Structural investigations on zeolitic faujasite/benzene host/guest systems ($\mathrm{Si} / \mathrm{Al}=2.43$ and ≈ 200) by using combined powder diffraction, adsorption calorimetry and molecular mechanics simulations

Bernard F. Mentzen *
5, rue Marcel-Desplaces, 69330 Meyzieu, France

Received 12 April 2004; accepted after revision 15 November 2004
Available online 26 February 2005

Abstract

The $\mathrm{NaY}(\mathrm{Si} / \mathrm{Al}=2.43) /$ benzene (1) and $\mathrm{DAY}(\mathrm{Si} / \mathrm{Al} \approx 200) /$ benzene (2) systems are investigated by combined adsorption calorimetry, X-ray or neutron powder diffraction and computer simulation techniques. For (1) and (2) a good estimation of the sorption heats is obtained. A complementary study of a prehydrated $\mathrm{NaY} / \mathrm{benzene}$ (3) system is also realized. For (1), (2) and (3) the $\mathrm{BZ}(\mathrm{C}) / \mathrm{BZ}(\mathrm{W})$ ratios, the distributions (localization and population) of these two independent sorbate species and the variations of the cubic unit-cell parameters are given. In (3) two ordered WI' and WII water species exist and their distributions are reported. For this system a substantial cation migration is evidenced. In (2) two independent and totally disordered benzene species exist. It is concluded that adsorption calorimetry yields decisive informations on the adsorption mechanisms. To cite this article: B.F. Mentzen, C. R. Chimie 8 (2005). © 2005 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

Résumé

Une étude comparée des systèmes $\mathrm{NaY}(\mathrm{Si} / \mathrm{Al}=2,43) /$ benzène (1) et $\mathrm{DAY}(\mathrm{Si} / \mathrm{Al} \approx 200) /$ benzène (2) par calorimétrie d'adsorption, diffraction X ou neutronique sur poudres et calculs théoriques est effectuée. Pour (1) et (2), une bonne estimation des énergies d'adsorption est obtenue. Une étude complémentaire d'un sytème NaY préhydratée/benzène (3) est également effectuée. Pour (1), (2) et (3) les rapports $B Z(C) / B Z(W)$ et les répartitions des deux espèces indépendantes d'adsorbat ainsi que les variations du paramètre de la maille cubique sont donnés. Dans (3) deux espèces ordonnées de molécules d'eau WI' et WII sont trouvées et leurs répartitions décrites. Pour (3) une forte migration cationique est mise en évidence. Dans (2), deux espèces indépendantes et totalement désordonnées de benzène sont trouvées. Il est conclu que la calorimétrie d'adsorption apporte des informations décisives pour la compréhension des mécanismes d'adsorption. Pour citer cet article : B.F. Mentzen, C. R. Chimie 8 (2005).
© 2005 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

[^0]Keywords: Faujasite/benzene host-guest complexes; X-ray and neutron powder diffractions; Crystal structure; Adsorption calorimetry; Molecular mechanics simulations

Mots clés : Complexes faujasite/benzène ; Diffractions X et neutroniques sur poudres; Structure cristalline ; Calorimétrie d'adsorption ; Simulations par mécanique moléculaire

1. Introduction

Microporous materials presenting the faujasite (FAU) structure type [1] are widely involved in many industrial molecular sieving, distillation, detergentbuilder or catalytic processes [2,3]. The framework structure of Y-type faujasites usually crystallizes in the cubic Fd 3 m space group. It is built up by sodalite cages (also called β-cages, centered on 8 a positions) linked together by double hexagonal rings (D6R, hexagonal prism, 16 c positions). The large cavity (also called super-cage or α-cage, centered on 8 b positions) is created by the arrangement of eight sodalite units. Each super-cage communicates with four adjacent supercages through single twelve-ring windows (S12R, centered on 16d positions) and with four sodalite cages through single six-ring (S6R) windows. Neutron powder diffraction [4] and computational methods [5] show that the ideal cation distribution in anhydrous NaY ($\mathrm{Si} / \mathrm{Al}=2.43$) is 8 NaI (in the D 6 R hexagonal prisms, half- populated 16 c positions) $+16 \mathrm{NaI}^{\prime}$ (in the betacages, half-populated 32 e positions) +32 Na (in the alpha-cages close to S6R, fully populated 32e positions). Concerning NaY [4,6-13] and other cationexchanged FAU [14-19], or deluminated Y (DAY or US-Y) [20-22], many experimental and theoretical work [23-27 and many references therein] describing the state of benzene molecules sorbed in these materials are reported in the literature. Nevertheless, there are still some conflicting results concerning the benzene and/or cation distributions, the adsorption heats and the sorption capacities of benzene in NaY and DAY faujasites. Computer simulations by molecular mechanics and molecular dynamics using several force-fields have been widely used for the prediction of preferential adsorption sites of many aromatic and aliphatic species in zeolitic host/guest systems [23-27]. Hereafter it is shown that the van der Waals type Buckingham exp-6-1 atom-atom interaction model combined with crystal structure results have been successfully used for
simulating the experimental $\mathrm{NaY} /$ benzene and DAY/ benzene calorimetric curves. Structural results concerning prehydrated $\mathrm{pHyNaY} /$ benzene complexes show that the benzene distributions and cation populations are heavily perturbated by polar water molecules.

2. Experimental

The computer simulation methodology (simplex type variable step method) concerning the charge distributions on the zeolite $\mathrm{T}(\mathrm{Si}, \mathrm{Al})$ and O framework atoms and the potential energy parameters of the $\mathrm{Si}, \mathrm{O}, \mathrm{C}, \mathrm{Na}$ atoms used in this work (Table 1) for the exp-6-1 van der Waals-type Buckingham intermolecular atomatom potential interaction model (equation 1) are detailed in [28-30].

$$
\begin{align*}
& E_{\mathrm{tot}}=\sum_{j>k}\left\{b_{j} b_{k} \exp \left[-\left(c_{j}+c_{k}\right) r_{j k}\right]\right. \tag{1}\\
& \left.-a_{j} a_{k} r_{j k}^{-6}+q_{j} q_{k} r_{j k}^{-1}\right\}
\end{align*}
$$

a, b, c and q parameters correspond to the long-range attractive dispersion, short-range repulsion, van der Waals radius and very long-range Coulombic terms respectively. The charges on $\mathrm{C} / \mathrm{H} / \mathrm{Na} / \mathrm{O} / \mathrm{Si}$ are -0.153 / $+0.153 /+1.0 /-n q(\mathrm{Na}) / m / 0.0$ respectively. For the framework oxygen n and m are the total Na cations and O framework atoms in the simulated structural model respectively. Since this structural model is spherical, it

Table 1
The Buckingham model: atomic potential parameters a, b and c used for the simulations of sorbent/sorbate interactions in the FAU structure type

Atom	$a(\mathrm{~kJ} / \mathrm{mol})^{1 / 2} \AA^{3}$	$b(\mathrm{~kJ} / \mathrm{mol})^{1 / 2} \AA^{3}$	$c\left(\AA^{-1}\right)$	Ref.
H	11.662	108.06	1.87	$[30]$
C	49.132	606.01	1.80	$[30]$
O	33.211	536.21	1.98	$[30]$
$\mathrm{Si}(\mathrm{Al})$	66.000	493.00	1.41	$[30]$
Na	66.000	680.00	1.86	$[30]$

has been verified that the charges on the Si framework atoms might be neglected. The structural models for the completely dehydrated NaY faujasite and the benzene molecule are reported in [4,31]. All the energyminimization calculations are performed by using locally developed codes on an AMD Athlon ${ }^{\text {TM }}$ Processor (1 GHz) based microcomputer. In all cases the calculations are performed by centering the mobile molecule(s) in a spherical zeolitic fragment of 15 or $20 \AA$ radius and the structural parameters correspond to actual data obtained by Rietveld-type refinements [32,33]. High-precision differential molar adsorption calorimetric data on $\mathrm{NaY}(\mathrm{Si} / \mathrm{Al}=2.43)$ and $\mathrm{US}-\mathrm{Y}(\mathrm{Si} / \mathrm{Al}=95)$ obtained by using a Tian-Calvet type microcalorimeter are described in $[10,20]$. The NaY zeolite $(\mathrm{Si} / \mathrm{Al}=2.43)$ used in this work correponds to a commercial products (Linde Na-Y zeolite SK40 and LZY-52 from Sigma ALDRICH ${ }^{\mathrm{TM}}$). The chemical composition of the fully hydrated $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot 256 \mathrm{H}_{2} \mathrm{O}$ zeolite has been verified by elemental analysis, solid state ${ }^{29} \mathrm{Si}$ NMR, water adsorption isotherms and thermogravimetry. The highly siliceous DAY ($\mathrm{Si} / \mathrm{Al} \approx 200$) sample has been obtained by dealumination of a parent silicon-rich Y $(\mathrm{Si} / \mathrm{Al}=10)$ refluxed in boiling nitric acid (60% acid/water solution followed by pure acid treatment) (21). The neutron data have been recorded on the D1A ($\mathrm{NaY} / \mathrm{C}_{6} \mathrm{D}_{6}$ phases), D1B ($\mathrm{NaY} / \mathrm{C}_{6} \mathrm{H}_{6}$ phases) and D2B (for one DAY/C ${ }_{6} \mathrm{D}_{6}$ sample) powder diffractometers at the Institut Laüe-Langevin in Grenoble (France). The experimental step-scanned X-ray powder diffraction profiles have been recorded on a PHILIPSTM PW1830 X'Pert type diffractometer (different angular ranges, 0.02 or 0.025 steps, 5 s counting time/step) using a post-monochromatized (pyrolitic graphite) $\mathrm{Cu} \mathrm{K} \alpha$ radiation. For the prehydrated $\mathrm{pHyNaY} /$ benzene samples (7.0 weight $\%, 18$ water molecules/unit-cell) a specially designed air-tight brass sample-holder with a Kapton film window has been used and several FAU/benzene compositions have been obtained by injecting through a silicon rubber septum weighted amounts of sorbate. It has been verified that no incomming water or escaping benzene occurred during the data-collections. Some samples have also been packed in glass capillaries and mounted on a basic sampleholder (non-rotating samples). All the data-collections have been recorded at ambient room temperature. In all cases the Fd3m space group has been considered for the structure refinements.

3. Results and discussion

3.1. Structure refinements

The starting crystal parameters for the FAU framework are those given in [4] (Fd3m space group). In all cases the planar geometry of the benzene species has been constrained to that described in $[31,34]$ for crystals at $270 \mathrm{~K}(\mathrm{C}-\mathrm{C}=1.397, \mathrm{C}-\mathrm{H}=1.027 \AA$, all angles $\left.=120^{\circ}\right)$. In the case of prehydrated NaY/benzene phases (pHyNaY) the starting crystal parameters of the water molecules obtained by computer simulations (see Fig. 3 and section 3.3) are comparable to those reported in [15]. The benzene species close to the NaII cations and those in the S12R windows are labelled BZ(C) and $B Z(W)$ respectively. The water species coordinated to NaI^{\prime} and NaII cations are labelled WI' and WII respectively. The $\mathrm{BZ}(\mathrm{C}) / \mathrm{BZ}(\mathrm{W})$ ratio obtained for the three NaY/benzene, DAY/benzene and pHyNaY/benzene systems are represented in Fig. 1. The unit-cell parameter variations versus benzene loadings for these three systems are given in Fig. 2.

3.1.1. The NaY/benzene system

In this system the variation of the $r=\mathrm{BZ}(\mathrm{C}) / \mathrm{BZ}(\mathrm{W})$ ratio versus benzene loadings is almost linear. Points 1 and 3 are from reference [4], points 2 and 4 correspond to $\mathrm{NaY} / \mathrm{C}_{6} \mathrm{H}_{6}$ (D1B) complexes and point 5 to a sample in a glass capillary (X-rays). The BZ(C)/BZ(W) distributions might be calculated for all loadings by the

Fig. 1. $\mathrm{BZ}(\mathrm{C}) / \mathrm{BZ}(\mathrm{W})$ ratio versus benzene loadings observed for the three $\mathrm{NaY} / \mathrm{b}$ enzene, prehydrated $\mathrm{NaY} /$ benzene and DAY/benzene systems.

Fig. 2. Unit-cell parameter (\AA) versus benzene loadings observed for the three $\mathrm{NaY} /$ benzene, prehydrated $\mathrm{NaY} /$ benzene and DAY/benzene systems.
$r=7.235-0.122 \times$ (total benzene/uc) $(R=0.995)$. Accordingly, the r ratio decreases with sorbate fillings. At zero filling this ratio is 7.24 (close to 8) and extrapolated to 48 benzene/uc (theoretical maximum) its value is about 1.4. The experimentally observed sorption capacity of benzene in $\mathrm{NaY}(\mathrm{Si} / \mathrm{Al}=2.43)$ is close to 42-43 molecules/uc (42.5 [10], 43.2 [8]), which roughly corresponds to point 5 with $r \approx 2$. Fig. 2 shows that for this system the unit-cell parameter of the FAU framework decreases rather rapidly with higher benzene load-

Fig. 3. Structural detail of a prehydrated $\mathrm{NaY}+24$ benzene+24water complex (only one eighth of the unit-cell is represented).
ings. For all benzene loadings the cation site populations remain almost constant [4, this work]. The Rietveld plots and some structural results corresponding to points 2, 4 and 5 are reported in Appendix 1 and Figs. A.I. 1 to A.I.3.

3.1.2. The DAY/benzene system

For this system, the r versus fillings ratio increases rapidly with increasing benzene loadings. At saturation (39.5 molecules/uc [20]) the BZ(W) species have almost disappeared. This particularity will be discussed in the sections concerning the calorimetric curve and the computer simulations. The crystal structure corresponding to a DAY/32benzene phase ($r=7.1$) close to the saturation capacity has been reported in [21]. The corresponding atomic coordinates are reported in Appendix 2 as additional data and the Rietveld plot is given in Fig. A.II.6. Fig. 2 shows that for this system the unit-cell parameter of the FAU framework increases slowly and linearly with increasing benzene loadings. The Rietveld plots, refined benzene molecules and some structural results corresponding to points 6-10 are reported in Appendix 2 and Figs. A.II. 1 to A.II.5. Unfortunalety no intermediate benzene loading between points 7 and 8 is presently available.

3.1.3. The $\mathrm{pHyNaY/benzene} \mathrm{system}$

For this system, the r versus benzene/uc variation is also linear. For all compositions, r is slightly increasing, its mean value being close to 2 . Fig. 2 shows that the unit-cell parameter of the FAU framework decreases slowly and linearly with increasing benzene loadings. The WI' and WII water molecules have been localized near the NaI^{\prime} and NaII cations respectively. Table 2 reports some structural results concerning three $\mathrm{pHyNaY} /$ benzene complexes and compares them to the sorbate free NaY . In the present case several details must be emphasized.

At constant water loading (18 molecules/uc):

- (1) the Na cation distribution is heavily disturbed; this is a direct result of water/framework and/or water/Na interactions as in prehydrated $\mathrm{BaX} / \mathrm{xy}$ lene phases where cation migrations have also been observed [15];
- (2) with increasing benzene concentrations the population of site NaI decreases almost to nil, whereas the population of site NaI^{\prime} remains almost constant

Table 2
Distribution of the NaI, NaI' and NaII cationic species, the $\mathrm{BZ}(\mathrm{C})$ and $\mathrm{BZ}(\mathrm{W})$ benzene species, and the WI' and WII water species in three prehydrated $\mathrm{pHyNaY} /$ benzene complexes (per unit cell)

Sample	$\mathrm{a}(\AA)$	NaI	NaI^{\prime}	NaII	$\mathrm{BZ}(\mathrm{C})$	$\mathrm{BZ}(\mathrm{W})$	WI' $^{\prime}$	WII
empty NaY	$24.715(1)$	8^{a}	16	32	0	0	0	0
PL_1.3BZ	24.716	8	17	31	0.85	0.45	0	18
PL_15BZ	$24.705(1)$	5	25	26	8	7	1	17
PL_29BZ	$24.693(1)$	3	26	27	19	10	3	15
PL_43BZ	$24.690(1)$	1	25	30	30	13	8	10

${ }^{\text {a }}$ Site population e.s.ds are typically $2-4 \%$ of the refined value.
and that of site NaII increases as a consequence of a compensating effect of the decreasing NaI population;
-(3) at the same time, the WII site population decreases at the advantage of WI' coordinated to NaI^{\prime} and with increasing benzene loadings some water molecules are forced into the sodalite cage.
Fig. 3 represents an example of a prehydrated $\mathrm{pHyNa} /$ benzene structure for an overall $\mathrm{NaY}+$ 24 benzene +24 water composition: $2 \mathrm{BZ}(\mathrm{C}), 1 \mathrm{WI}^{\prime}$ and 2 WII are coordinated to NaII, NaI^{\prime} and NaII respectively, whereas $1 \mathrm{BZ}(\mathrm{W})$ is in the plane of the S 12 R window and its protons interact with framework atoms. The simulated structural models of the WI' and WII water species are given in section 3.3. The benzene adsorption capacity in prehydrated NaY is very close to that observed for pure NaY (43-44 molecules/uc). The Rietveld plots and some structural results corresponding to four selected points 11-14 are reported in Appendix 3.

3.2. Calorimetric results

The differential molar adsorption heats at 300 K for the $\mathrm{NaY/benzene}$ and US-Y/benzene systems are represented in Fig. 4. For the first system, the adsorption heat increases linearly from zero-filling (extrapolated value $\approx-78 \mathrm{~kJ} / \mathrm{mol}$) up to 32 benzene $/ \mathrm{uc}(-86 \mathrm{~kJ} / \mathrm{mol})$. This corresponds to a mean heat increase of $0.27 \mathrm{~kJ} / \mathrm{mol}$ per adsorbed benzene molecule and corresponds to Coulombic intermolecular benzene/benzene interactions. After 32 benzene/uc (4 molecules per super cage), the adsorption heat decreases abruptly down to $-58 \mathrm{~kJ} / \mathrm{mol}$ at saturation (42.5 benzene $/ \mathrm{uc}$), which corresponds to 5.31 benzene molecules per super cage. The heat decrease corresponds to increasing repulsive interactions between the adsorbed species: even if the theoretical crystal chemical sorption capacity is

48 benzene/uc ([4 BZ(C) $+2 \mathrm{BZ}(\mathrm{W})]$ per super cage), at this concentration there is not enough place for so much sorbate. For the US-Y/benzene system the situation is much more complicated. The US-Y sample corresponds to $\mathrm{Si} / \mathrm{Al}=95$ [10] and contains still 2 Na cations per unit-cell. These residual cations and unavoidable structural defects provoked by the dealumination process itself may play a specific role in the starting adsorption process and therefore the initial heats are rather high: the initial curve might be extrapolated at zero filling and compared to the $\mathrm{NaY} /$ benzene initial heat ($-78 \mathrm{~kJ} / \mathrm{mol}$). Accordingly, the first data points of the US-Y/benzene curve should be discarded and the true initial adsorption heat be extrapolated to about $-42 \mathrm{~kJ} / \mathrm{mol}$. Up to 12 benzene/uc the mean heat increment is about $0.29 \mathrm{~kJ} / \mathrm{mol}$ and from 12 up to 20 benzene/uc it is $0.75 \mathrm{~kJ} / \mathrm{mol}$, the maximum heat being $-52.5 \mathrm{~kJ} / \mathrm{mol}$. After 20 benzene/uc the heat decreases down to $-41 \mathrm{~kJ} / \mathrm{mol}$, the mean decrement being $0.96 \mathrm{~kJ} / \mathrm{mol}$. Finally, up to saturation (39.5 ben-

Fig. 4. Experimental differential molar adsorption heat curves at 300 K for the NaY/benzene [20] and US-Y/benzene systems [10].
zene/uc or 4.94 benzene per super cage) the heat decrement is about $0.36 \mathrm{~kJ} / \mathrm{mol}$, the minimum adsorption heat being $-37.5 \mathrm{~kJ} / \mathrm{mol}$. For this system the benzene condensation heat is almost attained $(-33.5 \mathrm{~kJ} / \mathrm{mol}$ at 300 K).

3.3. Computer simulations

3.3.1. The NaY/benzene system

Energy-minimization calculations using the exp-61 Buckingham model yield -79.0 and $-46.7 \mathrm{~kJ} / \mathrm{mol}$ for the adsorption heats of isolated $\mathrm{BZ}(\mathrm{C})$ and $\mathrm{BZ}(\mathrm{W})$ species at infinite dilution respectively [30]. The relatively large difference between these energies explains why at lower loadings the cationic site is favoured. This is in agreement with the r ratio line and the crystal structure refinements [4, this work]. It has been verified that at all loadings the benzene locations and orientations remain the same [4, this work]. This is a direct conse-
quence of the specific $\mathrm{BZ}(\mathrm{C}) /$ cation and $\mathrm{BZ}(\mathrm{W})$ / framework interactions. Knowing the distributions of the two types of benzene species for all loadings, the estimated adsorption heats for points 1 to 4 in Fig. 1 have been estimated. The benzene/benzene interactions between $\mathrm{BZ}(\mathrm{C}) / \mathrm{BZ}(\mathrm{C}), \mathrm{BZ}(\mathrm{C}) / \mathrm{BZ}(\mathrm{W})$ and $\mathrm{BZ}(\mathrm{W}) / \mathrm{BZ}(\mathrm{W})$ have been calculated for increasing benzene species in a spherical faujasite structural moeity centered on the super cage ($x, x, x=3 / 8$) with $20 \AA$ radius. The mean BZ/BZ interaction increment for increasing loadings amounts to $0.252 \mathrm{~kJ} / \mathrm{mol}$, which is in correct agreement with the experimentally observed $0.27 \mathrm{~kJ} / \mathrm{mol}$ value. The calculated values (triangular $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ symbols) are compared to the experimental adsorption heats in Table 3 and reported in Fig. 4. After 32 benzene/uc the unit-cell parameter decreases (Fig. 2) and at the same time the adsorption heat drops. This rapid decrease of the adsorption heats might be the consequence of simultaneaous effects due (a) to increas-

Table 3
Observed and calculated adsorption heats for four NaY/benzene fillings

Point	$\mathrm{BZ}(\mathrm{C}) / \mathrm{BZ}(\mathrm{W})$ ratio	Benzene $/ \mathrm{uc}$	$-E_{\text {obs }}(\mathrm{kJ} / \mathrm{mol})$	$-E_{\mathrm{cal}}(\mathrm{kJ} / \mathrm{mol})$
1	6.4	7.7	80	80.9
2	5.2	16.0	82	83.0
3	4.1	24.7	84	85.2
4	3.3	37.0	86	87.1

Fig. 5. The two independent benzene molecules in (a) NaY and (b) DAY at infinite dilution.
ing unfavourable benzene/ benzene interactions as a consequence of unit-cell volume decrease, (b) to increasing concentrations of the $\mathrm{BZ}(\mathrm{W})$ species which present much lower adsorption heat contributions and (c) to the end of the pore-filling effect.

3.3.2. The US-Y/benzene system

There are no adsorption heats available for the DAY/benzene system ($\mathrm{Si} / \mathrm{Al} \approx 200$). The only comparable data are those reported in [10] and represented in Fig. $4(\mathrm{Si} / \mathrm{Al}=95)$. Fig. 5a,b compare the locations of the two independent benzene species in NaY and DAY. These locations correspond to isolated species at zero filling. For DAY the calculated adsorption heats for $\mathrm{BZ}(\mathrm{C})$ and $\mathrm{BZ}(\mathrm{W})$ are -41.2 and $-35.9 \mathrm{~kJ} / \mathrm{mol}$ respectively. The extrapolated experimental value at zero filling is about $-42 \mathrm{~kJ} / \mathrm{mol}$. The calculated heats for both benzene species are very close. Accordingly, we might expect that both sites are equally probable. The r line for this system shows that at increasing benzene fillings the $\mathrm{BZ}(\mathrm{W})$ species is less and less favoured: in other terms, everything happens as if the $B Z(W)$ species progressively vanish at higher loadings. In fact, the structure refinements and the simulations show that when the two benzene species coexist, $\mathrm{BZ}(\mathrm{W})$ quits the S12R window and gets closer to $\mathrm{BZ}(\mathrm{C})$: the noninteracting molecules in Fig. 5b yield those represented in Fig. 6a when both benzene species interact. The starting structural models for the $\mathrm{BZ}(\mathrm{C})$ and $\mathrm{BZ}(\mathrm{W})$ benzene species in DAY which have been simulated by molecular mechanics are given in Table 4. These posi-

Table 4
Modelisation of isolated $\mathrm{BZ}(\mathrm{C})$ and $\mathrm{BZ}(\mathrm{W})$ in DAY by molecular mechanics

BZ(C)				BZ(W)			
C11	.3187	.4076	.2226	C21	.5348	.4641	.4745
C12	.3245	.3014	.2668	C22	.4671	.5378	.5316
C13	.2767	.3884	.2571	C23	.4983	.4980	.4456
C 14	.3665	.3206	.2323	C 24	.5036	.5039	.5605
C 15	.2796	.3353	.2792	C 25	.4644	.5348	.4741
C 16	.3636	.3737	.2103	C 26	.5375	.4671	.5319
H 11	.3166	.4467	.2061	H 21	.5597	.4370	.4535
H 12	.3266	.2623	.2830	H 22	.4423	.5649	.5526
H 13	.2437	.4133	.2662	H 23	.4963	.4968	.4033
H 14	.3995	.2956	.2232	H 24	.5056	.5061	.6027
H 15	.2488	.3212	.3044	H 25	.4376	.5598	.4529
H 16	.3944	.3878	.1849	H 26	.5643	.4421	.5532

tions are very close to those reported for DAY/benzene complexes analyzed by neutron powder diffraction (see Appendix 2 and the results corresponding to Figs. A.II. 1 and A.II.6). It might be preferable to label the two independent sorbate species BZ1 and BZ2, but for homogeinity with the $\mathrm{NaY} /$ benzene and $\mathrm{pHyNaY} /$ benzene systems we still label them $B Z(C)$ and $B Z(W)$. The energy-minimization calculations show that the benzene/benzene interactions are much higher than in the $\mathrm{NaY} /$ benzene system, where the benzene species could not quit their sorption sites. Fig. 6 shows some benzene distributions for $2,3,4$ and 5 benzene/ super cage respectively. The calculated benzene/ benzene mean interaction increment up to 20 benzene/ uc amounts to $0.59 \mathrm{~kJ} / \mathrm{mol}$ and at higher loadings up to saturation there is a decrement of about $0.67 \mathrm{~kJ} / \mathrm{mol}$. For comparison, the experimentally observed mean increment and decrement are 0.52 and 0.66 respectively. The benzene sorption capacity of US-Y is 39.5 molecules/uc. Since there are no Na cations in US-Y, the $\mathrm{BZ}(\mathrm{C})$ are closer to the framework and in greater confinement. As a consequence the centre of the alpha cage is able to accept a benzene molecule, the result being the formation a $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{5}$ cluster (Fig. 6d) at 40 benzene/uc, which is comparable to the saturation capacity of US-Y. Compared to $\mathrm{NaY/benzene}$, where the sorbate species are fully ordered, in DAY/benzene they are completely disordered at room temperature. Accordingly, the distributions represented in Fig. 6a,b,c,d are some among an infinity of possible solutions.

3.3.3. The pHyNaY/benzene system

The atomic coordinates of the adsorbed WI' and WII water species simulated by molecular mechanics are gien in Table 5. In order to avoid undesired parameter correlations, these coordinates together with the known benzene coordinates have been fixed during the refine-

Table 5
Modelisation of isolated WI' and WII in pHyNaY by molecular mechanics

WI $^{\prime}$							
Ow1	.1668	.1672	.1708	Ow2	.2111	.3246	.3286
Hw11	.1807	.1345	.1914	Hw21	.1710	.3307	.3227
Hw12	.1340	.1825	.1901	Hw22	.2214	.3375	.3662

Fig. 6. Computer simulation of the DAY/benzene system: possible benzene distributions at (a) 2, (b) 3, (c) 4 and (d) 5 benzene/super cage.
ment process and only their populations have been relaxed.

4. Conclusion

It appears that the benzene adsorption process in faujasite type zeolites drastically depends on the start-
ing material. The preference of the benzene molecules for a cationic or a window site is very different in NaY and DAY. The comparison of structural results, experimental calorimetric curves and van der Waals type computer simulations yields a better knowledge on the intimate mechanism of benzene adsorption in faujasite. Some details of this mechanism could only
be attained by the interpretation of the calorimetric curve. Therefore, whenever possible, structural and calorimetric investigations should be performed on the same sample, since small variations in the chemical composition or the presence of residual cations, which are not easely detected by diffraction techniques, might be revealed by the differential molar adsorption heat curve. In order to illustrate the specific role of a polar molecule on the benzene adsorption process in NaY , a prehydrated $\mathrm{NaY} /$ benzene system has also been investigated. It appears that in this system the benzene distribution over the cationic and window sites is almost constant at all fillings. With increasing sorbate amounts the water molecules coordinated to the NaII cation are progressivley forced into the sodalite cage where the benzene molecules do not penetrate, the sorption capacities of the pure NaY and the prehydrated NaY being almost the same. The most important result of water/benzene coadsorption is the dramatic cationic migration effect: at constant water content (about 18 molecules/uc) the NaI cations migrate completely into the sodalite cage.

Appendix 1 - Points 1 to 5 in Fig. 1 for the NaY/ benzene system. Points 1 and 3 are given in ref. [4]

In all cases: upper/medium/lower traces correspond to calculated/experimental/difference plots

Point 2

Sample label: NA56YBZ
Sample formula: $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot 16 \mathrm{C}_{6} \mathrm{H}_{6}$
Sample origin: Linde sodium-Y zeolite (see ref. [4]) in Al-tube

Diffractometer: D1B - ILL
Wavelength (\AA): 2.5224
Angular range (${ }^{\circ} 2 \theta$): $7.0-83.6$ (limited datacollection)

Angular step (${ }^{\circ} 2 \theta$): 0.2
Unit-cell parameter (\AA): 24.699(4)
Number of observables: $384+37=421$
Number of $h k l$ triplets: 73
$R_{\mathrm{p}} / R_{\mathrm{wp}} / R_{\mathrm{ex}} / R_{\mathrm{I}}(\%): 9.9 / 16.0 / 1.9 / 8.2$

Atom	x / a	y / b	z / c	B (iso)	population/uc
Si	$-.0544(5)$	$.0351(6)$	$.1244(5)$	0.8	192
O 1	$-.1090(5)$	0	$.1090(5)$	2.5	96
O 2	$-.0028(5)$	$-.0028(5)$	$.1418(7)$	2.5	96
O 3	$-.0343(8)$	$.0714(5)$	$.0714(5)$	2.5	96
O 4	$-.0684(8)$	$.0758(5)$	$.1742(5)$	2.5	96
NaI	0	0	0	3.3	$8(1)$
NaI	$.055(3)$				$16(1)$
NaII	$.236(2)$				$32(1)$
C 1	.257	.337	.297	9.0	$13.4(6)$
H 1	.226	.368	.297		
C 2	.477	.477	.546	9.0	$2.6(5)$
H 2	.459	.459	.582	9.0	

Si-O1 1.641(2) Si-O2 1.631(2) Si-O3 1.653(2) Si-O4 1.618(2)

Benzene geometries and coordinates, total $\mathrm{Na} / \mathrm{uc}$ and thermal parameters fixed (see [4]).

Fig. A.I.1. Rietveld plots for $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot \mathbf{1 6} \mathrm{C}_{6} \mathrm{H}_{6}$ (point 2 in Fig. 1).

Point 4

Sample label: L52ALBZ
Sample formula: $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot 37 \mathrm{C}_{6} \mathrm{H}_{6}$
Sample origin: LZY-52 (sigma Aldrich) in Al tube
Diffractometer: D1B - ILL
Wavelength (\AA): 2.5224
Angular range (${ }^{\circ} 2 \theta$): 7.0-82.0 (limited datacollection)

Angular step (${ }^{\circ} 2 \theta$): 0.2
Unit-cell parameter (Å): 24.570(4)
Number of observables: $376+37=413$
Number of $h k l$ triplets: 73
$R_{\mathrm{p}} / R_{\mathrm{wp}} / R_{\mathrm{ex}} / R_{\mathrm{I}}(\%): 10.2 / 16.4 / 2.0 / 7.9$

Atom	x / a	y / b	z / c	B (iso)	population/uc
Si	$-.0541(4)$	$.0355(4)$	$.1242(4)$	0.8	192
O 1	$-.1086(3)$	0	$.1086(3)$	2.5	96
O 2	$-.0024(4)$	$-.0024(5)$	$.1435(7)$	2.5	96
O 3	$-.0354(7)$	$.0708(4)$	$.0708(4)$	2.5	96
O 4	$-.0719(7)$	$.0759(4)$	$.1741(4)$	2.5	96
NaI	0	0	0	3.3	$8(1)$
NaI	$.059(4)$				$16(1)$
NaII	$.238(2)$				$32(1)$
C 1	.257	.337	.297	9.0	$27.0(7)$
H 1	.226	.368	.297		
C 2	.477	.477	.546	9.0	$9.8(5)$
H 2	.459	.459	.582	9.0	
$\mathrm{Si}-\mathrm{O} 1$	$1.654(2) \mathrm{Si}-\mathrm{O} 21.657(2) \mathrm{Si}-\mathrm{O} 3$	$1.650(2) \mathrm{Si}-\mathrm{O} 41.650(2)$			

Benzene geometries and coordinates, total $\mathrm{Na} / \mathrm{uc}$ and thermal parameters fixed (see [4]).

Fig. A.I.2. Rietveld plots for $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot 37 \mathrm{C}_{6} \mathrm{H}_{6}$ (point 4 in Fig. 1).

Point 5

Sample label: cpY56BZ2
Sample formula: $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot 40 \mathrm{C}_{6} \mathrm{H}_{6}$
Sample origin: LZY-52 (Sigma Aldrich) in glass capillary

Diffractometer: Philips - X'Pert
Wavelength (\AA): $\mathrm{Cu} \mathrm{K} \alpha$
Angular range (${ }^{\circ} 2 \theta$): $4.0-84.0$
Angular step (${ }^{\circ} 2 \theta$): 0.025
Unit-cell parameter (\AA): 24.518(4)
Number of observables: $3201+37=3238$
Number of $h k l$ triplets: 282
$R_{\mathrm{p}} / R_{\mathrm{wp}} / R_{\mathrm{ex}} / R_{\mathrm{I}}(\%): 5.8 / 7.6 / 7.7 / 13.1$

Atom	x / a	y / b	z / c	$B($ iso $)$	population/uc
Si	$-.0532(2)$	$.0357(2)$	$.1261(2)$	0.8	192
O 1	$-.1066(2)$	0	$.1066(2)$	2.5	96
O 2	$-.0017(2)$	$-.0017(2)$	$.1443(4)$	2.5	96
O 3	$-.0344(4)$	$.0746(2)$	$.0746(2)$	2.5	96
O 4	$-.0729(4)$	$.0727(2)$	$.1773(2)$	2.5	96
NaI	0	0	0	3.3	$8(1)$
NaI	$.0625(9)$				$16(1)$
NaII	$.2359(6)$				$32(1)$
C 1	.257	.337	.297	9.0	$28.5(5) 2)$
H 1	.226	.368	.297		
C 2	.477	.477	.546	9.0	$11.4(2)$
H 2	.459	.459	.582	9.0	

Si-O1 1.655(4) Si-O2 1.631(6) Si-O3 1.657(5) Si-O4 1.631(5)
Benzene geometries and coordinates, total $\mathrm{Na} / \mathrm{uc}$ and thermal parameters fixed (see [4]).

Fig. A.I.3. Rietveld plots for $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot 40 \mathrm{C}_{6} \mathrm{H}_{6}$ (point 5 in Fig. 1).

Appendix 2 - Points 6 to 10 in Fig. 1 for the DAY/ benzene system

DAY/benzene complex at lower loading

Point 6

Sample label: Y20a_bz1
Sample formula: $\mathrm{Si}_{192} \mathrm{O}_{384} \cdot 8.4 \mathrm{C}_{6} \mathrm{D}_{6}$
Sample origin: see text
Diffractometer: D2B - ILL quartz tube
Wavelength (\AA): 1.59263
Angular range (${ }^{\circ} 2 \theta$): 4.55-106.55
Angular step (${ }^{\circ} 2 \theta$): 0.05
Unit-cell parameter (\AA): 24.252
Number of observables: $2201+94=2295$

Number of $h k l$ triplets: 407
$R_{\mathrm{p}} / R_{\mathrm{wp}} / R_{\mathrm{ex}} / R_{\mathrm{I}}(\%): 5.5 / 7.0 / 8.5 / 10.4$

Atom	x / a	y / b	z / c	B (iso)	population/uc
Si	$-.0541(1)$	$.0359(2)$	$.1251(1)$	$0.61(9)$	192
O 1	$-.1065(1)$	0	$.1065(1)$	$1.0(2)$	96
O 2	$-.0038(1)$	$-.0038(1)$	$.1403(2)$	$0.8(2)$	96
O 3	$-.0358(2)$	$.0762(1)$	$.0762(1)$	$2.3(2)$	96
O 4	$-.0705(3)$	$.0712(2)$	$.1722(2)$	$1.9(2)$	96
C 11	$.3274(9)$	$.4114(4)$	$.2345(9)$	$10(2)$	$6.7(2)$
C 12	$.328(2)$	$.3032(7)$	$.233(3)$		
C 13	$.293(2)$	$.3964(6)$	$.278(3)$		
C 14	$.367(2)$	$.3200(8)$	$.235(2)$		
C 15	$.292(1)$	$.3419(5)$	$.296(1)$		
C 16	$.368(1)$	$.3750(6)$	$.217(2)$		
D 11	$.326(2)$	$.4518(6)$	$.222(2)$		
D 12	$.329(3)$	$.263(1)$	$.285(4)$		
D 13	$.266(2)$	$.4232(7)$	$.297(3)$		
D 14	$.396(4)$	$.294(2)$	$.219(5)$		
D 15	$.263(3)$	$.327(1)$	$.324(3)$		
D 16	$.397(3)$	$.389(1)$	$.189(3)$		$1.7(1)$
C 21	$.549(1)$	$.476(2)$	$.471(1)$	$15(3)$	
C 22	$.487(1)$	$.557(1)$	$.526(1)$		
C 23	$.501(1)$	$.498(1)$	$.446(1)$		
C 24	$.535(1)$	$.536(1)$	$.550(1)$		
C 25	$.469(1)$	$.537(1)$	$.474(1)$		
C 26	$.566(1)$	$.496(1)$	$.522(1)$		
D 21	$.572(2)$	$.449(3)$	$.449(1)$		
D 22	$.467(2)$	$.589(2)$	$.544(2)$		
D 23	$.591(1)$	$.489(2)$	$.406(1)$		
D 24	$.551(1)$	$.553(2)$	$.585(1)$		
D 25	$.431(1)$	$.548(2)$	$.460(1)$		
D 26	$.598(2)$	$.476(2)$	$.541(1)$		
$\mathrm{Si}-\mathrm{O} 1$	$1.603(4) \mathrm{Si}-\mathrm{O} 21.598(3)$	$\mathrm{Si}-\mathrm{O} 1.599(3) \mathrm{Si}-\mathrm{O} 41.608(4)$			

Benzene geometries constrained (see text).

Fig. A.II.1. Rietveld plots for $\mathrm{Si}_{192} \mathrm{O}_{384} \cdot 8.4 \mathrm{C}_{6} \mathrm{D}_{6}$ (point 6 in Fig. 1).

Point 7

Sample label: Y20a_bz10
Sample formula: $\mathrm{Si}_{192} \mathrm{O}_{384} \cdot 14.2 \mathrm{C}_{6} \mathrm{H}_{6}$
Sample origin: see text
Diffractometer: Philips - X'Pert - in air-tight brass sample-holder

Wavelength (\AA): $\mathrm{Cu} \mathrm{K} \alpha$
Angular range (${ }^{\circ} 2 \theta$): 4-80
Angular step (${ }^{\circ} 2 \theta$): 0.025
Unit-cell parameter (\AA): 24.253(1)
Number of observables: $3041+94=3135$
Number of $h k l$ triplets: 221
$R_{\mathrm{p}} / R_{\mathrm{wp}} / R_{\mathrm{ex}} / R_{\mathrm{I}}(\%): 9.3 / 12.2 / 2.6 / 9.8$

Atom	x / a	y / b	z / c	B (iso)	population/uc
Si	$-.0544(2)$	$.0354(3)$	$.1256(3)$	0.8	192
O 1	$-.1076(3)$	0	$.1076(3)$	2.5	96
O 2	$-.0038(4)$	$-.0038(4)$	$.1397(6)$	2.5	96
O 3	$-.0385(6)$	$.0753(4)$	$.0753(4)$	2.5	96
O 4	$-.0709(6)$	$.0711(4)$	$.1789(4)$	2.5	96
$\mathrm{BZ(C)}$	see neutron results		9.0	$12.0(3)$	
$\mathrm{BZ}(\mathrm{W})$			9.0	$2.2(3)$	
$\mathrm{Si}-\mathrm{O} 1$	$1.609(3) \mathrm{Si}-\mathrm{O} 2$	$1.590(3)$	$\mathrm{Si}-\mathrm{O} 3$	$1.606(3)$	$\mathrm{Si}-\mathrm{O} 4$
$1.606(3)$					

Benzene coordinates fixed to those obtained by neutron profile refinements. Thermal parameters fixed.

Fig. A.II.2. Rietveld plots for $\mathrm{Si}_{192} \mathrm{O}_{384} \cdot \mathbf{1 4} \mathrm{C}_{6} \mathrm{H}_{6}$ (point 7 in Fig. 1).

Point 8

Sample label: Y20a_bz100
Sample formula: $\mathrm{Si}_{192} \mathrm{O}_{384} \cdot 28 \mathrm{C}_{6} \mathrm{H}_{6}$
Sample origin: see text
Diffractometer: Philips - X'Pert - in air-tight brass sample-holder

Wavelength (\AA): $\mathrm{Cu} \mathrm{K} \alpha$

Angular range (${ }^{\circ} 2 \theta$): 4-77.4
Angular step (${ }^{\circ} 2 \theta$): 0.025
Unit-cell parameter (\AA): 24.254(1)
Number of observables: $2937+94=3031$
Number of $h k l$ triplets: 225
$R_{\mathrm{p}} / R_{\mathrm{wp}} / R_{\mathrm{ex}} / R_{\mathrm{I}}(\%): 7.5 / 9.6 / 3.0 / 8.5$

Atom	x / a	y / b	z / c	B (iso)	population/uc
Si	$-.0530(2)$	$.0361(2)$	$.1243(2)$	0.8	192
O1	$-.1048(3)$	0	$.1048(3)$	2.5	96
O2	$-.0012(3)$	$-.0012(3)$	$.1421(5)$	2.5	96
O 3	$-.0317(5)$	$.0777(3)$	$.0777(3)$	2.5	96
O4	$-.0706(4)$	$.0718(3)$	$.1782(3)$	2.5	96
BZ(C)	see neutron results		9.0	$24.5(5)$	
BZ(W)				9.0	$3.5(2)$

Si-O1 1.602(3) Si-O2 1.608(3) Si-O3 1.601(3) Si-O4 1.620(3)
Benzene coordinates fixed to those obtained by neutron profile refinements. Thermal parameters fixed.

Fig. A.II.3. Rietveld plots for $\mathrm{Si}_{192} \mathrm{O}_{384} \cdot 28 \mathrm{C}_{6} \mathrm{H}_{6}$ (point 8 in Fig. 1).

Point 9

Sample label: Y20a_bz20
Sample formula: $\mathrm{Si}_{192} \mathrm{O}_{384} \cdot 31.7 \mathrm{C}_{6} \mathrm{H}_{6}$
Sample origin: see text
Diffractometer: Philips - X'Pert - in air-tight brass sample-holder

Wavelength (A): $\mathrm{Cu} \mathrm{K} \alpha$
Angular range (${ }^{\circ} 2 \theta$): 4-80
Angular step (${ }^{\circ} 2 \theta$): 0.025
Unit-cell parameter (\AA): 24.256(1)
Number of observables: $3041+94=3135$
Number of $h k l$ triplets: 244
$R_{\mathrm{p}} / R_{\mathrm{wp}} / R_{\mathrm{ex}} / R_{\mathrm{I}}(\%): 8.4 / 11.1 / 2.7 / 8.5$

Atom	x / a	y / b	z / c	B (iso)	population/uc
Si	$-.0538(3)$	$.0359(3)$	$.1260(3)$	0.8	192
O 1	$-.1060(4)$	0	$.1060(4)$	2.5	96
O 2	$-.0030(4)$	$-.0030(4)$	$.1429(6)$	2.5	96
O 3	$-.0385(6)$	$.0764(4)$	$.0764(4)$	2.5	96
O 4	$-.0699(6)$	$.0707(4)$	$.1793(4)$	2.5	96
$\mathrm{BZ}(\mathrm{C})$	see neutron results		9.0	$27.8(3)$	
$\mathrm{BZ}(\mathrm{W})$				9.0	$3.9(3)$

Si-O1 1.612(3) Si-O2 1.604(3) Si-O3 1.597(3) Si-O4 1.593(3)
Benzene coordinates fixed to those obtained by neutron profile refinements. Thermal parameters fixed.

Fig. A.II.4. Rietveld plots for $\mathrm{Si}_{192} \mathrm{O}_{384} \cdot 31.7 \mathrm{C}_{6} \mathrm{H}_{6}$ (point 9 in Fig. 1).
Point 10
Sample label: Y20a_bz30
Sample formula: $\mathrm{Si}_{192} \mathrm{O}_{384} \cdot 35.5 \mathrm{C}_{6} \mathrm{H}_{6}$
Sample origin: see text
Diffractometer: Philips - X'Pert - in air-tight brass sample-holder

Wavelength (\AA): $\mathrm{Cu} \mathrm{K} \alpha$
Angular range (${ }^{\circ} 2 \theta$): 4-80
Angular step (${ }^{\circ} 2 \theta$): 0.025
Unit-cell parameter (\AA): 24.257(1)
Number of observables: $3041+94=3135$
Number of $h k l$ triplets: 222
$R_{\mathrm{p}} / R_{\mathrm{wp}} / R_{\mathrm{ex}} / R_{\mathrm{I}}(\%): 8.1 / 10.6 / 2.7 / 9.5$

Atom	x / a	y / b	z / c	B (iso)	population/uc
Si	$-.0536(2)$	$.0356(2)$	$.1257(2)$	0.8	192
O 1	$-.1055(4)$	0	$.1055(4)$	2.5	96
O 2	$-.0030(4)$	$-.0030(4)$	$.1440(6)$	2.5	96
O 3	$-.0398(6)$	$.0774(4)$	$.0774(4)$	2.5	96
O 4	$-.0702(6)$	$.0701(4)$	$.1799(4)$	2.5	96
$\mathrm{BZ(C)}$	see neutron results		9.0	$31.4(3)$	
$\mathrm{BZ}(\mathrm{W})$				9.0	$4.1(2)$

Si-O1 1.603(3) Si-O2 1.606(3) Si-O3 1.590(3) Si-O4 1.611(3)

Benzene coordinates fixed to those obtained by neutron profile refinements. Thermal parameters fixed.

Fig. A.II.5. Rietveld plots for $\mathrm{Si}_{192} \mathrm{O}_{384} \cdot 35.5 \mathrm{C}_{6} \mathrm{H}_{6}$ (point 10 in Fig. 1).
DAY/benzene complex at higher loading

Additional data (compare with sample of point 6)
Sample label: Y20a_BZ600
Sample formula: $\mathrm{Si}_{192} \mathrm{O}_{384} \cdot 32 \mathrm{C}_{6} \mathrm{D}_{6}$
Sample origin: see text
Diffractometer: D2B
Wavelength (\AA): 1.59263
Angular range (${ }^{\circ} 2 \theta$): 4.55-154.35
Angular step (${ }^{\circ} 2 \theta$): 0.05
Unit-cell parameter (\AA): 24.253(1)
Number of observables: $2997+94=3091$
Number of $h k l$ triplets: 702
$R_{\mathrm{p}} / R_{\mathrm{wp}} / R_{\mathrm{ex}} / R_{\mathrm{I}}(\%): 7.9 / 10.2 / 7.3 / 11.2$

Atom	x / a	y / b	z / c	B (iso)	population/uc
Si	$-.0539(2)$	$.0355(2)$	$.1254(2)$	$0.98(9)$	192
O 1	$-.1063(2)$	0	$.1063(2)$	$1.4(2)$	96
O 2	$-.0032(2)$	$-.0032(2)$	$.1409(3)$	$1.5(2)$	96
O 3	$-.0365(3)$	$.0758(2)$	$.0758(2)$	$1.4(2)$	96
O 4	$-.0706(3)$	$.0709(2)$	$.1791(2)$	$1.3(2)$	96
C 11	$.3227(8)$	$.4084(6)$	$.229(1)$	$20(2)$	$27.8(5)$
C 12	$.337(1)$	$.3078(8)$	$.283(1)$		
C 13	$.283(2)$	$.390(2)$	$.266(3)$		
C 14	$.373(1)$	$.3232(9)$	$.241(1)$		
C 15	$.2908(7)$	$.3406(7)$	$.295(1)$		
C 16	$.3698(5)$	$.3768(5)$	$.219(1)$		
D 11	$.321(1)$	$.448(1)$	$.216(2)$		
D 12	$.340(2)$	$.269(1)$	$.299(3)$		
D 13	$.248(2)$	$.413(2)$	$.273(4)$		
D 14	$.406(2)$	$.299(1)$	$.231(3)$		
D 15	$.259(1)$	$.324(1)$	$.317(2)$		
D 16	$.4040(8)$	$.3948(7)$	$.202(2)$		

Atom	x / a	y / b	z / c	B (iso)	population/uc
C21	$.549(2)$	$.477(2)$	$.470(1)$	$15(4)$	$3.9(3)$
C22	$.487(1)$	$.558(2)$	$.525(1)$		
C23	$.507(1)$	$.506(1)$	$.443(1)$		
C24	$.535(1)$	$.536(1)$	$.549(1)$		
C25	$.473(1)$	$.542(2)$	$.472(1)$		
C26	$.563(2)$	$.493(3)$	$.523(2)$		
D21	$.567(3)$	$.444(3)$	$.452(2)$		
D22	$.468(3)$	$.589(3)$	$.544(2)$		
D23	$.594(2)$	$.493(2)$	$.404(1)$		
D24	$.552(2)$	$.554(2)$	$.583(2)$		
D25	$.437(2)$	$.556(3)$	$.455(2)$		
D26	$.596(4)$	$.475(4)$	$.542(3)$		

Si-O1 1.602(3) Si-O2 1.591(3) Si-O3 1.606(3) Si-O4 1.610(3)
Benzene geometries constrained (see text)

Fig. A.II.6. Rietveld plots for $\mathrm{Si}_{192} \mathrm{O}_{384} \cdot 32 \mathrm{C}_{6} \mathrm{D}_{6}$.
Appendix 3 - Points 11 to $\mathbf{1 4}$ in Fig. 1 for the prehydrated $\mathrm{pHyNaY} / \mathrm{benzene}$ system

Point 11

Sample label: PL52_A10
Sample formula: $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot 1.3 \mathrm{C}_{6} \mathrm{H}_{6}+$ $18 \mathrm{H}_{2} \mathrm{O}$

Sample origin: LZY-52 (Sigma-Aldrich)
Diffractometer: Philips - X'Pert - in air-tight brass sample-holder

Wavelength (\AA): $\mathrm{Cu} \mathrm{K} \alpha$
Angular range (${ }^{\circ} 2 \theta$): 4-66
Angular step (${ }^{\circ} 2 \theta$): 0.025
Unit-cell parameter (Å): 24.716(1)
Number of observables: $2481+16=2497$
Number of $h k l$ triplets: 165
$R_{\mathrm{p}} / R_{\mathrm{wp}} / R_{\mathrm{ex}} / R_{\mathrm{I}}(\%): 6.5 / 9.0 / 3.5 / 7.5$

Atom	x / a	y / b	z / c	B (iso)	population/uc
Si	$-.0540(3)$	$.0353(3)$	$.1247(3)$	0.8	192
O 1	$-.1073(4)$	0	$.1073(4)$	2.5	96
O 2	$-.0023(4)$	$.0023(4)$	$.1438(6)$	2.5	96
O 3	$-.0330(7)$	$.0755(4)$	$.0755(4)$	2.5	96
O 4	$-.0713(6)$	$.0715(4)$	$.1785(4)$	2.5	96
NaI	0	0	0	3.3	$8(1)$
NaI	$.0614(7)$				$17(1)$
NaII	$.2342(5)$				$31(1)$
C 1	.258	.338	.298	9.0	$0.85(8)$
H 1	.227	.369	.298	9.0	
C 2	.477	.477	.546	9.0	$0.45(5)$
H 2	.459	.459	.582	9.0	
OW 1	.167	.167	.171	9.0	$0(1)$
H 11	.181	.134	.191	9.0	
H 21	.134	.181	.191	9.0	
OW2	.211	.326	.326	9.0	$18(1)$
H 21	.171	.331	.323	9.0	
H 22	.221	.337	.366	9.0	

Si-O1 1.638(3) Si-O2 1.650(3) Si-O3 1.653(3) Si-O4 1.658(3)
Benzene coordinates, total $\mathrm{Na} / \mathrm{uc}$ and thermal parameters fixed (see [4]). Water coordinates fixed according to MM simulations (see Tables 4 and 5).

Fig. A.III.1. Rietveld plots for $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot 1.3 \mathrm{C}_{6} \mathrm{H}_{6}+18 \mathrm{H}_{2} \mathrm{O}$

Point 12

Sample label: PL52_BZ10
Sample formula: $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot 15 \mathrm{C}_{6} \mathrm{H}_{6}$ $+18 \mathrm{H}_{2} \mathrm{O}$

Sample origin: LZY-52 (Sigma-Aldrich)
Diffractometer: Philips - X'Pert - in air-tight brass sample-holder

Wavelength (\AA): $\mathrm{Cu} \mathrm{K} \alpha$
Angular range (${ }^{\circ} 2 \theta$): 4-66

Angular step (${ }^{\circ} 2 \theta$): 0.025
Unit-cell parameter (\AA): 24.705(1)
Number of observables: $2481+16=2497$
Number of $h k l$ triplets: 165
$R_{\mathrm{p}} / R_{\mathrm{wp}} / R_{\mathrm{ex}} / R_{\mathrm{I}}(\%): 6.0 / 8.4 / 3.4 / 6.5$

Atom	x / a	y / b	z / c	B (iso)	population/uc
Si	$-.0540(3)$	$.0353(3)$	$.1247(3)$	0.8	192
O 1	$-.1073(4)$	0	$.1073(4)$	2.5	96
O 2	$-.0023(4)$	$-.0023(4)$	$.1438(6)$	2.5	96
O 3	$-.0330(7)$	$.0755(4)$	$.0755(4)$	2.5	96
O 4	$-.0713(6)$	$.0715(4)$	$.1785(4)$	2.5	96
NaI	0	0	0	3.3	$5(1)$
NaI	$.0679(9)$				$25(1)$
NaII	$.2395(6)$				$26(1)$
C 1	.258	.338	.298	9.0	$8.1(5)$
H 1	.227	.369	.298	9.0	
C 2	.477	.477	.546	9.0	$6.9(5)$
H 2	.459	.459	.582	9.0	
OW 1	.167	.167	.171	9.0	$1(1)$
H 11	.181	.134	.191	9.0	
H 21	.134	.181	.191	9.0	
OW 2	.211	.326	.326	9.0	$17(1)$
H 21	.171	.331	.323	9.0	
H 22	.221	.337	.366	9.0	

Si-O1 1.648(3) Si-O2 1.667(3) Si-O3 1.644(3) Si-O4 1.621(3)
Benzene coordinates, total $\mathrm{Na} / \mathrm{uc}$ and thermal parameters fixed (see [4]). Water coordinates fixed according to MM simulations.

Fig. A.III.2. Rietveld plots for $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot \mathbf{1 5} \mathrm{C}_{6} \mathrm{H}_{6}+\mathbf{1 8} \mathrm{H}_{2} \mathrm{O}$ (point12 in Fig. 1).

Point 13

Sample label: PL52_BZ20
Sample formula: $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot 29 \mathrm{C}_{6} \mathrm{H}_{6}+$ $18 \mathrm{H}_{2} \mathrm{O}$

Sample origin: LZY-52 (Sigma - Aldrich)
Diffractometer: Philips - X'Pert - in air-tight brass sample-holder

Wavelength (\AA): $\mathrm{Cu} \mathrm{K} \alpha$
Angular range (${ }^{\circ} 2 \theta$): 4-66
Angular step (${ }^{\circ} 2 \theta$): 0.025
Unit-cell parameter (\AA): 24.693(1)
Number of observables: $2481+16=2497$
Number of $h k l$ triplets: 165
$R_{\mathrm{p}} / R_{\mathrm{wp}} / R_{\mathrm{ex}} / R_{\mathrm{I}}(\%): 5.4 / 7.3 / 3.6 / 5.8$

Atom	x / a	y / b	z / c	B (iso)	population/uc
Si	$-.0543(2)$	$.0364(2)$	$.1256(2)$	0.8	192
O 1	$-.1066(3)$	0	$.1066(3)$	2.5	96
O 2	$-.0033(3)$	$-.0033(3)$	$.1428(5)$	2.5	96
O 3	$-.0327(5)$	$.0759(3)$	$.0759(3)$	2.5	96
O 4	$-.0722(4)$	$.0716(3)$	$.1784(3)$	2.5	96
NaI	0	0	0	3.3	$3(1)$
NaI	$.0621(5)$				$26(1)$
NaII	$.2413(6)$				$27(1)$
C 1	.258	.338	.298	9.0	$19(1)$
H 1	.227	.369	.298	9.0	
C 2	.477	.477	.546	9.0	$10(1)$
H 2	.459	.459	.582	9.0	
OW 1	.167	.167	.171	9.0	$3(1)$
H 11	.181	.134	.191	9.0	
H 21	.134	.181	.191	9.0	
OW 2	.211	.326	.326	9.0	$15(1)$
H 21	.171	.331	.323	9.0	
H 22	.221	.337	.366	9.0	

Si-O1 1.641(3) Si-O2 1.651(3) Si-O3 1.654(3) Si-O4 1.629(3)
Benzene coordinates, total $\mathrm{Na} / \mathrm{uc}$ and thermal parameters fixed (see [4]). Water coordinates fixed according to MM simulations.

Fig. A.III.3. Rietveld plots for $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot 29 \mathrm{C}_{6} \mathrm{H}_{6}+18 \mathrm{H}_{2} \mathrm{O}$ (point 13 in Fig. 1).

Point 14

Sample label: PL52_BZ40
Sample formula: $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot 43 \mathrm{C}_{6} \mathrm{H}_{6}+$ $18 \mathrm{H}_{2} \mathrm{O}$

Sample origin: LZY-52 (Sigma-Aldrich)
Diffractometer: Philips - X'Pert - in air-tight brass sample-holder

Wavelength (\AA): $\mathrm{Cu} \mathrm{K} \alpha$
Angular range (${ }^{\circ} 2 \theta$): 4-66
Angular step (${ }^{\circ} 2 \theta$): 0.025
Unit-cell parameter (\AA): 24.690(1)
Number of observables: $2481+16=2497$
Number of $h k l$ triplets: 165
$R_{\mathrm{p}} / R_{\mathrm{wp}} / R_{\mathrm{ex}} / R_{\mathrm{I}}(\%): 6.0 / 8.4 / 3.4 / 6.5$

Atom	x / a	y / b	z / c	B (iso)	population/uc
Si	$-.0543(2)$	$.0367(2)$	$.1264(2)$	0.8	192
O 1	$-.1070(3)$	0	$.1070(3)$	2.5	96
O 2	$-.0026(3)$	$-.0026(3)$	$.1416(5)$	2.5	96
O 3	$-.0347(5)$	$.0762(3)$	$.0762(3)$	2.5	96
O 4	$-.0732(4)$	$.0726(3)$	$.1774(3)$	2.5	96
NaI	0	0	0	3.3	$1(1)$
NaI	$.0592(5)$				$25(1)$
NaII	$.2381(5)$				$30(1)$
C 1	.258	.338	.298	9.0	$30(1)$
H 1	.227	.369	.298	9.0	
C 2	.477	.477	.546	9.0	$13(1)$
H 2	.459	.459	.582	9.0	
OW 1	.167	.167	.171	9.0	$8(1)$
H 11	.181	.134	.191	9.0	
H 21	.134	.181	.191	9.0	
OW 2	.211	.326	.326	9.0	$10(1)$
H 21	.171	.331	.323	9.0	
H 22	.221	.337	.366	9.0	
Si-O1 $1.654(3)$	$\mathrm{Si}-\mathrm{O} 2$	$1.647(3)$	$\mathrm{Si}-\mathrm{O} 3$	$1.649(3) \mathrm{Si}-\mathrm{O} 41.610(3)$.	

Benzene coordinates, total $\mathrm{Na} / \mathrm{uc}$ and thermal parameters fixed (see [4]). Water coordinates fixed according to MM simulations.

Fig. A.III.4. Rietveld plots for $\mathrm{Na}_{56} \mathrm{Al}_{56} \mathrm{Si}_{136} \mathrm{O}_{384} \cdot 43 \mathrm{C}_{6} \mathrm{H}_{6}+18 \mathrm{H}_{2} \mathrm{O}$ (point 14 in Fig. 1).

References

[1] W.M. Meier, D.H. Olson, Atlas of Zeolite Structure Types, Butterworths, London, 1987.
[2] D.W. Breck, Zeolite Molecular Sieves, Wiley, New York, 1974.
[3] R.M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, London, 1978.
[4] A.N. Fitch, H. Jobic, A. Renouprez, J. Phys. Chem. 90 (1986) 1311 [$\mathrm{NaY}(56)$].
[5] S. Buttefey, A. Boutin, C. Mellot-Draznieks, A.H. Fuchs, J. Phys. Chem. B 105 (2001) 9569.
[6] B.-H. Ha, D. Barthomeuf, Y. Trambouze, J. Chim. Phys. 3 (1973) 463.
[7] D. Barthomeuf, B.-H. Ha, J. Chem. Soc., Farad. Trans I 69 (1973) 2147.
[8] D. Barthomeuf, B.-H. Ha, J. Chem. Soc., Farad. Trans I 69 (1973) 2158.
[9] A. de Mallmann, D. Barthomeuf, in: 7h IZC, Tokyo, 1986, p. 609 (AD-8-1).
[10] W. Schirmer, H. Thamm, H. Stach, U. Lohse, The Properties and Applications of Zeolites, J. Chem. Soc. (Lond.) Spec. Publ. 33 (1979) 204.
[11] B.-L. Su, B. Norberg, Colloids and Surfaces, A, Physicochem. Eng. Aspects 187-188 (2001) 297.
[12] B.-L. Su, V. Norberg, J.A. Martens, Langmuir 17 (2001) 1267.
[13] Y.-H. Chen, L.-P. Hwang, Magn. Reson. Chem. 37 (1999) S84.
[14] A. de Mallmann, D. Barthomeuf, Zeolites 8 (1988) 292.
[15] C. Pichon, A. Méthivier, M.-H. Simonot-Grange, C. Baerlocher, J. Phys. Chem. B 103 (1999) 10197.
[16] G. Vitale, C.F. Mellot, L.M. Bull, A.K. Cheetham, J. Phys. Chem. B 101 (1997) 4559.
[17] Y.H. Yeom, A.N. Kim, Y. Kim, S.H. Song, K. Seff, J. Phys. Chem. B 102 (1998) 6071.
[18] G. Vitale, L.M. Bull, R.E. Morris, A.K. Cheetham, B.H. Toby, C.G. Coe, J.E. MacDougall, J. Phys. Chem. 99 (1995) 16087.
$[19]$ B. Geil, O. Isfort, B. Boddenberg, D.E. Favre, B.F. Chmelka, F. Fujara, J. Chem. Phys. 116 (2002) 2184.
[20] H. Stach, U. Lohse, H. Thamm, W. Schirmer, Zeolites 6 (1986) 74.
[21] B.F. Mentzen, F. Di Renzo, C.R. Acad. Sci., Ser. II 321 (1995) 343.
[22] J.A. Hriljac, M.M. Eddy, A.K. Cheetham, J.A. Donohue, J. Ray, J. Solid-State Chem. 106 (1993) 66.
[23] K. Bobuatong, J. Limtrakul, Appl. Catal. A 253 (2003) 49.
[24] S. Kasuriya, S. Namuangruk, P. Treesukol, M. Tirtowidjojo, J. Limtrakul, J. Catal. 219 (2003) 320.
[25] S. Kasuriya, S. Namuangruk, P. Treesukol, M. Tirtowidjojo, J. Limtrakul, J. Catal. 219 (2003) 320.
[26] L. Uytterhoeven, D. Dompas, W.J. Mortier, J. Chem. Soc., Farad. Trans. 88 (1992) 2753.
[27] S.M. Auerbach, N.J. Henson, A.K. Cheetham, H.I. Metiu, J. Phys. Chem. 99 (1995) 10600.
[28] B.F. Mentzen, F. Bosselet, J. Bouix, C.R. Acad. Sci., Ser. II 306 (1988) 27.
[29] B.F. Mentzen, F. Lefebvre, Mater. Res. Bull. 30 (1995) 613.
[30] B.F. Mentzen, Mater. Res. Bull. 30 (1995) 1193.
[31] D.E. Williams, Acta Crystallogr. A 36 (1980) 715.
[32] D.B. Wiles, R.A. Young, J. Appl. Crystallogr. 14 (1981) 149 and a locally modified version of the DBW-32 code.
[33] A.C. Larson, R.B. Von Dreele, in: General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, 1994, p. 86.
[34] G.E. Bacon, N.A. Curry, S.A. Wilson, Proc. R. Soc, Lond., Ser. A 279 (1964) 98.

[^0]: * Corresponding author.

 E-mail address: mentzen.b@infonie.fr (B.F. Mentzen).

