tg could be predicted with deviations less than
10%; and (5) the lack of a clear definition of the glass



J.O. Valderrama et al. / C. R. Chimie 20 (2017) 573e584 583
transition temperature and the lack of knowledge on what
are the properties that most affect liquidesolid transition
are the main causes of the present incapability for accu-
rately predicting the glass transition temperature of the
type of ILs studied in this work.
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Notation

Symbols
% percentage
%DTg average relative deviation of glass transition

temperature
j%DTgj average absolute relative deviation of glass

transition temperature
j%DTgjmax maximum absolute relative deviation of glass

transition temperature
F general function or IL property
IL ionic liquid
nC number of carbon atoms
n number of neurons in a network
N number of data in a data set
M(þ) cation mass
M(�) anion mass
Tcc cold crystallization temperature
Tf freezing temperature
Tg glass transition temperature
Tm melting temperature
Tss solidesolid transition
Vw van der Waals volume
X0 connectivity index of order zero
x1, x2, x3… xi,xn general independent variables

Abbreviations
Am ammonium
ANNs artificial neural networks
GC group contribution
Im imidazolium
Py pyridinium
QSPR quantitative structureeactivity relationship
Ref reference
SA surface area
Su sulfonium
Tr triazolium
Superscripts/subscripts
cal calculated
g glass
lit. literature
max maximum

Greek letters
D difference
l connectivity indexP

summation

Appendix. A. Supporting information

Supporting information related to this article can be
found at http://dx.doi.org/10.1016/j.crci.2016.11.009.
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